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Abstract 

 
In recent years, Linux-based clusters have become 

more prevalent as a basis for High Performance 
Computing (HPC) systems. Network performance 
analysis is crucial to the management and administration 
of such clusters. To assist in this process, we developed 
Hpcbench [8] to measure UDP, TCP and MPI 
communications over high performance networks. 
Hpcbench records and tracks experiment results and 
system statistics, facilitating detailed analyses of network 
behaviour. In this paper, we introduce the design and 
prototype implementation of Hpcbench, and demonstrate 
Hpcbench in evaluating the network performance of 
three high performance interconnects in HPC clusters: 
Gigabit Ethernet, Myrinet, and Quadrics’ QsNet. 

 
1. Introduction 

 
Being able to solve larger, more complex problems in 

a shorter period of time is a key motivating factor in 
building a High Performance Computing (HPC) system. 
Modern computers, even personal computers, are 
becoming more and more powerful. As well, high-speed, 
low-latency network products are becoming increasingly 
available and less expensive. It is now possible to build 
powerful platforms for high performance computation 
from off-the-shelf computers and network devices. In 
particular, the Linux-based commodity cluster 
constructed by general purpose computers is a popular 
model and seems to be a trend for future HPC.  

Commodity cluster computing can be characterized as 
being cost effective, flexible, extensible, easy to maintain 
and to be integrated. However, since these commodity 
clusters are built with a variety of standalone computers 
and network devices, they do not necessarily guarantee 
high performance. The performance power of a 
standalone computer usually depends on its operating 
system, CPU and memory speed, and a variety of other 

factors. For HPC clusters, network communication is 
another key factor for cluster performance—a 
communication bottleneck in an HPC cluster may lead to 
a significant loss of overall performance.  

Traditional network benchmarks do not necessarily 
work well in evaluating the performance of HPC 
environments, as the network interconnecting a cluster 
plays a more critical role in supporting the applications 
distributed across the compute nodes in the environment. 
Furthermore, some functionality and parameters required 
for detailed performance evaluations cannot be found in 
currently available network benchmarking tools. To 
better understand network behavior in HPC 
environments, we developed a Linux-based network 
benchmark tool set, named Hpcbench [8].  Hpcbench is 
able to accurately and effectively measure UDP, TCP and 
MPI communication throughput and latency in high 
performance networks, recording the detailed 
communication parameters and kernel statistics under a 
variety of parameters. The name “Hpcbench” was chosen 
as this tool set was designed specifically for HPC systems 
and high performance networks.  

In this paper, we first provide a survey of present 
network benchmarking tools and related work in Section 
2, and justify the need to develop a new benchmark tool 
for HPC environments. In Section 3, we discuss the 
design and implementation of Hpcbench. In Section 4, 
we demonstrate Hpcbench in testing and analyzing HPC 
networks through a collection of experiments. Our 
experiments were based on three of the most commonly 
used interconnects in HPC systems: Gigabit Ethernet, 
Myrinet [4] and Quadrics’ QsNet [11]. Finally, in 
Section 5, we provide concluding remarks, and discuss 
directions for future work in this area. 
 
2. Related work 

 
To measure network performance metrics, such as 

throughput and latency, two types of measurement are 



 

commonly used:  active and passive. Active measurement 
is based on introducing a workload into the network, 
usually through the execution of a special application, 
and collecting data on the performance of the workload. 
Typically, this is done in a client/server model, in which 
the client and server exchange probe packets across the 
network, with both the client and server collecting timing 
measurements on the data transferred. Passive 
measurement does not depend on interjecting new 
workloads into a network to measure its performance. 
Instead, it probes existing network traffic to compute 
various network performance metrics.  

To study the high performance networks one would 
find in an HPC environment, it is preferable to use an 
active measurement model as it allows direct and 
repeatable measurements of network performance and 
behaviour without the inaccuracies or assumptions 
introduced by other approaches. While this can cause 
disruptions to the HPC environment during 
experimentation, this inconvenience is well worth the 
better quality results that can be obtained in the process. 
There are many existing tools available that involve 
active measurements as described above. Some of the 
most frequently used tools include Udpmon[9], 
Netperf[7], Iperf[5] and NetPIPE[13]. However, all of 
these tools were designed as general purpose network 
benchmarking tools, and have their own limitations and 
restrictions that make them unsuitable for HPC 
environments. For example, Udpmon measures UDP 
communication using hardware-dependent assembly 
language to access an Intel CPU cycle counter for high-
precision timing, and therefore it can only be used on 
IA32/IA64 platforms. Iperf supports multi-threading and 
parallel TCP streams, but does not measure network 
latency. NetPIPE works well with connection-oriented 
protocols, such as TCP and MPI, but not UDP. 

Although these tools work reasonably well for the 
specific tasks for which they were designed, they are 
limited in functionality and lack a feature set capable of 
supporting many of the interesting experimental 
scenarios for HPC environments. For example, none 
specialize in high performance interconnects, capable of 
testing all three of the most common communication 
protocols in commodity clusters: UDP, TCP and MPI.  
 
3. Design and implementation of Hpcbench 

 
With this in mind, the best option was to implement 

our own network benchmarking tool, Hpcbench, focusing 
specifically on HPC environments. Hpcbench was 

designed to measure the high-speed, low-latency 
communication networks in Linux-based HPC systems. 
The objectives of Hpcbench include high accuracy and 
efficiency; support for UDP, TCP and MPI 
communications; tunable communication parameters of 
interest in HPC environments; and detailed recording of 
test results, settings, and system information. 

Hpcbench was written in C and uses BSD socket and 
MPI APIs. It is comprised of three independent sets of 
benchmarks measuring UDP, TCP and MPI 
communications. As the benchmarks are based on a 
common infrastructure, the implementation and usage of 
each benchmark are quite similar, allowing us to easily 
compare results for different communication protocols.   
 

3.1. Communication model 
 
For UDP and TCP communication tests, similar to 

Netperf’s design, we employ a client/server model that 
uses two channels during testing: a control channel and a 
test channel. The first is a reliable TCP connection for 
critical data communication for controlling the test run, 
while the second is used for carrying test data packets 
(UDP or TCP). This two-channel design makes it easier 
to control the tests and gather results. The control 
channel is used by Hpcbench solely for control of the 
tests and only involves data transfer before and after each 
test; thus, it does not introduce additional traffic or 
overhead during actual testing. The communication 
model of Hpcbench is illustrated in Figure 1.  

Figure 1.  Hpcbench Communication Control 

Another reason for two communication channels in 
Hpcbench is for test configuration purposes. As shown in 
Figure 1, Hpcbench supports many test modes for various 
protocols, with numerous tunable parameters for each 
protocol; all of this must be configured for each test.  For 
example, some socket options, such as a socket’s buffer 
size setting (configurable using the setsockopt() 



 

function), should be set before establishing a connection 
for test data packets. With only one communication 
channel between the client and server, the server process 
must be initialized with a long and cumbersome 
argument set according to the client’s test setting.  
Furthermore, in such a case, the server process would 
need to be restarted with different parameters every time 
the test parameters change. With two communication 
channels, the client is able to send all the test parameters 
to the server by first establishing the control channel, and 
then creating the test channel with the desired options. 
Thus, the server process does not have to be concerned 
with test parameter settings during initialization, and can 
easily have parameters changed during or between test 
runs without restarting. 

 
3.2. Timers and timing 
 

Precise timing is important for any kind of accurate 
performance measurement. There is currently a high 
resolution timer project for Linux [1] that is 
implementing the POSIX 1003.1b clocks and timers with 
nanosecond precision. The project is under continuous 
development, but only supports a few platforms, such as 
Intel platforms that include a high resolution timer (TSC 
register) readable by the rdtsc assembly instruction.  

Without the general availability of a high resolution 
function such as clock_gettime() in most systems, the 
standard gettimeofday() function call is used in UDP and 
TCP communication timing.  In MPI testing, the 
MPI_Wtime() function call is used instead, as it is 
designed to be able to select the best timer available in a 
system for MPI communication. Both methods provide 
microsecond resolution in most cases. In Alpha systems, 
however, the gettimeofday() function call has been found 
experimentally to achieve only about 1ms resolution [8]. 

A relatively low-precision timer may affect the 
accuracy of latency and throughput tests. For instance, in 
a Gigabit Ethernet, a round trip time can be less than 
50µsec, and a 1MByte message can be sent out in less 
than 0.01 second. Consequently, test times must be made 
long enough to minimize the effects of a timer’s 
resolution. To do so, we repeat transmissions of the same 
message several times when measuring network 
throughput and network latency. In Hpcbench, the 
number of transmission repetitions to configure for 
testing is computed by an estimation test conducted 
before actual testing begins.  

A synchronization step is also conducted before the 
start of each test run to ensure that both the client and the 

server have a common baseline for timing. Another 
synchronization step is used after data transmission as 
necessary for unidirectional communication tests.  (For 
further details, the reader is urged to refer to [8].) 

 
3.3. Test logs 

 
The more information we can obtain from testing, the 

better we can study and analyze the performance and the 
behaviour of our networks. Unlike most benchmarks that 
only provide basic results, Hpcbench records a 
considerable amount of information collected during 
experimentation, including all socket parameters, test 
time, process time, CPU and other resource utilization, 
interrupts, MAC layer network statistics, and so on. 

To trace and log system information, virtual files in 
the /proc directory are parsed before and after each test.   
These virtual files are actually mapped from different 
kernel memory areas, providing a mechanism for 
accessing system statistics easily. By parsing these files, 
we are able to obtain a considerable amount of system 
and network information. 

It is important to note, however, that recorded system 
information from these files is not necessarily accurately 
synchronized to each test because of delays in accessing 
and parsing the files, and the deviation of updates to 
those virtual files. While these statistics only provide a 
rough view of system performance and behaviour, they 
still provide much needed information to help in the 
analysis of test results. 

 

4. Hpcbench network performance testing  
 
In this section, we demonstrate the usefulness of 

Hpcbench in studying and analyzing the network 
performance of three high performance interconnects: 
Gigabit Ethernet, Myrinet and Quadrics’ QsNet. To 
avoid unwelcome loads and interactions that could 
complicate results, all experiments were conducted using 
dedicated and completely idle machines in our 
experimental environment. All MPI communication is 
based on MPICH 1.2.5 [6] built with default settings.  
 
4.1 Testbed introduction 

 
Our testbed includes two Linux-based clusters named 

“mako” and “hammerhead” in SHARCNET [2], a 
distributed HPC Network in Ontario, Canada.  

The hammerhead cluster consists of 28 Compaq ES40 
Alpha SMP servers. Each server is configured with 4 x 



 

833MHz Alpha EV6 processors, 4GB RAM, an Alteon 
AceNIC Gigabit Ethernet Adaptor (PCI 64bits/33MHz), 
a Quadrics QSW Elan3 PCI Network Adaptor, and 
Redhat Linux 7.2 as its operating system, with kernel 
2.4.21-3.7qsnet #9 SMP.  For its interconnects, it uses a 
Nortel Passport 8600 switch (Gigabit Ethernet) and a 
Quadrics’ QsNet switch. 

The mako cluster consists of eight HP DL360 Intel 
Xeon SMP servers. Each server is configured with 4 x 
3GHz Intel Xeon Hyperthreading processors, 2 GB 
RAM, a Broadcom Tigon 3 Gigabit Ethernet Adaptor 
(PCI-X 64bits/100MHz), a Myricom PCI-X Network 
Adaptor, and Redhat Linux 9.0 as its operating system, 
with kernel 2.4.20-8smp #1 SMP.  For its interconnects, 
it uses an HP ProCurve 2800 (Gigabit Ethernet) switch 
and a Myrinet switch. 

We evaluate UDP, TCP and MPI communication over 
Gigabit Ethernet in this experimentation. Since TCP/IP 
communication is not configured for our Myrinet and 
QsNet environments, we instead test only their MPI 
communication based on the same version of MPICH.  
 
4.2 Throughput on Gigabit Ethernet 
 

We select two idle nodes in two clusters and test their 
UDP, TCP and MPI throughput over Gigabit Ethernet. 

Figure 2 shows the results of UDP unidirectional 
throughput versus datagram size, measured by Hpcbench 
in an exponential test mode with default socket buffering. 
The Intel cluster achieved 961Mbps peak UDP 
throughput, while the Alpha cluster gave 530Mbps peak 
UPD throughput. In high throughput situations, the UDP 
sender’s CPU load was approximately 10% in the Intel 
system compared to 15% for the Alpha system; the 
receiver’s CPU load was approximately 15% in the Intel 
system and 20% for the Alpha system. 
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Figure 2. UDP Throughput on Gigabit Ethernet 
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Figure 3. TCP Throughput on Gigabit Ethernet 
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Figure 4. MPI Throughput on Gigabit Ethernet 

Figure 3 shows the TCP unidirectional throughput on 
the Gigabit Ethernet environment as measured by 
Hpcbench. When message size is greater than 2KB, the 
Intel system delivered a stable throughput around 
940Mbps and the Alpha system delivered about 520Mbps 
throughput. At the same time, the CPU usage varied 
from 18% to 29% in both systems (the receivers had 
slightly higher load than the senders).  

Figure 4 shows the MPI point-to-point communication 
over Gigabit Ethernet measured by Hpcbench. The Intel 
system delivered a peak 938Mbps unidirectional 
throughput, which dropped to around 800Mbps when 
message size was larger than 64KB. The Alpha system 
only provided about 310Mbps peak MPI throughput. It is 
likely that the poor performance in this case came from 
inefficiencies in the implementation of TCP-based 
MPICH for that platform, because TCP communication 
in the same system has much higher throughput.  

The above experiments demonstrated that the Intel 
Xeon system performed much better than the Alpha 
system, with higher throughput and lower CPU usage.  



 

To help discover the cause of the observed poor 
performance in the Alpha cluster, we used Hpcbench to 
conduct further UDP tests to locate the bottleneck. UDP 
was used for further testing rather than TCP because 
UDP communication has less protocol overhead than 
TCP and other connection-oriented protocols, and UDP 
does not utilize transmission control. Usually, UDP can 
reflect true network behaviour more closely than TCP.  

Using Hpcbench, UDP experiments with larger socket 
buffer sizes were conducted. This testing found that the 
Alpha cluster could provide a maximum 650Mpbs UDP 
unidirectional throughput with a better selection of buffer 
size. From detailed log files generated by Hpcbench, 
there was significant data loss was observed in the sender 
during the UDP processing when the socket buffer was 
too large (1MB, for example).  At the same time, 
however, no data loss was observed in the network 
according to the log data collected by Hpcbench. 
Consequently, it is reasonable to believe that the 
bottleneck in the Alpha cluster came from the relatively 
slow sender. For further details, please refer to [8]. 

 
4.3 Throughput using Myrinet and QsNet 
 

In the Intel cluster, we conducted experiments to test 
MPI point-to-point communication over Myrinet using 
Hpcbench. The results are shown below in Figure 5. 
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Figure 5. MPI Communication Throughput on Myrinet 

As shown in Figure 5, unidirectional MPI throughput 
over Myrinet could reach 1995Mbps, while non-blocking 
(synchronized MPI_Isend and MPI_Irecv) bidirectional 
throughput achieved 3885Mbps.  In contrast, QsNet in 
the Alpha cluster delivered a maximum of 1600Mbps 
unidirectional MPI throughput, while the non-blocking 
bidirectional throughput dropped to around 1250Mbps 
when message exceeded 500KB, as shown below in 

Figure 6. This may have occurred because the Alpha 
machines were not fast enough to handle the heavy load. 
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Figure 6. MPI Communication Throughput on QsNet 

Consulting the data logs recorded by Hpcbench, we 
observed that the communication on Myrinet and QsNet 
only consumed a single CPU’s clock cycles in a 4-
processor SMP system.  In fact, communicating processes 
completely occupied CPU1’s utilization, resulting in a 
sharp 25% overall CPU load in both Intel and Alpha 
clusters. This could come from the fact that both Myrinet 
and QsNet technologies use a zero-copy (OS-bypassing) 
technique for message passing between two nodes. 
Unlike traditional interrupt-driven TCP/IP 
communication, there is no interrupt interaction between 
the Linux kernel and the NIC in Myrinet and QsNet 
communications. Instead, the data goes directly from user 
space into the NIC without kernel processing. 
Consequently, different CPUs in an SMP system are 
unable to cooperate to handle one communication 
session. During benchmarking, the sender application 
attempted to send as much data as possible to the NIC, 
and used as many CPU resources it could get to do so. A 
similar situation also occurred on the receiver side.  

We also conducted multi-link communication 
experiments over Myrinet using Hpcbench. When the 
number of communication links exceeded the number of 
CPUs, we found that the Intel Xeon system had reached a 
100% CPU load in both the sender and the receiver, 
while the overall throughput in the network remained 
nearly the same. On the other hand, the kernel is 
involved in TCP/IP communications.  As a result, multi-
link communication can introduce a high system load, 
but will not overwhelm the system for 100% usage. 
When the network becomes saturated or congested, the 
kernel will block application transmission to ensure that 
communication can be serviced properly. 



 

4.4 Communication latency  
 

High throughput does not necessarily imply low 
network latency. The overall performance of some 
applications is very sensitive to network latency. 
Hpcbench measures network latency in terms of round 
trip time (RTT) from the application layer, using various 
underlying transports, giving us UDP RTT, TCP RTT 
and MPI RTT. The traditional ping utility instead 
evaluates the ICMP RTT with a relatively coarse 
resolution (milliseconds), and may not work properly or 
accurately enough in a low-latency network. 

Figure 7 shows the Intel Xeon cluster’s RTTs for 
different protocols on the Gigabit Ethernet with message 
(datagram) size less than the Maximum Transmission 
Unit (MTU, 1500Byte in our experimental testbed).  
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Figure 7. Gigabit Ethernet RTT in the Intel Cluster 

The results show that UDP and TCP’s RTTs were 
around 56-60µsec for tiny messages (1~32 Byte), 
implying around a 28µsec one way network latency. MPI 
RTTs, on the other hand, started from nearly 72µsec, 
making it a higher latency protocol than TCP and UDP 
in our experimentation, according to Hpcbench.  

Figure 8 demonstrates that the network latency in the 
Alpha cluster was much higher than that of the Intel 
cluster according to experimentation with Hpcbench. The 
minimum RTTs in the Alpha cluster were about 240µsec 
for UDP and TCP, and about 350µsec for MPI 
communication. 

From the statistics recorded by Hpcbench, we observed 
that the interrupt coalescence technique [12] was used in 
the Alpha cluster but not in the Intel cluster. Interrupt 
coalescence was used by Alpha machines’ Gigabit 
Ethernet network cards to reduce the system load for 
network communication. Unfortunately, this technique 
can also introduce significantly larger network latency. 

We can also see that all curves in Figure 8 are not 
linearly smooth, in part due to the effect of interrupt 
coalescence. 
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Figure 8. Gigabit Ethernet RTT in the Alpha Cluster 

Figure 9 shows MPI communication latency in 
Myrinet and QsNet. The RTTs with tiny messages could 
be as low as 14µsec in both interconnects, which is 
significantly lower compared to Gigabit Ethernet. 
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Figure 9. MPI RTT on Myrinet and Quadric’s QsNet 

 
5. Conclusions and future work 

 
In this paper, we introduced Hpcbench, a Linux-based 

network measurement tool set designed for high 
performance networks. Hpcbench can accurately evaluate 
UDP, TCP, and MPI communication throughput and 
latency with a variety of configurable parameters. For 
each test, Hpcbench is able to record detailed 
communication settings and performance results, as well 
as system information, such as system load, interrupts, 
MAC layer statistics, and so on. This logged information 



 

can be quite helpful in analyzing and understanding 
network performance and behaviour, as well as the 
interactions between the kernel and network subsystem. 
Our work also provides several performance analysis 
methodologies for high performance network systems. 

To demonstrate Hpcbench, we conducted experiments 
to test the network performance of Gigabit Ethernet, 
Myrinet and Quadrics’ QsNet.  In these experiments, we 
investigated and analyzed both throughput and latency 
using UDP, TCP, and MPI communication mechanisms 
as transports.  These experiments also showcased 
Hpcbench’s ability to tune a variety of parameters 
affecting overall performance, including packet size, 
buffering, and blocking versus non-blocking 
communication primitives, as well as its capacity to 
collect various system and network statistics and 
operational information of import to later analyses.  The 
results of these experiments were quite interesting, 
validating the operation of Hpcbench and demonstrating 
its usefulness in conducting network performance 
analyses and measurements in HPC environments.  With 
Hpcbench, we can uncover behaviours and relationships 
in our networks that are not at all obvious, yet still have 
an impact on application performance. 

Currently, Hpcbench can be freely downloaded from 
its SourceForge website at: http://hpcbench.sf.net.  This 
website also includes important documentation and test 
examples.  By making Hpcbench available in this 
fashion, it is hoped that we can facilitate further research 
and development of improved cluster technologies. 

In the future, there are many interesting directions for 
our work to take.  While Hpcbench already supports a 
large number of variables and protocol options to tune for 
experimentation, there is always more that can be added, 
for example support for other MPI methods of 
communication besides point-to-point.  Naturally, as the 
feature set of Hpcbench increases, more work will be 
required in terms of interfacing with the tool set and in 
managing the large sets of experiments that are possible.  

Currently, the tracing of MAC layer statistics and 
other low-level network information is only possible with 
Gigabit Ethernet and other TCP/IP-based networks. For 
proprietary technologies, such as Myrinet and QsNet, it is 
possible to trace the information of the network interface 
card only with vendor-dependent APIs. Extensions to 
Hpcbench to include this support are also part of our 
future work.  

Another interesting topic for future study with 
Hpcbench is the relationship between network 
performance and computational performance. For 

instance, in a Gigabit Ethernet cluster, different network 
interface cards can lead to different network throughput 
and latency. How does the computational capacity of a 
HPC cluster change with different network behavior 
introduced by different NICs or different underlying 
technologies? It is important to conduct this kind of 
experimentation to have better guidelines for building 
commodity HPC systems in the future. 
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