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Abstract—Previous attempts at providing widespread 
Quality of Service (QoS) for the Internet have met with 
only limited success. Integrated Services and 
Differentiated Services, the two most popular 
architectures proposed, suffer from scalability and 
flexibility concerns respectively. More recently, 
numerous other architectural proposals have been 
introduced, but have also been met with limited success. 
This paper introduces a prospective new approach 
which addresses several issues others have failed to 
solve effectively. This approach, SCalable Aggregate 
Reservations (SCAR) is highly scalable, offers 
additional functionality, and is quite flexible and robust 
in supporting QoS for networked applications. 
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1.  Introduction 
 

Originally designed as a best-effort service, the 
Internet has grown significantly, and so have its 
needs.  Today, many applications require a service 
level better than best-effort can offer.  In effect, 
these applications require a high level of Quality of 
Service (QoS), which is an expression used to 
depict the overall experience a user or application 
receives over a network [8].  Over the Internet, this 
QoS is typically measured in terms of bandwidth, 
loss, delay, jitter, and availability. 

QoS models strive to take a best-effort network 
and transform it into one which can provide 
bandwidth and delay assurances to its applications.  
There have been several fields of thought on 
providing QoS.  By far, the two most popular and 
accepted philosophies are the Integrated Services 
Model (IntServ) [7] and Differentiated Services 
Model (DiffServ) [2].  However, neither IntServ 
nor DiffServ have gained widespread acceptance 
due to scalability and flexibility concerns 
respectively.  Several lightweight protocols have 
emerged since, including SRP [1], FIRST [5], 
SCORE [12], SGS/SOS [9], YESSIR [10], and 

many others.  These approaches, however, 
generally lack the functionality and acceptance 
needed for an integrated services network, or have 
drawbacks making them difficult to deploy or use.     

This paper presents a stateless QoS architecture 
for the Internet that can provide end-to-end QoS 
guarantees to multiple flows on demand.  The 
architecture, called SCalable Aggregate 
Reservations (SCAR), achieves scalability by 
aggregating flows into predefined classes.  It 
requires little processing at intermediate nodes and 
can additionally enable billing functions, security 
functions, and mechanisms to achieve optimal 
resource allocation [11].  SCAR belongs to a 
variant of the IntServ philosophy; one that aims to 
provide the same flexible service, but in a stateless 
network environment.  This stateless property is 
one which addresses scalability concerns that have 
arisen with traditional IntServ.  SCAR combines 
the scalability of DiffServ and the functionality of 
IntServ into one flexible package. 

A new signaling protocol, the SCAR Signaling 
Protocol (SCAR-SP), was developed to enable 
signaling within this new architecture.  Its 
reversible design allows either the sender or 
receiver to make reservations.  It presents many 
additional advantages, including the ability for 
senders to specify their unique traffic 
characteristics, and a soft-state approach which can 
remove reservations if not properly terminated.  
Experimentation has shown that nodes can handle 
hundreds of thousands of flows simultaneously 
with little impact on local node performance. 

The remainder of this paper is organized as 
follows. Section 2 presents the architectural design 
of the SCAR model, the signaling protocol SCAR-
SP, and scheduling in SCAR.  Section 3 discusses 
experimental results and comparative analyses 
with other approaches.  Section 4 concludes this 
paper with a summary and discussion of future 
work in this area. 



2.  The SCAR Approach 
 

In this section, we present our approach, 
SCalable Aggregate Reservations (SCAR).  We 
discuss its architectural design and signaling 
protocol SCAR-SP, and conclude this section with 
a discussion of scheduling and policing. 

 
2.1. Architectural Design 

SCAR was designed to meet the following goals: 
Scalability – Traditionally, the amount of router 

state increased proportionately to the number of 
individual flows with the IntServ model, leading to 
serious scalability concerns.  SCAR aggregates 
individual flows into classes, requiring no per-flow 
state in the intermediate nodes.  Additionally, 
techniques to insert state into the packets 
themselves, as in SCORE, are not required.   

Simplicity – To maintain simplicity and reduce 
overhead, SCAR requires only minimal state in 
nodes to keep track of aggregate classes only, and 
does not support multicasting, in line with recent 
thoughts on the subject [4].  The need for resource 
“garbage collection” as in SGS or node 
synchronization, as some other solutions require, is 
also unnecessary.   

Robustness – Mechanisms are in place to 
account for reservation failure, routing changes, 
and message loss.  The onus has been placed on 
the end-host to ensure messages and reservations 
are timed properly to account for these failures.  
Intermediate nodes are able to verify traffic 
specifications, and police those who are not 
adhering to their contract. 

Flexibility – Less state typically means less 
functionality and flexibility.  SCAR can provide 
bounds on both delay and bandwidth and enable 
optimal resource allocation without the need for 
per-flow state.  

 
 

Figure 1. Logical separation of a network 
For the time being, we consider in this paper 

only three classes: guaranteed service, controlled-

delay, and best-effort service.  Other predefined 
classes such as controlled-load or custom classes 
are quite possible to incorporate into SCAR, yet 
we consider for all intents and purposes a three 
class architecture including the guaranteed service 
class which can provide the most stringent of QoS 
guarantees, and the controlled-delay class for 
delay-insensitive applications.  To provide these 
classes within an existing best-effort network, we 
conceptualize a logical partition.  By separating 
link speed between each class, and with proper 
management, a guaranteed service network can be 
placed atop the existing best-effort network.  This 
abstraction can be seen in Figure 1.  To distinguish 
between classes, data packets are classified within 
the headers through marking. 

In Figure 1, a logical separation can be seen 
between all SCAR aware nodes and end-hosts.  
Operation of SCAR can still take place 
transparently within non-aware areas of the 
network, although QoS cannot be guaranteed in 
this case when heavy congestion occurs at non-
aware nodes.  (End hosts will, however, will be 
made aware of any transparent operation through 
non-aware nodes, and can cancel their reservation 
at any point.)   

 

 
Figure 2.  Additive property of aggregates 

 
Using the additive properties of aggregation, 

bandwidth guarantees can be made without the 
need for per-flow maintenance.  This is 
demonstrated in Figure 2, where end-host A 
creates a 50KB/s reservation in (a), followed by a 
20KB/s reservation by host B in (b).  Aggregate 
state is maintained on all incoming and outgoing 
links.  This simplicity, coupled with proper 
policing, enables powerful network services.   

There are several mechanisms which need to be 
in place in a SCAR network, as shown in Figure 3.  
Traffic must be classified, shaped, and policed 
before the egress link with non-conforming packets 
being isolated to ensure fairness to other flows.  
This can potentially be done through either re-
marking or dropping.  Proper scheduling must 
additionally   be   in   place   to   provide    accurate 
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bandwidth and delay bounds.  SCAR does not 
specifically dictate the scheduling techniques used 
to provide bandwidth and delay guarantees in 
nodes, as there are already approaches to do so.  
Further details on the SCAR architecture can be 
found in [11]. 
 
2.2. The SCAR-SP Signaling Protocol 

SCAR-SP has been designed to provide efficient 
call mechanisms when creating, refreshing, or 
removing reservations.  Unlike most signaling 
protocols, which are restricted to either a sender or 
receiver-oriented design, SCAR-SP enables both 
approaches.  Either the receiver or sender can be 
given the responsibility to provide the flow 
specifications for the reservation.  In many cases, 
receiver control is favoured over sender controlled, 
as senders are often not aware of what resources 
are available to the receiver, including bandwidth 
or even computational power.  On the other hand, 
receiver control can also be a hindrance, especially 
in the case where senders are billed for QoS, or the 
sender wants more control over policy. 

Another advantage of SCAR-SP’s design is that 
senders are first responsible for characterizing the 
traffic it will be transmitting.  By knowing the 
traffic model, receivers establishing a reservation 
can make more informed decisions.  For example, 
if a receiver is not aware that the sender will be 
transmitting at a variable rate, it may unknowingly 
make a constant rate reservation, in effect causing 
underutilization.  Additionally, if the sender is able 
to characterize its traffic in more than one way, the 
receiver can then be given the option to choose 
which specification it wishes to receive. 

SCAR-SP messages require state typically not 
associated with signaling messages to be inserted 
within them.  This state is minimal, and cannot be 
avoided in soft-state architectures.  It should be 
reiterated that this type of state is significantly 

different from the state associated with IntServ 
scalability concerns.  The largest advantage to 
keeping this state in the signaling protocol is the 
fact that no lookup is required on behalf of 
intermediate nodes.   

SCAR-SP is a soft-state protocol which provides 
better dynamic adaptability and robustness than a 
hard-state protocol, and allows adaptation of 
routing changes to take place fairly seamlessly 
with end-host cooperation.  Unlike RSVP where 
refresh messages are generated by intermediate 
nodes hop-by-hop, SCAR-SP shifts this 
responsibility to the end-hosts in an end-to-end 
fashion.  They are then required to initiate 
periodical refreshes so that their soft-state 
reservations are kept active.  This further reduces 
processing overhead at intermediate nodes. 

If a reservation expires, resources are 
automatically de-allocated.  To maintain 
simplicity, SCAR-SP is simplex and can only offer 
unidirectional reservations.  To establish a 
bidirectional flow, two separate reservations must 
be made.  SCAR-SP messages are sent out-of-band 
over the control plane, which is logically separated 
from the data plane.  Its design can also handle lost 
messages, and requires minimal processing power 
at the nodes.   

The operation of SCAR-SP is similar to most 
other signaling protocols.  The SCAR-SP daemon, 
shown earlier in Figure 3 facilitates the creation 
and removal of reservations in conjunction with 
policy and admission control modules.  Admission 
control determines if enough resources are 
available to admit a reservation, while policy 
control determines if the end-host is permitted to 
do so.  The classifier determines which class the 
traffic belongs to; either the guaranteed service 
class, or best-effort.  Policing and shaping of the 
guaranteed service class ensures traffic is behaving 
properly, sending at proper peak and average rates.  

End-host Node
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Figure 3.  SCAR architecture



The scheduler can then guarantee the reserved 
bandwidth and delay to this traffic. 

In an aggregated architecture, admission control 
is rather simple; only the current and maximum 
allowed aggregate reservation need be known.  The 
maintenance of this aggregate, however, is far 
more difficult as signaling loss and partial 
reservations are introduced.  Part of the difficulty 
arises due to the fact that admission control is 
based on an end-to-end transaction.  That is, if all 
intermediate nodes along the end-to-end path do 
not accept the reservation, then all nodes which 
have since accepted it locally must roll-back to a 
previous state.  Likewise, lost signaling messages 
can create confusion as partial reservations occur.  
Normally this would imply that nodes must 
maintain internal state.  However, SCAR-SP can 
deal with these problems effectively [11].   

SCAR-SP defines four phases of operation; 
discovery, reserving, refreshing, and tearing down.  
The discovery phase entails determining the 
current status of the end-to-end reservation path.  
The reservation phase involves the merging of 
flows in to a service class aggregate, while the 
refresh phase keeps these reservations active.  In 
the teardown phase, a reservation is explicitly de-
allocated.  Three messages are defined; discover 
(DISC), reserve (RESV), and refresh (REFR).  
DISC messages are used in the discovery phase, 
while RESV messages are used during the 
reserving phase.  REFR messages are used during 
the refreshing and teardown phase and use 
expiration identifiers to track allocations and 
deallocations appropriately.  Further details on 
SCAR-SP can be found in [11]. 
 
2.3. Scheduling and Policing 

By controlling link bandwidth and buffering at 
each node, packet loss, delay, and throughput can 
be managed.  This can be accomplished through 
admissions procedures allowing access to the 
resources, and scheduling disciplines to limit the 
competition of flows and to balance allocated 
bandwidth against delay requirements to meet the 
needs of reserved flows [11].   

To provide node-local QoS guarantees to a flow, 
a packet scheduling discipline is used to guarantee 
bandwidth and place an upper bound on delay.  
The discipline may additionally provide bounds on 
jitter or loss.  This is done by choosing which 
packet to transmit when its respective outgoing 
link becomes idle.   

While mechanisms within a node must be in 
place to address local QoS guarantees, there must 
also be mechanisms to ensure the end-to-end QoS 
is met. Due to the uncertainness of packet 
switching networks in a multiplexing environment, 
traffic patterns can become distorted through 
differing areas of load on the network.  These 
distortions can result in bursts of traffic at differing 
points, regardless of how the traffic had entered the 
network, and can compromise end-to-end QoS 
metrics including packet jitter, delay, and possibly 
loss.  Consequently, appropriate mechanisms must 
be employed to handle these situations. 

The SCAR approach, as discussed earlier, is 
flexible and can support a wide variety of 
scheduling disciplines and algorithms that provide 
guarantees on bandwidth and delay.  Since 
extensive work has already been dedicated to the 
development of approaches to scheduling network 
resources, this allows implementations of SCAR to 
leverage this existing work, and make use of an 
approach appropriate to the situation.   

Either unintentionally or maliciously, the 
possibility exists that flows will not adhere to 
SCAR conventions.  A misbehaving flow within an 
aggregate can not be directly policed, as no state is 
maintained to identify it.  Instead, misbehaving 
aggregates are policed by isolating them from the 
network.  Thus, the further the architectural edges 
are pushed towards end hosts, the greater the 
isolation granularity.   

 
Figure 4. Policing in SCAR 

 

In Figure 4, a network is shown in which the 
gateway, depicted as node D, and end-hosts A and 
B are SCAR aware.  Node C located between the 
gateway and end-hosts is not SCAR aware.  In this 
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particular case, hosts are still able to make 
reservations transparently through node C, and, as 
long as there is no congestion at this node, QoS 
should not be compromised.  In this case, both A 
and B have 50KB/s reservations to different 
destinations. A problem exists, however, if host A 
or B decides to transmit at a higher rate than 
reserved, or maliciously floods the network with 
packets marked as reserved.  As there is no state 
maintenance at node D, it is therefore not aware 
who the perpetrator is, except that it is coming 
from the direction of node C.  It must then police 
this aggregate, resulting in service degradation to 
both hosts A and B.  If node C was SCAR aware, it 
could have policed only the misbehaving portion 
of the aggregate and not both A and B necessarily. 

Policing entails that each node will simply 
prevent any packets exceeding the reserved 
aggregate from obtaining QoS, with the onus 
placed on end-hosts to never exceed their 
reservation.  Nodes may allow some tolerance to 
over-utilization, remark packets into a best effort 
class, or drop packets to ensure conformance.  

The issues of scheduling and policing in SCAR 
are discussed further in [11], with the various 
scheduling options available described in detail. 

  
3. Experimental Results and Analysis  

 
In this section, we will analyze SCAR and its 

signaling protocol, SCAR-SP.  Where possible, we 
also compare our approach to current RSVP 
implementations, and other signaling protocols and 
architectures mentioned in Section 1, including 
Boomerang, SGS, and YESSIR.  With no 
implementation available for other systems such as 
SCORE, we were unable to assess and compare 
with their performance.  For brevity, we report on 
highlights of the most important and interesting 
experimental results; for complete results, the 
reader is urged to consult [11] for details. 

 
3.1. Experiment Design and Setup 

Unfortunately, there is a lack of consistency in 
proof of concept and implementation of work in 
this area.  RSVP has multiple competing 
implementations available, while other approaches 
have implementations for only specific 
configurations of Linux or BSD Unix.  Some of the 
newer approaches have been implemented for 
simulation packages like the Network Simulator 
ns-2 [6].  As a result, analyses of SCAR involved a 

mixture of live network tests and simulations, with 
baseline testing to ensure that results were 
consistent and comparable, as discussed in [11]. 

For primary testing, a 400MHz Celeron 
workstation with 256MB of RAM was used, as this 
most closely matched the configurations of test 
machines in related work (again to ease 
comparisons).  As an operating system, we used 
the Knoppix Linux Live CD 3.6 distribution with 
kernel 2.4.27.  By doing so, there was no need for 
swap space or additional overhead as the 
lightweight kernel is loaded directly into RAM.   
When traffic generation was required, a collection 
of Athlon XP 1800 machines with 512MB of RAM 
were used, with the same Linux operating system, 
connected by 100MB Ethernet. 

  For simulations, we used version 2.27 of ns-2.  
While there are some limitations when measuring 
nodal performance metrics, ns-2 is quite useful in 
generating very large topological simulations for 
study.  Nodal performance was measured through 
software instrumentation, as ns-2 is event driven, 
and runs independent from processing power.  We 
used the Celeron for our simulation system as well. 

SCAR and SCAR-SP were implemented and 
tested in this simulation environment.  To 
implement these in ns-2, sender and receiver 
agents were first created to generate and handle 
reservation requests and responses.  The sender 
agent was additionally responsible for generating 
and marking flows, and initiating periodic 
refreshes by sending DISC messages.  

 
3.2. Validation of SCAR and SCAR-SP 

Before conducting performance and scalability 
testing, we first carried out a series of simulations 
to validate SCAR and SCAR-SP and ensure that 
they were functioning correctly.  This involved the 
creation, maintenance, and teardown of flows, the 
proper scheduling of flows, and tests of flow 
protection, admission control, and the policing of 
misbehaving flows.  In all cases, SCAR and 
SCAR-SP performed as they should and were 
deemed to be delivering their respective 
functionality correctly. 

 
3.3. Performance and Scalability Tests 

Many signaling protocols and architectural 
designs have been slow to gain footing due to 
scalability concerns, which is defined as the 
capacity for the network to expand the amount of 
flows, nodes, and traffic.  These concerns are a 



direct result of the overhead required when 
signaling tens, if not hundreds, of thousands of 
flows simultaneously within core nodes.   

 
3.3.1. Processing Overhead 

 
Processing overhead was calculated as the 

percentage of time spent by the test system in 
processing messages and maintaining and 
scheduling flows.  This data was collected using 
tools such as top and tcpdump when live tests were 
possible, and through instrumentation when 
simulations were required. 

For test purposes, the reservation refresh interval 
was set to 30 seconds in all cases as suggested in 
[3], and all flows are set to live for 62.5 seconds 
before being regenerated, a value selected for 
comparison purposes with previous work in this 
area.  While flows in the real world will most 
likely live for longer periods, we choose a shorter 
interval to address scalability concerns during 
periods with many short-lived reservations.  In 
most cases, a session within this interval would 
include a setup, two refreshes, and a teardown. 

 

 
Figure 5.  Processing Overhead 

 

We summarize the overhead results in Figure 5.  
As can be seen, implementations of RSVP (KOM-
RSVP, and the more optimized T-KOM-RSVP) 
had the most overhead, while SCAR and SGS 
produced excellent results, with SCAR just edging 
out SGS.  Both SCAR and SGS could handle 
100,000 simultaneous flows with less than a 50% 
processing load (with SCAR at 47.0% and SGS at 
48.7%).  Boomerang performed reasonably well, 
but we could not observe YESSIR in this case due 
to issues in generating compatible traffic. 
 
3.3.2. Memory Overhead 

Memory overhead at intermediate nodes is 
largely a function of the number of flows reserved 
and maintained at the node.  Architectures and 

protocols that require more memory run the risk of 
exhausting resources on nodes, particularly as the 
number of flows increases.  Memory requirement 
measurements were obtained from monitoring the 
/proc file system in testing live implementations, 
through instrumentation of simulations, and also 
through the examination and analysis of source 
code if experimentation proved difficult. 

Memory overhead requirements for various 
approaches are shown in Figure 6.  RSVP 
implementations had the highest memory 
overhead; the ISI RSVP implementation was also 
examined, but found to be quite limited in the 
number of flows that could be supported.  SCAR 
and SGS both had low memory needs, while 
Boomerang and YESSIR had moderate needs.    
SCAR is quite scalable, as the memory it requires 
is independent of the number of flows due its 
stateless aggregate philosophy. 

 

 
Figure 6.  Memory Overhead 

 
3.3.3. Network Overhead 

Network overhead refers to the amount of 
additional network traffic introduced to support the 
creation, maintenance, and teardown of flows.  
Since SCAR requires state inserted in signaling 
messages, it incurs a higher overhead than other 
approaches as shown in Figure 7. 

Network overhead was computed based on an 
analysis of the protocol messages required to 
manage the number of flows required, assuming 30 
seconds between refreshes and 20 hops end-to-end.  
It is important to note that since YESSIR is an in-
band protocol, it adds little network overhead 
itself; the overhead reported is primarily that of 
RTCP used to carry it. 

The higher network overhead for SCAR does not 
cause a significant concern.  As shown earlier, this 
network  overhead  does  not  impose  a  significant 



 
Figure 7. Network Overhead 

processing or memory burden on intermediate 
nodes.  Furthermore, the signaling overhead for 
SCAR is minimal in comparison to the network 
requirements of the flows themselves.  For 
example, typical rates on Sprint backbones are 
2488Mbps (OC-48) with the number of flows for 
any given minute in the area of several hundred 
thousand [7].  Signaling overhead for SCAR-SP on 
such a link serving a generous 100,000 reserved 
flows requires only 0.3% of its link capacity.  In 
fact, network overhead remains a linear function, 
and it is generally not thought of as a problem 
when scaling to large numbers of flows in a call 
admission organization.  When one considers that 
processing and memory considerations would 
prevent many approaches, including RSVP, from 
being able to handle this number of flows in the 
first place, SCAR is performing reasonably well. 

 
4. Conclusions and Future Work 

 

This paper presented SCAR, a stateless QoS 
architecture for the Internet that can provide end-
to-end guarantees to multiple flows on demand.  It 
is highly scalable in its memory requirements, 
network requirements, and most importantly, 
processing requirements.  It provides a greater set 
of functionality than previous lightweight 
protocols and also provides extended billing, 
pricing, and security modules, and mechanisms to 
achieve optimal resource allocation.  It is not 
dependant on any particular scheduling algorithm, 
and can handle multiple traffic classifications.   

A new soft-state signaling protocol, SCAR-SP, 
was presented to enable signaling within this new 
architecture.  Its design allows either the sender or 
receiver to make reservations, and allows senders 
to specify their unique traffic characteristics to the 
network.  It can additionally operate through non-

aware intermediate nodes in a transparent 
operation.  Experimentation has shown that nodes 
can handle hundreds of thousands of flows 
simultaneously with little performance impact. 

In the future, we plan to continue 
experimentation and port our ns-2 implementation 
for use in live testing.  We are also currently 
investigating a variety of competing techniques to 
reduce the network overhead in signaling in 
SCAR-SP.  As mentioned earlier, more work needs 
to be done in developing billing and security 
modules for SCAR, continuing the work in [11].  
Additionally, optimization of resource allocations, 
which has rarely been addressed in the past, needs 
to be researched and tested more thoroughly.   
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