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ABSTRACT 
 
Auto dynamic difficulty (ADD) is the technique of 
automatically changing the level of difficulty of a video 
game in real time to match player expertise.  Recreating an 
ADD system on a game-by-game basis is both expensive 
and time consuming, ultimately limiting its usefulness. 
Thus, we leverage the benefits of software design patterns 
to construct an ADD framework.  In this paper, we discuss a 
number of desirable software quality attributes that can be 
achieved through the usage of these design patterns, based 
on a case study of two video games. 
 
INTRODUCTION 
 
In the last 30 years, the scope of video games has expanded 
considerably in terms of platforms, genres and size. 
Unfortunately, we still struggle with keeping players 
engaged in a game for a long period of time. According to a 
recent article (Snow 2011), 90% of game players never 
finish a game.  One of the key engagement factors for a 
video game is an appropriate level of difficulty, as games 
become frustrating when they are too hard and boring when 
they are too easy (Hao et al. 2010).  From the point of view 
of skill levels, reflex speeds, hand-eye coordination, 
tolerance for frustration, and motivations, video game 
players may vary drastically (Bailey and Katchabaw 2005). 
These factors together make it very challenging for video 
game designers to set an appropriate level of difficulty in a 
video game.  Traditional static difficulty levels (e.g., easy, 
medium, hard) often fail in this context as they expect the 
players to judge their ability themselves appropriately 
before playing the game and also try to classify them in 
broad clusters (e.g., what if easy is too easy and medium is 
too difficult for a particular player?). 
 
Auto dynamic difficulty (ADD), also known as dynamic 
difficulty adjustment (DDA) or dynamic game balancing 
(DGB), refers to the technique of automatically changing 
the level of difficulty of a video game in real time, based on 
the player’s ability (or, the effort s/he is currently spending) 
in order to provide them with an “optimal experience”, also 
sometimes referred to as “flow”.  If the dynamically 
adjusted difficulty level of a video game appropriately 
matches the expertise of the current player, then it will not 

only attract players of varying demographics but also enable 
the same player to play the game repeatedly without being 
bored. Popular games such as “Max Payne”, "Half-Life 2" 
and “God Hand” use the concept of auto dynamic difficulty. 
While others have studied ADD in games, this has been 
done in an ad hoc fashion in terms of software design and is 
therefore not reusable or applicable to other games. 
Recreating an ADD system on a game-by-game basis is 
both expensive and time consuming, ultimately limiting its 
usefulness.  For this reason, we leverage the benefits of 
software design patterns (Gamma et al. 1995) to construct 
an ADD framework and system that is reusable, portable, 
flexible, and maintainable.   
 
In (Chowdhury and Katchabaw 2012), we introduced a 
collection of four design patterns originally from self-
adaptive system literature (Ramirez and Cheng 2010), 
derived in the context of enabling auto dynamic difficulty in 
video games.  Unfortunately, to date, the literature on the 
usage of software design patterns in developing video 
games is relatively scarce.  Work in this area is mostly 
limited to using video games as a means for teaching 
software design patterns in undergraduate computer science 
courses (e.g., Gestwicki and Sun 2008; Antonio et al. 2009).  
Very little, if any, motivation of using software design 
patterns for implementing ADD is found in the video game 
literature. Thus, in this paper, we discuss the improvements 
to overall software quality that can be achieved through the 
usage of these design patterns, based on empirical evidence 
acquired through a case study involving implementation and 
source code analysis of two proof-of-concept video games. 
 
The rest of this paper is organized as follows.  In the next 
section, we overview key literature from the area.  We then 
describe our design patterns for enabling auto dynamic 
difficulty in video games, as well as our case study.  Finally, 
in the remaining sections, we present the results from our 
case study and conclude the paper. 
 
RELATED WORK 
 
Considering the variety of contexts and the focus of related 
research, we divide our related work discussion into three 
sub-sections. First we highlight the research that explores 
the use of ADD in video games. Afterwards, we discuss the 
literature on using software design patterns in video games. 
Finally, we discuss the research gap and put our work in the 
context of this other work. 
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Auto Dynamic Difficulty 
 
In recent years, ADD has received notable attention from 
numerous researchers. Some of this research is primarily 
focused on knowledge seeking, whereas other works present 
solutions such as frameworks and algorithms. Additionally, 
in some research, new solutions are presented together with 
empirical validations. Here, we review some of these works. 
 
(Bailey and Katchabaw 2005) developed an experimental 
testbed based on Epic’s Unreal engine that can be used to 
implement and study ADD in games. It allows development 
of new ADD algorithms as well. A number of mini-game 
gameplay scenarios were developed in the test-bed and 
these were used in preliminary validation experiments. 
 
(Rani et al. 2005) suggested a method to use real time 
feedback, by measuring the anxiety level of the player using 
wearable biofeedback sensors, to modify game difficulty. 
They conducted an experiment on a Pong-like game to 
show that physiological feedback based difficulty levels 
were more effective than performance feedback to provide 
an appropriate level of challenge. Physiological signals data 
were collected from 15 participants each spending 6 hours 
in cognitive tasks (i.e., anagram and Pong tasks) and these 
were analyzed offline to train the system. 
 
(Hunicke 2005) used a probabilistic model to design ADD 
in an experimental first person shooter (FPS) game based on 
the Half-life SDK. They used the game in an experiment on 
20 subjects and found that ADD increased the player’s 
performance (i.e., the mean number of deaths decreased 
from 6.4 to 4 in the first 15 minutes of play) and the players 
did not notice the adjustments. 
 
(Orvis et al. 2008), from an experiment involving 26 
participants, found that across all difficulty levels, 
completion of the game resulted in an improvement in 
performance and motivation. Prior gaming experience was 
found to be an important influence factor. Their findings 
suggested that for inexperienced gamers, the method of 
manipulating difficulty level would influence performance. 
 
(Hao et al. 2010) proposed a Monte-Carlo Tree Search 
(MCTS) based algorithm for ADD to generate intelligence 
of non player characters. Because of the computational 
intensiveness of the approach, they also provided an 
alternative based on artificial neural networks (ANN) 
created from the MCTS. They also tested the feasibility of 
their approach using Pac-Man. 
 
(Hocine and Gouaïch 2011) described an ADD approach for 
pointing tasks in therapeutic games. They introduced a 
motivation model based on job satisfaction and activation 
theory to adapt the task difficulty. They also conducted 
preliminary validation through a control experiment on 
eight healthy participants using a Wii balance board game. 
 
Software Design Patterns in Video Games 
 
In a number of works, video games have been proposed as a 
tool to teach software engineering in general and design 

patterns in particular. On the other hand, unfortunately, 
work focusing on how game developers can benefit from 
the usage of software design patterns is relatively rare. Here 
we discuss examples of both types of research. 
 
(Gestwicki and Sun 2008) presented a video game based 
approach to teach software design patterns to computer 
science students. They developed an arcade style game, 
EEClone, which consists of six key design patterns and then 
used these patterns in their case study. Student participants 
analyzed the game to learn the usage of those patterns. 
 
(Antonio et al. 2009) described their experience in teaching 
software design patterns using a number of incremental 
abstract strategy game design assignments. In their 
approach, each assignment was completed by refactoring 
and using design patterns on previous assignments.  
 
(Narsoo et al. 2009) described the usage of software design 
patterns to implement a single player Sudoku game for the 
J2ME platform. They found that through the use of design 
patterns, new requirements could be accommodated by 
making changes to fewer classes than otherwise possible. 
 
Research Gap 
 
As we can see from above discussion, the work on ADD in 
video games focuses on tool building (e.g., framework 
(Bailey and Katchabaw 2005), algorithm (Hunicke 2005; 
Hao et al. 2010) etc.) and empirical studies (e.g., Rani et al. 
2005; Orvis et al. 2008 etc.), but they all use an ad-hoc 
approach from a software design point view. On the other 
hand, research on using software design patterns in video 
games is mostly limited to using video games as a means 
for teaching design patterns in undergraduate computer 
science courses (e.g., Gestwicki and Sun 2008; Antonio et 
al. 2009).  In contrast, much work has been done towards 
game design patterns, such as the foundational work of 
(Björk and Holopainen 2004) and many others, but the 
focus there is game design and not software design, which 
is a subtle, yet important distinction.  Thus, in this paper, we 
discuss the software quality attributes that can be achieved 
through the usage of software design patterns in the context 
of ADD, based on an empirical study. 
 
DESIGN PATTERNS 
 
In this section, we briefly discuss the four software design 
patterns for enabling ADD in video games. For further 
details, the reader is encouraged to refer to (Chowdhury and 
Katchabaw 2012) for elaborated discussion and examples. 
 
Sensor Factory 
 
The sensor factory pattern is used to provide a systematic 
way of collecting data while satisfying resource constraints, 
and provide those data to the rest of the ADD system. 
Sensor (please see Figure 1) is an abstract class that 
encapsulates the periodical collection and notification 
mechanism. A concrete sensor realizes the Sensor and 
defines specific data collection and calculation. The 
SensorFactory class uses the “factory method” pattern to 
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provide a unified way of creating any sensors. It takes the 
sensorName and the object to be monitored as input and 
creates the sensor. Before creating a sensor, the 
SensorFactory checks in the Registry data structure to see 
whether the sensor has already been created. If created, the 
SensorFactory just returns that sensor instead of creating a 
new one. Otherwise, it verifies with a ResourceManager 
whether a new sensor can be created without violating any 
resource constraints. 

 
Figure 1: Sensor Factory Design Pattern 

 
Adaptation Detector 
 
With the help of the sensor factory pattern, the 
AdaptationDetector (please see Figure 2) deploys a number 
of sensors in the game and attaches observers to each 
sensor. Observer encapsulates the data collected from 
sensor, the unit of data (i.e., the degree of precision 
necessary for each particular type of sensor data), and 
whether the data is up-to-date or not. AdaptationDetector 
periodically compares the updated values found from 
Observers with specific Threshold values with the help of 
the ThresholdAnalyzer. Each Threshold contains one or 
more boundary values as well as the type of the boundary 
(e.g., less than, greater than, not equal to, etc.). Once the 
ThresholdAnalyzer indicates a situation when adaptation 
might be needed, the AdaptationDetector creates a Trigger 
with the information that the rest of the ADD process needs. 

 
Figure 2: Adaptation Detector Design Pattern 

 
Case Based Reasoning 
 
While the adaptation detector determines the situation when 
a difficulty adjustment is required by creating a Trigger, 
case based reasoning (please see Figure 3) formulates the 
Decision that contains the adjustment plan. The 
InferenceEngine has two data structures: the TriggerPool 
and the FixedRules. FixedRules contains a number of Rules. 
Each Rule is a combination of a Trigger and a Decision. 
The Triggers created by the adaptation detector will be 
stored in the TriggerPool. To address the triggers in the 

sequence they were raised in, the TriggerPool should be a 
FIFO data structure. The FixedRules data structure should 
support search functionality so that when the 
InferenceEngine takes a Trigger from the TriggerPool, it 
can scan through the Rules held by FixedRules and find a 
Decision that appropriately responds to the Trigger. 

 
Figure 3: Case Based Reasoning Design Pattern 

 
Game Reconfiguration 
 
Once the ADD system detects that a difficulty adjustment is 
necessary, and decides what and how to adjust the various 
game components, it is the task of the game reconfiguration 
pattern to facilitate smooth execution of the decision. The 
AdaptationDriver receives a Decision selected by the 
InferenceEngine (please see case based reasoning in previous 
section) and executes it with the help of the Driver. Driver 
implements the algorithm to make any attribute change in an 
object that implements the State interface (i.e., that the object 
can be in ACTIVE, BEING_ACTIVE, BEING_INACTIVE or 
INACTIVE states, and outside objects can request state 
changes). As the name suggests, in the active state, the object 
shows its usual behavior whereas in the inactive state, the 
object stops its regular tasks and is open to changes. The 
Driver takes the object to be reconfigured (default object used 
if not specified), the attribute path (i.e., the attribute that needs 
to be changed, specified according to a predefined protocol 
such as object oriented dot notation) and the changed attribute 
value as inputs. The Driver requests the object that needs to be 
reconfigured to be inactive and waits for the inactivation. 
When the object becomes inactive, it reconfigures the object as 
specified. After that, it requests the object to be active and 
informs the AdaptationDriver when the object becomes active. 
The GameState maintains a RequestBuffer data structure to 
temporarily store the inputs received during the inactive state 
of the game. (If the reconfiguration is done efficiently, 
however, it should be completed within a single tick of the 
main game loop, and this buffering should be largely 
unnecessary.) The GameState overrides Game’s event handling 
methods and game loop to implement the State interface. 

 
Figure 4: Game Reconfiguration Design Pattern 
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Integration of ADD Design Patterns 
 
In this Section, we briefly re-discuss how the four design 
patterns discussed in previous sub-sections work together to 
create a complete ADD system (please see Figure 5). The 
sensor factory pattern uses Sensors to collect data from the 
game so that the player’s perceived level of difficulty can be 
measured. The adaptation detector pattern observes Sensor 
data using Observers. When the adaptation detector finds 
situations where difficulty needs to be adjusted, it creates 
Triggers with appropriate additional information. Case 
based reasoning gets notified about required adjustments by 
means of Triggers. It finds appropriate Decisions associated 
with the Triggers and passes them to the adaptation driver. 
The adaptation driver applies the changes specified by each 
Decision to the game, to adjust the difficulty of the game 
appropriately, with the help of the Driver. The adaptation 
driver also makes sure that the change process is transparent 
to the player. In this way, all four design patterns work 
together to create a complete ADD system for a particular 
game. 

 
Figure 5: Four Design Patterns Working Together in a 

Game 
 
CASE STUDY 
 
In this section, we describe the case study used to assess 
software quality improvements achieved through our design 
patterns for ADD.  We begin with a brief description of 
each of the two games that were used in the case study. We 
then describe the case study methods and the quality metrics 
that were collected from the case study. 
 
Case Study Games 
 
We used two arcade style single player games developed in 
Java for the case study. The first game is a variant of Pac-
Man and will be referred to as Game-P from here onwards. 
Game-P was developed for the purposes of this research.  
The level structure and gameplay of the second game is 
similar to the popular Super Mario game series and will be 
referred to as Game-S from here onwards. Game-S is a 
slightly modified version of a platform game described in 
(Brackeen et al. 2004).  In sub-sections below, we briefly 
describe the game logic and ADD logic of these two games. 
 
Game-P 
In this game, the player controls Pac-Man in a maze (please 
see Figure 6). There are pellets, power pellets, and 4 ghosts 
in the maze. Pac-Man has 6 lives. Usually, ghosts are in a 
predator mode and touching them will cause the loss of one 
of Pac-Man’s lives. When Pac-Man eats a power-pellet, it 
becomes the predator for a certain amount of time. When 
Pac-Man is in this predator mode and eats a ghost, the ghost 

will go back to the center of the maze and will stay there for 
a certain amount of time. Eating pellets gives points to Pac-
Man. The player tries to eat all the pellets in the maze 
without losing all of Pac-Man’s lives. The player is 
motivated to chase the ghosts while in predator mode, as 
that will help them by removing the ghosts from the maze 
for a time, allowing Pac-Man to eat pellets more freely. 
Ghosts only change direction when they reach intersections 
in the maze, while Pac-Man can change direction at any 
time. A ghost’s vision is limited to a certain number of cells 
in the maze. Ghosts chase the player if they can see them. If 
the ghosts do not see Pac-Man, they try to roam the cells 
with pellets, as Pac-Man needs to eventually visit those 
areas to collect the pellets. If the ghosts do not see either 
Pac-Man or pellets, they move in a random fashion.   

 
Figure 6: Screen Captured from Game-P 

 
Usually, a Pac-Man game is multi-level, but our 
implementation (i.e., Game-P) has only one level. The 
maximum possible score is 300 in our case, so the player 
will try to achieve the score of 300 without losing all of 
Pac-Man’s lives. Our assumption is that if the player loses 
all lives (i.e., 6) before finishing the game, then the average 
score per life (i.e., total score / number of lives lost to 
achieve the score) would be less than 50 and the game 
would seem overly difficult to them. On the other hand, if 
the player finishes the game losing half of the lives or less, 
then the average score would be greater than or equal to 
100, and the game would seem too easy to them. Thus, in 
this case, the ADD system monitors the average-score-per-
life and changes game difficulty accordingly. It starts 
increasing the game difficulty when the monitored value is 
more than 50 and the game become most difficult when the 
value is more than 100. (Corresponding logic decreases the 
game difficulty when the average-score-per-life is less than 
50.)  The attributes of ghost speed, ghost vision length, 
duration of Pac-Man’s predator mode, and the amount of 
time that a ghost stays in the centre of the maze after being 
eaten by Pac-Man in predator mode are increased or 
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decreased to change the game difficulty. Each of these 
attributes has lower and upper limits, so that the game 
includes the option of someone playing extremely well or 
extremely poorly. 
 
Game-S  
In this game, the player controls the player character in a 
platform world (please see Figure 7).  There are three levels, 
each having different tile based maps.  There are power ups 
and non-player characters (i.e., enemies) in each level.  
There are three different types of power ups: basic power 
ups, bonus power ups, and a goal power up.  Basic power 
ups and bonus power ups give certain points to the player.  
In each level there is one goal power up that can be found at 
the end of the level.  The goal power up takes the player 
from one level to another.  There are two different types of 
non-player characters: ants and flies.  Ants and flies move 
in one direction and change direction when blocked by the 
platforms.  The player character can run on and jump from 
platforms.  When the player character jumps on (i.e., 
collides from above) non-player characters, the non-player 
character dies.  If the player character collides with a non-
player character in any other direction, then the player 
character dies instead.  The player character has 6 lives.  
When the player character dies, it loses one life and the 
game restarts from the beginning of that level.  The player 
character and ants are affected by gravity; flies are only 
affected by gravity when they die. 

Figure 7: Screen Captured from Game-S 
 
In this game, three map variants were created for each level. 
For a particular level, the same objects were placed in the 
map, but positioned slightly differently.  One map variant 
was the default version and other two were easier and 
harder versions of the default map.  The ADD system 
monitors score-per-level and life-lost-per-level, and adapts 
difficulty accordingly.  One possible adaptation is the 
modification of the speed of the non-player characters and 
takes place during the game.  Another adaptation is a 
change in level structure (i.e., loading a different version of 
the map) and takes place when the player character goes to 
the next level or in the next loading of the same level (i.e., 
when the player character dies).  The modifications are 
minor and assumed to be transparent to the player, but 
altogether alter the game difficulty.  Apart from this, each 
level is more difficult and lengthier than the previous level, 

but has more points to give the player a sense of progress 
and accomplishment.  Similar to Game-P, modifications in 
Game-S have lower and upper limits, so that the game 
includes the option of someone playing extremely well or 
extremely poorly.         
 
Case Study Method 
 
Here we briefly discuss the steps that were taken during the 
course of the case study.  Firstly, Game-P was developed 
without our pattern-based ADD system.  Our ADD system 
was then developed and integrated with Game-P.  The 
source code for the ADD system was then refactored within 
the scope of the design patterns.  We manually tested 
Game-P separately and with the ADD system.  A player 
simulation (i.e., a simple artificial intelligence playing the 
game itself using heuristic functions) was also created to 
test the game.  Game-S was then chosen for study as it used 
the same Java platform as Game-P, but substantially 
differed in terms of gameplay, and was freely available and 
well documented in a book (Brackeen et al. 2004).  Two 
default maps accompanied Game-S originally.  We created 
one more default map ourselves, as well as two different 
variants of each map, as discussed earlier.  There was no 
scoring mechanism in Game-S as originally written, so we 
developed scoring logic ourselves.  After this, we took the 
source code of our ADD system used with Game-P and 
extended its abstract base classes (Sensor, and so on) to 
adapt the system for Game-S.  We manually tested Game-S 
separately and with the ADD system.  We then analyzed 
and compared the source code of the ADD systems of 
Game-P and Game-S to assess software quality according to 
a few key software metrics, as discussed in the next sub-
section. 
 
Analysis Tool and Metric 
        
During the development of the ADD system for Game-P, 
we realized that much of its source code would be reusable 
across various games.  During the extension of the ADD 
system for Game-S, we did not need to make modifications 
to many of the classes from the system for Game-P.  To 
assess this quantitatively, we selected a metric and a tool. 
As a metric, we used Source Lines of Code (SLOC), as it is 
a widely accepted software metric and helps in estimating 
the development effort of a software product. For a tool, we 
used Unified Code Count (UCC) developed by the 
University of Southern California Center for Systems and 
Software Engineering.  Features of UCC include both 
counting SLOC and comparing two versions of source code.  
UCC counts both the logical and physical SLOC.  As seen 
from the two examples in Table 1, since logical SLOC 
disregards code formatting, it is more representative of the 
size of the software, and so we used logical SLOC as our 
metric in this study.                 

Table 1: Difference Between Physical and Logical SLOC 
Example Physical vs. Logical SLOC 

if(a = = 0) foo(); Physical SLOC = 1,Logical SLOC = 2 
if(a = = 0) 
{ 
     foo(); 
} 

 
Physical SLOC = 4,Logical SLOC = 2 
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SOFTWARE QUALITY ASPECTS 
 
In this section, we describe how different desirable software 
quality attributes can be achieved through using the design 
patterns described earlier in this paper.  For this discussion, 
we refer to case study results and observations.    
 
Reusability 
 
Reusability refers to the degree to which existing 
applications can be reused in new applications.  Reusability 
of source code reduces implementation time and increases 
the probability that prior testing has eliminated defects. 
 
In Table 2, we show our reusability analysis of the source 
code of the ADD systems of Game-P and Game-S.  In the 
first column, we show the class name or pattern name.  In 
the next four columns we show information related to 
Game-P. In the first Game-P column we show the number 
of classes in each category (i.e., specified in column 1).  In 
the second column we show the corresponding total logical 
SLOC in Game-P.  In the third column we show the 
reusable Logical SLOC (i.e., code that remained unchanged 
in Game-S) and the associated percentage.  In the fourth 
column we show the game specific Logical SLOC (i.e., 
specific to Game-P and cannot be reused) and the associated 
percentage.  The remaining columns report similar data, this 
time from the perspective of Game-S.  For clarity, we 
combined 100% reusable classes within a particular pattern.  
After all the rows of a particular pattern we show the 
summary of that pattern.  The last row of the table is the 
summary across all the patterns.      
 
We can see from Table 2 that SensorFactory, Sensor, 
Registry and ResourceManager classes in the sensor factory 
design pattern are completely reusable.  Similarly, classes 
required to implement the Observer, Trigger, Threshold and 
ThresholdAnalyzer in the adaptation detector pattern are 
completely reusable. Three classes (i.e., Rule, FixedRules 
and Decision) in the case based reasoning pattern, and three 

classes (i.e., Driver, AdaptationDriver and State) in the 
game reconfiguration pattern are also completely reusable.  
Furthermore, the classes required to implement 
AdaptationDetector, InferenceEngine and GameState are 
partially reusable.  Only the concrete sensors (6 classes in 
Game-P and 3 classes in Game-S) and the concrete 
decisions (2 classes in Game-P and 5 classes in Game-S) are 
specific to the game and not reusable. 
 
As we can see from the last row in Table 2, the ADD 
system in Game-P contains 27 classes comprised of 774 
logical SLOC. Similarly, the ADD system in Game-S 
contains 753 logical SLOC in 27 classes.  Between these 
two systems, 600 logical SLOC (77.52% in Game-P; 
79.68% in Game-S) are exactly the same and thus are 
considered reusable.  Only 174 (22.48%) logical SLOC in 
Game-P and 153 (20.32%) logical SLOC in Game-S are 
specific to the games. Overall, more than three fourths 
(75%) of the logical SLOC required to implement the ADD 
systems are considered reusable. 
 
Integrability 
 
Integrability refers to the ability to make the separately 
developed components of the system work correctly 
together. As we can see in Figure 5, the integration points 
among the design patterns and with the game are clearly 
defined. Observers, Triggers and Decisions are the 
integration points between the four design patterns.  Sensors 
and Drivers are the integration points between a game and 
the ADD system.  Sensors function as accessors to the game 
whereas Drivers function as mutators to the game.  Because 
of these clearly defined integration points, the four design 
patterns can be integrated with each other and a game 
easily. One of the games in the case study (Game-S) was 
already developed without any prior consideration of these 
design patterns or even any ADD system.  Regardless, we 
easily managed to extend and add our ADD system to that 
game using our design patterns, which demonstrates the 
integrability of the patterns (and also Game-S). 

Table 2: Reusability Analysis of the Source Code of ADD Systems in Game-P and Game-S
Game-P Game-S 
Logical SLOC Logical SLOC Class/ Pattern Name # of 

Classes Total  Reusable(%) Specific(%) 
# of 

Classes Total Reusable(%) Specific(%) 
SensorFactory, Sensor, 
Registry, Resource Manager 4 218 218(100) 0(0) 4 218 218(100) 0(0) 
ConcreteSensors 6 68 0(0) 68(100) 3 44 0 (0) 44(100) 

Sensor Factory  10 286 218(76.22) 68(23.78) 7 262 218 (83.21) 44(16.79) 
Observer, Trigger, Threshold, 
ThresholdAnalyzer 5 97 97(100) 0(0) 5 97 97(100) 0(0) 
AdaptationDetector 1 68 21(30.88) 47(69.12) 1 65 21(32.31) 44(67.69) 

Adaptation Detector 6 165 118(71.52) 47(28.48) 6 162 118(72.84) 44(27.16) 
Rule, Decision, FixedRules 3 75 75(100) 0(0) 3 75 75(100) 0(0) 
InferenceEngine 2 50 46(92) 4(8) 2 51 46(90.20) 5(9.80) 
ConcreteDecisions 2 29 0(0) 29(100) 5 30 0(0) 30(100) 

Case-based Reasoning 7 154 121(78.57) 33(21.43) 10 156 121(77.56) 35(22.44) 
Driver, AdaptationDriver, 
State 3 99 99(100) 0(0) 3 99 99(100) 0(0) 
GameState 1 70 44(62.86) 26(37.14) 1 74 44(59.46) 30(40.54) 

Game Reconfiguration 4 169 143(84.62) 26(15.38) 4 173 143(82.66) 30(17.34) 
Grand Total 27 774 600(77.52) 174(22.48) 27 753 600(79.68) 153(20.32) 
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Portability 
 
Portability is the ability of a system to run under different 
computing environments. A framework- or middleware-
based approach for creating a self-adaptive system (such as 
ADD in video games) is usually specific to a particular 
programming language and or platform, whereas a design 
pattern-based approach is highly portable across different 
platforms and programming languages (Ramirez and Cheng 
2010). These design patterns were derived from the self-
adaptive system literature in the context of ADD in video 
games.  This indicates the portability of these design 
patterns across domains.  Also, in our case study, we 
managed to port them (as a solution) from one game to 
another within the platform (Java).  This indicates 
portability across systems on the same platform.  In the 
future, we plan to examine the portability of these design 
patterns across platforms as well. 
 
Maintainability   
 
Maintainability refers to the ease of the future maintenance 
of the system.  As discussed earlier, different parts of the 
design patterns have specific concerns (e.g., Sensors will 
collect data, Drivers will make changes to the game, etc.), 
and so the resulting source code will have high traceability 
and maintainability.  Furthermore, as the use of these design 
patterns provides source code reusability (please see Table 
2), this will increase the probability that prior testing has 
eliminated defects when being used in a new game.  
 
CONCLUDING REMARKS 
 
Design patterns are a formal approach of describing 
reusable solutions for a design problem.  To date, the 
literature on the usage of software design patterns in video 
games is relatively scarce.  Little or no motivation of using 
software design patterns for implementing ADD is found in 
video game literature.  Thus, in this paper, we presented a 
case study involving implementation and source code 
analysis of two proof-of-concept video games.  We 
discussed how desirable software quality attributes such as 
reusability, integrability, portability, and maintainability can 
be achieved through the usage of these design patterns.  Our 
case study results and methods have implications on both 
research and practice, giving practitioners motivation to use 
these design patterns for implementing ADD systems.  Our 
analysis technique (i.e., a source code analysis to compare 
games) can be used in further research.  Even though our 
context of discussion was ADD, these patterns can be used 
in any situation where a game needs to be adaptive and 
reconfigures itself based on monitoring.    
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