

Hpcbench – A Linux-Based Network Benchmark for High Performance Networks

Ben Huang, Michael Bauer, Michael Katchabaw
Department of Computer Science, The University of Western Ontario

{huang|bauer|katchab}@csd.uwo.ca

Abstract

In recent years, Linux-based clusters have become

more prevalent as a basis for High Performance
Computing (HPC) systems. Network performance
analysis is crucial to the management and administration
of such clusters. To assist in this process, we developed
Hpcbench [8] to measure UDP, TCP and MPI
communications over high performance networks.
Hpcbench records and tracks experiment results and
system statistics, facilitating detailed analyses of network
behaviour. In this paper, we introduce the design and
prototype implementation of Hpcbench, and demonstrate
Hpcbench in evaluating the network performance of
three high performance interconnects in HPC clusters:
Gigabit Ethernet, Myrinet, and Quadrics’ QsNet.

1. Introduction

Being able to solve larger, more complex problems in

a shorter period of time is a key motivating factor in
building a High Performance Computing (HPC) system.
Modern computers, even personal computers, are
becoming more and more powerful. As well, high-speed,
low-latency network products are becoming increasingly
available and less expensive. It is now possible to build
powerful platforms for high performance computation
from off-the-shelf computers and network devices. In
particular, the Linux-based commodity cluster
constructed by general purpose computers is a popular
model and seems to be a trend for future HPC.

Commodity cluster computing can be characterized as
being cost effective, flexible, extensible, easy to maintain
and to be integrated. However, since these commodity
clusters are built with a variety of standalone computers
and network devices, they do not necessarily guarantee
high performance. The performance power of a
standalone computer usually depends on its operating
system, CPU and memory speed, and a variety of other

factors. For HPC clusters, network communication is
another key factor for cluster performance—a
communication bottleneck in an HPC cluster may lead to
a significant loss of overall performance.

Traditional network benchmarks do not necessarily
work well in evaluating the performance of HPC
environments, as the network interconnecting a cluster
plays a more critical role in supporting the applications
distributed across the compute nodes in the environment.
Furthermore, some functionality and parameters required
for detailed performance evaluations cannot be found in
currently available network benchmarking tools. To
better understand network behavior in HPC
environments, we developed a Linux-based network
benchmark tool set, named Hpcbench [8]. Hpcbench is
able to accurately and effectively measure UDP, TCP and
MPI communication throughput and latency in high
performance networks, recording the detailed
communication parameters and kernel statistics under a
variety of parameters. The name “Hpcbench” was chosen
as this tool set was designed specifically for HPC systems
and high performance networks.

In this paper, we first provide a survey of present
network benchmarking tools and related work in Section
2, and justify the need to develop a new benchmark tool
for HPC environments. In Section 3, we discuss the
design and implementation of Hpcbench. In Section 4,
we demonstrate Hpcbench in testing and analyzing HPC
networks through a collection of experiments. Our
experiments were based on three of the most commonly
used interconnects in HPC systems: Gigabit Ethernet,
Myrinet [4] and Quadrics’ QsNet [11]. Finally, in
Section 5, we provide concluding remarks, and discuss
directions for future work in this area.

2. Related work

To measure network performance metrics, such as

throughput and latency, two types of measurement are

commonly used: active and passive. Active measurement
is based on introducing a workload into the network,
usually through the execution of a special application,
and collecting data on the performance of the workload.
Typically, this is done in a client/server model, in which
the client and server exchange probe packets across the
network, with both the client and server collecting timing
measurements on the data transferred. Passive
measurement does not depend on interjecting new
workloads into a network to measure its performance.
Instead, it probes existing network traffic to compute
various network performance metrics.

To study the high performance networks one would
find in an HPC environment, it is preferable to use an
active measurement model as it allows direct and
repeatable measurements of network performance and
behaviour without the inaccuracies or assumptions
introduced by other approaches. While this can cause
disruptions to the HPC environment during
experimentation, this inconvenience is well worth the
better quality results that can be obtained in the process.
There are many existing tools available that involve
active measurements as described above. Some of the
most frequently used tools include Udpmon[9],
Netperf[7], Iperf[5] and NetPIPE[13]. However, all of
these tools were designed as general purpose network
benchmarking tools, and have their own limitations and
restrictions that make them unsuitable for HPC
environments. For example, Udpmon measures UDP
communication using hardware-dependent assembly
language to access an Intel CPU cycle counter for high-
precision timing, and therefore it can only be used on
IA32/IA64 platforms. Iperf supports multi-threading and
parallel TCP streams, but does not measure network
latency. NetPIPE works well with connection-oriented
protocols, such as TCP and MPI, but not UDP.

Although these tools work reasonably well for the
specific tasks for which they were designed, they are
limited in functionality and lack a feature set capable of
supporting many of the interesting experimental
scenarios for HPC environments. For example, none
specialize in high performance interconnects, capable of
testing all three of the most common communication
protocols in commodity clusters: UDP, TCP and MPI.

3. Design and implementation of Hpcbench

With this in mind, the best option was to implement

our own network benchmarking tool, Hpcbench, focusing
specifically on HPC environments. Hpcbench was

designed to measure the high-speed, low-latency
communication networks in Linux-based HPC systems.
The objectives of Hpcbench include high accuracy and
efficiency; support for UDP, TCP and MPI
communications; tunable communication parameters of
interest in HPC environments; and detailed recording of
test results, settings, and system information.

Hpcbench was written in C and uses BSD socket and
MPI APIs. It is comprised of three independent sets of
benchmarks measuring UDP, TCP and MPI
communications. As the benchmarks are based on a
common infrastructure, the implementation and usage of
each benchmark are quite similar, allowing us to easily
compare results for different communication protocols.

3.1. Communication model

For UDP and TCP communication tests, similar to

Netperf’s design, we employ a client/server model that
uses two channels during testing: a control channel and a
test channel. The first is a reliable TCP connection for
critical data communication for controlling the test run,
while the second is used for carrying test data packets
(UDP or TCP). This two-channel design makes it easier
to control the tests and gather results. The control
channel is used by Hpcbench solely for control of the
tests and only involves data transfer before and after each
test; thus, it does not introduce additional traffic or
overhead during actual testing. The communication
model of Hpcbench is illustrated in Figure 1.

Figure 1. Hpcbench Communication Control

Another reason for two communication channels in
Hpcbench is for test configuration purposes. As shown in
Figure 1, Hpcbench supports many test modes for various
protocols, with numerous tunable parameters for each
protocol; all of this must be configured for each test. For
example, some socket options, such as a socket’s buffer
size setting (configurable using the setsockopt()

function), should be set before establishing a connection
for test data packets. With only one communication
channel between the client and server, the server process
must be initialized with a long and cumbersome
argument set according to the client’s test setting.
Furthermore, in such a case, the server process would
need to be restarted with different parameters every time
the test parameters change. With two communication
channels, the client is able to send all the test parameters
to the server by first establishing the control channel, and
then creating the test channel with the desired options.
Thus, the server process does not have to be concerned
with test parameter settings during initialization, and can
easily have parameters changed during or between test
runs without restarting.

3.2. Timers and timing

Precise timing is important for any kind of accurate
performance measurement. There is currently a high
resolution timer project for Linux [1] that is
implementing the POSIX 1003.1b clocks and timers with
nanosecond precision. The project is under continuous
development, but only supports a few platforms, such as
Intel platforms that include a high resolution timer (TSC
register) readable by the rdtsc assembly instruction.

Without the general availability of a high resolution
function such as clock_gettime() in most systems, the
standard gettimeofday() function call is used in UDP and
TCP communication timing. In MPI testing, the
MPI_Wtime() function call is used instead, as it is
designed to be able to select the best timer available in a
system for MPI communication. Both methods provide
microsecond resolution in most cases. In Alpha systems,
however, the gettimeofday() function call has been found
experimentally to achieve only about 1ms resolution [8].

A relatively low-precision timer may affect the
accuracy of latency and throughput tests. For instance, in
a Gigabit Ethernet, a round trip time can be less than
50µsec, and a 1MByte message can be sent out in less
than 0.01 second. Consequently, test times must be made
long enough to minimize the effects of a timer’s
resolution. To do so, we repeat transmissions of the same
message several times when measuring network
throughput and network latency. In Hpcbench, the
number of transmission repetitions to configure for
testing is computed by an estimation test conducted
before actual testing begins.

A synchronization step is also conducted before the
start of each test run to ensure that both the client and the

server have a common baseline for timing. Another
synchronization step is used after data transmission as
necessary for unidirectional communication tests. (For
further details, the reader is urged to refer to [8].)

3.3. Test logs

The more information we can obtain from testing, the

better we can study and analyze the performance and the
behaviour of our networks. Unlike most benchmarks that
only provide basic results, Hpcbench records a
considerable amount of information collected during
experimentation, including all socket parameters, test
time, process time, CPU and other resource utilization,
interrupts, MAC layer network statistics, and so on.

To trace and log system information, virtual files in
the /proc directory are parsed before and after each test.
These virtual files are actually mapped from different
kernel memory areas, providing a mechanism for
accessing system statistics easily. By parsing these files,
we are able to obtain a considerable amount of system
and network information.

It is important to note, however, that recorded system
information from these files is not necessarily accurately
synchronized to each test because of delays in accessing
and parsing the files, and the deviation of updates to
those virtual files. While these statistics only provide a
rough view of system performance and behaviour, they
still provide much needed information to help in the
analysis of test results.

4. Hpcbench network performance testing

In this section, we demonstrate the usefulness of

Hpcbench in studying and analyzing the network
performance of three high performance interconnects:
Gigabit Ethernet, Myrinet and Quadrics’ QsNet. To
avoid unwelcome loads and interactions that could
complicate results, all experiments were conducted using
dedicated and completely idle machines in our
experimental environment. All MPI communication is
based on MPICH 1.2.5 [6] built with default settings.

4.1 Testbed introduction

Our testbed includes two Linux-based clusters named

“mako” and “hammerhead” in SHARCNET [2], a
distributed HPC Network in Ontario, Canada.

The hammerhead cluster consists of 28 Compaq ES40
Alpha SMP servers. Each server is configured with 4 x

833MHz Alpha EV6 processors, 4GB RAM, an Alteon
AceNIC Gigabit Ethernet Adaptor (PCI 64bits/33MHz),
a Quadrics QSW Elan3 PCI Network Adaptor, and
Redhat Linux 7.2 as its operating system, with kernel
2.4.21-3.7qsnet #9 SMP. For its interconnects, it uses a
Nortel Passport 8600 switch (Gigabit Ethernet) and a
Quadrics’ QsNet switch.

The mako cluster consists of eight HP DL360 Intel
Xeon SMP servers. Each server is configured with 4 x
3GHz Intel Xeon Hyperthreading processors, 2 GB
RAM, a Broadcom Tigon 3 Gigabit Ethernet Adaptor
(PCI-X 64bits/100MHz), a Myricom PCI-X Network
Adaptor, and Redhat Linux 9.0 as its operating system,
with kernel 2.4.20-8smp #1 SMP. For its interconnects,
it uses an HP ProCurve 2800 (Gigabit Ethernet) switch
and a Myrinet switch.

We evaluate UDP, TCP and MPI communication over
Gigabit Ethernet in this experimentation. Since TCP/IP
communication is not configured for our Myrinet and
QsNet environments, we instead test only their MPI
communication based on the same version of MPICH.

4.2 Throughput on Gigabit Ethernet

We select two idle nodes in two clusters and test their
UDP, TCP and MPI throughput over Gigabit Ethernet.

Figure 2 shows the results of UDP unidirectional
throughput versus datagram size, measured by Hpcbench
in an exponential test mode with default socket buffering.
The Intel cluster achieved 961Mbps peak UDP
throughput, while the Alpha cluster gave 530Mbps peak
UPD throughput. In high throughput situations, the UDP
sender’s CPU load was approximately 10% in the Intel
system compared to 15% for the Alpha system; the
receiver’s CPU load was approximately 15% in the Intel
system and 20% for the Alpha system.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

C
P
U

l
o
a
d

%

Datagram Size (Byte)

UDP communication over Gigabit Ethernet

Alpha-Throughput
Intel-Throughput
Alpha-Sender CPU

 Alpha-Receiver CPU
Intel-Sender CPU

 Intel-Receiver CPU

Figure 2. UDP Throughput on Gigabit Ethernet

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+006 1e+007
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

C
P
U

l
o
a
d

%

Message Size (Byte)

TCP communication over Gigabit Ethernet

Alpha-Throughput
Intel-Throughput
Alpha-Sender CPU

 Alpha-Receiver CPU
Intel-Sender CPU

Intel-Receiver CPU

Figure 3. TCP Throughput on Gigabit Ethernet

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+006 1e+007
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

C
P
U

l
o
a
d

%

Message Size (Byte)

MPI point-to-point communication over Gigabit Ethernet

Alpha-Throughput
Intel-Throughput

 Alpha-Sender CPU
 Alpha-Receiver CPU
 Intel-Sender CPU

 Intel-Receiver CPU

Figure 4. MPI Throughput on Gigabit Ethernet

Figure 3 shows the TCP unidirectional throughput on
the Gigabit Ethernet environment as measured by
Hpcbench. When message size is greater than 2KB, the
Intel system delivered a stable throughput around
940Mbps and the Alpha system delivered about 520Mbps
throughput. At the same time, the CPU usage varied
from 18% to 29% in both systems (the receivers had
slightly higher load than the senders).

Figure 4 shows the MPI point-to-point communication
over Gigabit Ethernet measured by Hpcbench. The Intel
system delivered a peak 938Mbps unidirectional
throughput, which dropped to around 800Mbps when
message size was larger than 64KB. The Alpha system
only provided about 310Mbps peak MPI throughput. It is
likely that the poor performance in this case came from
inefficiencies in the implementation of TCP-based
MPICH for that platform, because TCP communication
in the same system has much higher throughput.

The above experiments demonstrated that the Intel
Xeon system performed much better than the Alpha
system, with higher throughput and lower CPU usage.

To help discover the cause of the observed poor
performance in the Alpha cluster, we used Hpcbench to
conduct further UDP tests to locate the bottleneck. UDP
was used for further testing rather than TCP because
UDP communication has less protocol overhead than
TCP and other connection-oriented protocols, and UDP
does not utilize transmission control. Usually, UDP can
reflect true network behaviour more closely than TCP.

Using Hpcbench, UDP experiments with larger socket
buffer sizes were conducted. This testing found that the
Alpha cluster could provide a maximum 650Mpbs UDP
unidirectional throughput with a better selection of buffer
size. From detailed log files generated by Hpcbench,
there was significant data loss was observed in the sender
during the UDP processing when the socket buffer was
too large (1MB, for example). At the same time,
however, no data loss was observed in the network
according to the log data collected by Hpcbench.
Consequently, it is reasonable to believe that the
bottleneck in the Alpha cluster came from the relatively
slow sender. For further details, please refer to [8].

4.3 Throughput using Myrinet and QsNet

In the Intel cluster, we conducted experiments to test
MPI point-to-point communication over Myrinet using
Hpcbench. The results are shown below in Figure 5.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 10 100 1000 10000 100000 1e+006 1e+007 1e+008

T
hr

ou
gh

pu
t (

M
bp

s)

Message size (Bytes)

MPI point-to-point commuincation over Myrinet

Unidirctional blocking communication
Unidirectional nonblocking communication

Bidirectional blocking communication
Bidirectional non-blocking communication

Figure 5. MPI Communication Throughput on Myrinet

As shown in Figure 5, unidirectional MPI throughput
over Myrinet could reach 1995Mbps, while non-blocking
(synchronized MPI_Isend and MPI_Irecv) bidirectional
throughput achieved 3885Mbps. In contrast, QsNet in
the Alpha cluster delivered a maximum of 1600Mbps
unidirectional MPI throughput, while the non-blocking
bidirectional throughput dropped to around 1250Mbps
when message exceeded 500KB, as shown below in

Figure 6. This may have occurred because the Alpha
machines were not fast enough to handle the heavy load.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000 10000 100000 1e+006 1e+007 1e+008

T
hr

ou
gh

pu
t (

M
bp

s)

Message size (Bytes)

MPI point-to-point commuincation over Quadrics' QsNet

Unidirctional blocking communication
Unidirectional nonblocking communication

Bidirectional blocking communication
Bidirectional non-blocking communication

Figure 6. MPI Communication Throughput on QsNet

Consulting the data logs recorded by Hpcbench, we
observed that the communication on Myrinet and QsNet
only consumed a single CPU’s clock cycles in a 4-
processor SMP system. In fact, communicating processes
completely occupied CPU1’s utilization, resulting in a
sharp 25% overall CPU load in both Intel and Alpha
clusters. This could come from the fact that both Myrinet
and QsNet technologies use a zero-copy (OS-bypassing)
technique for message passing between two nodes.
Unlike traditional interrupt-driven TCP/IP
communication, there is no interrupt interaction between
the Linux kernel and the NIC in Myrinet and QsNet
communications. Instead, the data goes directly from user
space into the NIC without kernel processing.
Consequently, different CPUs in an SMP system are
unable to cooperate to handle one communication
session. During benchmarking, the sender application
attempted to send as much data as possible to the NIC,
and used as many CPU resources it could get to do so. A
similar situation also occurred on the receiver side.

We also conducted multi-link communication
experiments over Myrinet using Hpcbench. When the
number of communication links exceeded the number of
CPUs, we found that the Intel Xeon system had reached a
100% CPU load in both the sender and the receiver,
while the overall throughput in the network remained
nearly the same. On the other hand, the kernel is
involved in TCP/IP communications. As a result, multi-
link communication can introduce a high system load,
but will not overwhelm the system for 100% usage.
When the network becomes saturated or congested, the
kernel will block application transmission to ensure that
communication can be serviced properly.

4.4 Communication latency

High throughput does not necessarily imply low
network latency. The overall performance of some
applications is very sensitive to network latency.
Hpcbench measures network latency in terms of round
trip time (RTT) from the application layer, using various
underlying transports, giving us UDP RTT, TCP RTT
and MPI RTT. The traditional ping utility instead
evaluates the ICMP RTT with a relatively coarse
resolution (milliseconds), and may not work properly or
accurately enough in a low-latency network.

Figure 7 shows the Intel Xeon cluster’s RTTs for
different protocols on the Gigabit Ethernet with message
(datagram) size less than the Maximum Transmission
Unit (MTU, 1500Byte in our experimental testbed).

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 200 400 600 800 1000 1200 1400

R
o
u
n
d

T
r
i
p

T
i
m
e

(
M
i
c
r
o
s
e
c
o
n
d
)

Message Size (Byte)

Roundtrip Time on Gigabit Ethernet (Intel)

 UDP
 TCP
 MPI

Figure 7. Gigabit Ethernet RTT in the Intel Cluster

The results show that UDP and TCP’s RTTs were
around 56-60µsec for tiny messages (1~32 Byte),
implying around a 28µsec one way network latency. MPI
RTTs, on the other hand, started from nearly 72µsec,
making it a higher latency protocol than TCP and UDP
in our experimentation, according to Hpcbench.

Figure 8 demonstrates that the network latency in the
Alpha cluster was much higher than that of the Intel
cluster according to experimentation with Hpcbench. The
minimum RTTs in the Alpha cluster were about 240µsec
for UDP and TCP, and about 350µsec for MPI
communication.

From the statistics recorded by Hpcbench, we observed
that the interrupt coalescence technique [12] was used in
the Alpha cluster but not in the Intel cluster. Interrupt
coalescence was used by Alpha machines’ Gigabit
Ethernet network cards to reduce the system load for
network communication. Unfortunately, this technique
can also introduce significantly larger network latency.

We can also see that all curves in Figure 8 are not
linearly smooth, in part due to the effect of interrupt
coalescence.

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400

R
o
u
n
d

T
r
i
p

T
i
m
e

(
M
i
c
r
o
s
e
c
o
n
d
)

Message Size (Byte)

Roundtrip Time on Gigabit Ethernet (Alpha)

 UDP
 TCP
 MPI

Figure 8. Gigabit Ethernet RTT in the Alpha Cluster

Figure 9 shows MPI communication latency in
Myrinet and QsNet. The RTTs with tiny messages could
be as low as 14µsec in both interconnects, which is
significantly lower compared to Gigabit Ethernet.

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400

R
o
u
n
d

T
r
i
p

T
i
m
e

(
M
i
c
r
o
s
e
c
o
n
d
)

Message Size (Byte)

Roundtrip Time on Myrinet and QsNet

 Myrinet
 QsNet

Figure 9. MPI RTT on Myrinet and Quadric’s QsNet

5. Conclusions and future work

In this paper, we introduced Hpcbench, a Linux-based

network measurement tool set designed for high
performance networks. Hpcbench can accurately evaluate
UDP, TCP, and MPI communication throughput and
latency with a variety of configurable parameters. For
each test, Hpcbench is able to record detailed
communication settings and performance results, as well
as system information, such as system load, interrupts,
MAC layer statistics, and so on. This logged information

can be quite helpful in analyzing and understanding
network performance and behaviour, as well as the
interactions between the kernel and network subsystem.
Our work also provides several performance analysis
methodologies for high performance network systems.

To demonstrate Hpcbench, we conducted experiments
to test the network performance of Gigabit Ethernet,
Myrinet and Quadrics’ QsNet. In these experiments, we
investigated and analyzed both throughput and latency
using UDP, TCP, and MPI communication mechanisms
as transports. These experiments also showcased
Hpcbench’s ability to tune a variety of parameters
affecting overall performance, including packet size,
buffering, and blocking versus non-blocking
communication primitives, as well as its capacity to
collect various system and network statistics and
operational information of import to later analyses. The
results of these experiments were quite interesting,
validating the operation of Hpcbench and demonstrating
its usefulness in conducting network performance
analyses and measurements in HPC environments. With
Hpcbench, we can uncover behaviours and relationships
in our networks that are not at all obvious, yet still have
an impact on application performance.

Currently, Hpcbench can be freely downloaded from
its SourceForge website at: http://hpcbench.sf.net. This
website also includes important documentation and test
examples. By making Hpcbench available in this
fashion, it is hoped that we can facilitate further research
and development of improved cluster technologies.

In the future, there are many interesting directions for
our work to take. While Hpcbench already supports a
large number of variables and protocol options to tune for
experimentation, there is always more that can be added,
for example support for other MPI methods of
communication besides point-to-point. Naturally, as the
feature set of Hpcbench increases, more work will be
required in terms of interfacing with the tool set and in
managing the large sets of experiments that are possible.

Currently, the tracing of MAC layer statistics and
other low-level network information is only possible with
Gigabit Ethernet and other TCP/IP-based networks. For
proprietary technologies, such as Myrinet and QsNet, it is
possible to trace the information of the network interface
card only with vendor-dependent APIs. Extensions to
Hpcbench to include this support are also part of our
future work.

Another interesting topic for future study with
Hpcbench is the relationship between network
performance and computational performance. For

instance, in a Gigabit Ethernet cluster, different network
interface cards can lead to different network throughput
and latency. How does the computational capacity of a
HPC cluster change with different network behavior
introduced by different NICs or different underlying
technologies? It is important to conduct this kind of
experimentation to have better guidelines for building
commodity HPC systems in the future.

6. Acknowledgments

We would like to thank the administrators of

SHARCNET for their support in making test systems
available, especially Baolai Ge and Gary Molenkamp at
the University of Western Ontario, and John Morton at
the University of Guelph.

7. References

[1] G. Anzinger, et al. “Functional Specification for the High-

res-timers Project”. Technical Documentation. January
2005.

[2] G. Baolai. “SHARCNET Resources for Computing and
Programming”. SHARCNET HPC Workshop Series,
February 2005

[3] N. Boden, et al. “Myrinet: A Gigabit-per-Second Local
Area Network”. IEEE Micro, Vol. 15, No. 1, 1995.

[4] B. Chun et al. “Virtual Network Transport Protocols for
Myrinet”. Technical Report. UC Berkeley, 1998.

[5] M. Gates, et al. “Iperf User Docs”. Technical
Documentation. March 2003.

[6] W. Gropp, et al. “A High-performance, Portable
Implementation of the MPI Message Passing Interface
Standard”. Parallel Computing, 22, 6. September. 1996.

[7] Hewlett-Packard Company, Information Networks
Division. “Netperf: A Network Performance
Benchmark”. Technical Documentation. February 1995.

[8] B. Huang, “Network Performance Studies in High
Performance Computing Environments”. Masters Thesis.
University of Western Ontario, Canada. March 2005.

[9] R. Hughes-Jones. “UDPMon: A Network Diagnostic
Progam”. Technical Documentation. March 2004.

[10] R. Hughes-Jones, et al. “Performance Measurements on
Gigabit Ethernet NICs and Server Quality Motherboards”.
First International Workshop on Protocols for Fast Long-
Distance Networks, Geneva, Switzerland, February 2003.

[11] F. Petrini et al. “The Quadrics Network (QsNet): High-
Performance Clustering Technology”. IEEE Micro,
January-February 2002.

[12] R. Prasad, et al. “Effects of Interrupt Coalescence on
Network Measurements”. Proceedings of Passive and
Active Measurement (PAM) Workshop, April 2004.

[13] D. Turner, et al., Integrating New Capabilities into
NetPIPE. PVM/MPI 2003.

