
SCAR: A Stateless Approach to Achieving Scalable
Quality of Service

D. Reid and M. Katchabaw

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A 5B7

{dreid28, katchab}@csd.uwo.ca

Abstract—Previous attempts at providing widespread
Quality of Service (QoS) for the Internet have met with
only limited success. Integrated Services and
Differentiated Services, the two most popular
architectures proposed, suffer from scalability and
flexibility concerns respectively. More recently,
numerous other architectural proposals have been
introduced, but have also been met with limited success.
This paper introduces a prospective new approach
which addresses several issues others have failed to
solve effectively. This approach, SCalable Aggregate
Reservations (SCAR) is highly scalable, offers
additional functionality, and is quite flexible and robust
in supporting QoS for networked applications.
Keywords: QoS, aggregate reservations, stateless

networking

1. Introduction

Originally designed as a best-effort service, the
Internet has grown significantly, and so have its
needs. Today, many applications require a service
level better than best-effort can offer. In effect,
these applications require a high level of Quality of
Service (QoS), which is an expression used to
depict the overall experience a user or application
receives over a network [8]. Over the Internet, this
QoS is typically measured in terms of bandwidth,
loss, delay, jitter, and availability.

QoS models strive to take a best-effort network
and transform it into one which can provide
bandwidth and delay assurances to its applications.
There have been several fields of thought on
providing QoS. By far, the two most popular and
accepted philosophies are the Integrated Services
Model (IntServ) [7] and Differentiated Services
Model (DiffServ) [2]. However, neither IntServ
nor DiffServ have gained widespread acceptance
due to scalability and flexibility concerns
respectively. Several lightweight protocols have
emerged since, including SRP [1], FIRST [5],
SCORE [12], SGS/SOS [9], YESSIR [10], and

many others. These approaches, however,
generally lack the functionality and acceptance
needed for an integrated services network, or have
drawbacks making them difficult to deploy or use.

This paper presents a stateless QoS architecture
for the Internet that can provide end-to-end QoS
guarantees to multiple flows on demand. The
architecture, called SCalable Aggregate
Reservations (SCAR), achieves scalability by
aggregating flows into predefined classes. It
requires little processing at intermediate nodes and
can additionally enable billing functions, security
functions, and mechanisms to achieve optimal
resource allocation [11]. SCAR belongs to a
variant of the IntServ philosophy; one that aims to
provide the same flexible service, but in a stateless
network environment. This stateless property is
one which addresses scalability concerns that have
arisen with traditional IntServ. SCAR combines
the scalability of DiffServ and the functionality of
IntServ into one flexible package.

A new signaling protocol, the SCAR Signaling
Protocol (SCAR-SP), was developed to enable
signaling within this new architecture. Its
reversible design allows either the sender or
receiver to make reservations. It presents many
additional advantages, including the ability for
senders to specify their unique traffic
characteristics, and a soft-state approach which can
remove reservations if not properly terminated.
Experimentation has shown that nodes can handle
hundreds of thousands of flows simultaneously
with little impact on local node performance.

The remainder of this paper is organized as
follows. Section 2 presents the architectural design
of the SCAR model, the signaling protocol SCAR-
SP, and scheduling in SCAR. Section 3 discusses
experimental results and comparative analyses
with other approaches. Section 4 concludes this
paper with a summary and discussion of future
work in this area.

2. The SCAR Approach

In this section, we present our approach,
SCalable Aggregate Reservations (SCAR). We
discuss its architectural design and signaling
protocol SCAR-SP, and conclude this section with
a discussion of scheduling and policing.

2.1. Architectural Design

SCAR was designed to meet the following goals:
Scalability – Traditionally, the amount of router

state increased proportionately to the number of
individual flows with the IntServ model, leading to
serious scalability concerns. SCAR aggregates
individual flows into classes, requiring no per-flow
state in the intermediate nodes. Additionally,
techniques to insert state into the packets
themselves, as in SCORE, are not required.

Simplicity – To maintain simplicity and reduce
overhead, SCAR requires only minimal state in
nodes to keep track of aggregate classes only, and
does not support multicasting, in line with recent
thoughts on the subject [4]. The need for resource
“garbage collection” as in SGS or node
synchronization, as some other solutions require, is
also unnecessary.

Robustness – Mechanisms are in place to
account for reservation failure, routing changes,
and message loss. The onus has been placed on
the end-host to ensure messages and reservations
are timed properly to account for these failures.
Intermediate nodes are able to verify traffic
specifications, and police those who are not
adhering to their contract.

Flexibility – Less state typically means less
functionality and flexibility. SCAR can provide
bounds on both delay and bandwidth and enable
optimal resource allocation without the need for
per-flow state.

Figure 1. Logical separation of a network
For the time being, we consider in this paper

only three classes: guaranteed service, controlled-

delay, and best-effort service. Other predefined
classes such as controlled-load or custom classes
are quite possible to incorporate into SCAR, yet
we consider for all intents and purposes a three
class architecture including the guaranteed service
class which can provide the most stringent of QoS
guarantees, and the controlled-delay class for
delay-insensitive applications. To provide these
classes within an existing best-effort network, we
conceptualize a logical partition. By separating
link speed between each class, and with proper
management, a guaranteed service network can be
placed atop the existing best-effort network. This
abstraction can be seen in Figure 1. To distinguish
between classes, data packets are classified within
the headers through marking.

In Figure 1, a logical separation can be seen
between all SCAR aware nodes and end-hosts.
Operation of SCAR can still take place
transparently within non-aware areas of the
network, although QoS cannot be guaranteed in
this case when heavy congestion occurs at non-
aware nodes. (End hosts will, however, will be
made aware of any transparent operation through
non-aware nodes, and can cancel their reservation
at any point.)

Figure 2. Additive property of aggregates

Using the additive properties of aggregation,

bandwidth guarantees can be made without the
need for per-flow maintenance. This is
demonstrated in Figure 2, where end-host A
creates a 50KB/s reservation in (a), followed by a
20KB/s reservation by host B in (b). Aggregate
state is maintained on all incoming and outgoing
links. This simplicity, coupled with proper
policing, enables powerful network services.

There are several mechanisms which need to be
in place in a SCAR network, as shown in Figure 3.
Traffic must be classified, shaped, and policed
before the egress link with non-conforming packets
being isolated to ensure fairness to other flows.
This can potentially be done through either re-
marking or dropping. Proper scheduling must
additionally be in place to provide accurate

0

5050 50

0
50KB/s

(a)

A

20

7050 50

20
70KB/s

(b)

B B

A

GS/CL Traffic
BE Traffic

SCAR
Cloud

SCAR Aware Node

Non-Aware Node

SCAR
Cloud

SCAR Aware End-host

Non-Aware End-host

bandwidth and delay bounds. SCAR does not
specifically dictate the scheduling techniques used
to provide bandwidth and delay guarantees in
nodes, as there are already approaches to do so.
Further details on the SCAR architecture can be
found in [11].

2.2. The SCAR-SP Signaling Protocol

SCAR-SP has been designed to provide efficient
call mechanisms when creating, refreshing, or
removing reservations. Unlike most signaling
protocols, which are restricted to either a sender or
receiver-oriented design, SCAR-SP enables both
approaches. Either the receiver or sender can be
given the responsibility to provide the flow
specifications for the reservation. In many cases,
receiver control is favoured over sender controlled,
as senders are often not aware of what resources
are available to the receiver, including bandwidth
or even computational power. On the other hand,
receiver control can also be a hindrance, especially
in the case where senders are billed for QoS, or the
sender wants more control over policy.

Another advantage of SCAR-SP’s design is that
senders are first responsible for characterizing the
traffic it will be transmitting. By knowing the
traffic model, receivers establishing a reservation
can make more informed decisions. For example,
if a receiver is not aware that the sender will be
transmitting at a variable rate, it may unknowingly
make a constant rate reservation, in effect causing
underutilization. Additionally, if the sender is able
to characterize its traffic in more than one way, the
receiver can then be given the option to choose
which specification it wishes to receive.

SCAR-SP messages require state typically not
associated with signaling messages to be inserted
within them. This state is minimal, and cannot be
avoided in soft-state architectures. It should be
reiterated that this type of state is significantly

different from the state associated with IntServ
scalability concerns. The largest advantage to
keeping this state in the signaling protocol is the
fact that no lookup is required on behalf of
intermediate nodes.

SCAR-SP is a soft-state protocol which provides
better dynamic adaptability and robustness than a
hard-state protocol, and allows adaptation of
routing changes to take place fairly seamlessly
with end-host cooperation. Unlike RSVP where
refresh messages are generated by intermediate
nodes hop-by-hop, SCAR-SP shifts this
responsibility to the end-hosts in an end-to-end
fashion. They are then required to initiate
periodical refreshes so that their soft-state
reservations are kept active. This further reduces
processing overhead at intermediate nodes.

If a reservation expires, resources are
automatically de-allocated. To maintain
simplicity, SCAR-SP is simplex and can only offer
unidirectional reservations. To establish a
bidirectional flow, two separate reservations must
be made. SCAR-SP messages are sent out-of-band
over the control plane, which is logically separated
from the data plane. Its design can also handle lost
messages, and requires minimal processing power
at the nodes.

The operation of SCAR-SP is similar to most
other signaling protocols. The SCAR-SP daemon,
shown earlier in Figure 3 facilitates the creation
and removal of reservations in conjunction with
policy and admission control modules. Admission
control determines if enough resources are
available to admit a reservation, while policy
control determines if the end-host is permitted to
do so. The classifier determines which class the
traffic belongs to; either the guaranteed service
class, or best-effort. Policing and shaping of the
guaranteed service class ensures traffic is behaving
properly, sending at proper peak and average rates.

End-host Node

SCAR-SP
Daemon

ScheduleShape

Admission
Control

Policy
Control

Classify

Application

Mark
Data
Plane

Control
Plane

Resource
Control

Billing
Control

Security
Control

SCAR-SP
Daemon

Schedule Shape

Admission
Control

Policy
Control

Classify

Resource
Control

Billing
Control

Security
Control

Figure 3. SCAR architecture

The scheduler can then guarantee the reserved
bandwidth and delay to this traffic.

In an aggregated architecture, admission control
is rather simple; only the current and maximum
allowed aggregate reservation need be known. The
maintenance of this aggregate, however, is far
more difficult as signaling loss and partial
reservations are introduced. Part of the difficulty
arises due to the fact that admission control is
based on an end-to-end transaction. That is, if all
intermediate nodes along the end-to-end path do
not accept the reservation, then all nodes which
have since accepted it locally must roll-back to a
previous state. Likewise, lost signaling messages
can create confusion as partial reservations occur.
Normally this would imply that nodes must
maintain internal state. However, SCAR-SP can
deal with these problems effectively [11].

SCAR-SP defines four phases of operation;
discovery, reserving, refreshing, and tearing down.
The discovery phase entails determining the
current status of the end-to-end reservation path.
The reservation phase involves the merging of
flows in to a service class aggregate, while the
refresh phase keeps these reservations active. In
the teardown phase, a reservation is explicitly de-
allocated. Three messages are defined; discover
(DISC), reserve (RESV), and refresh (REFR).
DISC messages are used in the discovery phase,
while RESV messages are used during the
reserving phase. REFR messages are used during
the refreshing and teardown phase and use
expiration identifiers to track allocations and
deallocations appropriately. Further details on
SCAR-SP can be found in [11].

2.3. Scheduling and Policing

By controlling link bandwidth and buffering at
each node, packet loss, delay, and throughput can
be managed. This can be accomplished through
admissions procedures allowing access to the
resources, and scheduling disciplines to limit the
competition of flows and to balance allocated
bandwidth against delay requirements to meet the
needs of reserved flows [11].

To provide node-local QoS guarantees to a flow,
a packet scheduling discipline is used to guarantee
bandwidth and place an upper bound on delay.
The discipline may additionally provide bounds on
jitter or loss. This is done by choosing which
packet to transmit when its respective outgoing
link becomes idle.

While mechanisms within a node must be in
place to address local QoS guarantees, there must
also be mechanisms to ensure the end-to-end QoS
is met. Due to the uncertainness of packet
switching networks in a multiplexing environment,
traffic patterns can become distorted through
differing areas of load on the network. These
distortions can result in bursts of traffic at differing
points, regardless of how the traffic had entered the
network, and can compromise end-to-end QoS
metrics including packet jitter, delay, and possibly
loss. Consequently, appropriate mechanisms must
be employed to handle these situations.

The SCAR approach, as discussed earlier, is
flexible and can support a wide variety of
scheduling disciplines and algorithms that provide
guarantees on bandwidth and delay. Since
extensive work has already been dedicated to the
development of approaches to scheduling network
resources, this allows implementations of SCAR to
leverage this existing work, and make use of an
approach appropriate to the situation.

Either unintentionally or maliciously, the
possibility exists that flows will not adhere to
SCAR conventions. A misbehaving flow within an
aggregate can not be directly policed, as no state is
maintained to identify it. Instead, misbehaving
aggregates are policed by isolating them from the
network. Thus, the further the architectural edges
are pushed towards end hosts, the greater the
isolation granularity.

Figure 4. Policing in SCAR

In Figure 4, a network is shown in which the
gateway, depicted as node D, and end-hosts A and
B are SCAR aware. Node C located between the
gateway and end-hosts is not SCAR aware. In this

50

50

50

50
50

50 50

SCAR Aware

C

SCAR Non-Aware

B

D

F

A

100

E
50

particular case, hosts are still able to make
reservations transparently through node C, and, as
long as there is no congestion at this node, QoS
should not be compromised. In this case, both A
and B have 50KB/s reservations to different
destinations. A problem exists, however, if host A
or B decides to transmit at a higher rate than
reserved, or maliciously floods the network with
packets marked as reserved. As there is no state
maintenance at node D, it is therefore not aware
who the perpetrator is, except that it is coming
from the direction of node C. It must then police
this aggregate, resulting in service degradation to
both hosts A and B. If node C was SCAR aware, it
could have policed only the misbehaving portion
of the aggregate and not both A and B necessarily.

Policing entails that each node will simply
prevent any packets exceeding the reserved
aggregate from obtaining QoS, with the onus
placed on end-hosts to never exceed their
reservation. Nodes may allow some tolerance to
over-utilization, remark packets into a best effort
class, or drop packets to ensure conformance.

The issues of scheduling and policing in SCAR
are discussed further in [11], with the various
scheduling options available described in detail.

3. Experimental Results and Analysis

In this section, we will analyze SCAR and its

signaling protocol, SCAR-SP. Where possible, we
also compare our approach to current RSVP
implementations, and other signaling protocols and
architectures mentioned in Section 1, including
Boomerang, SGS, and YESSIR. With no
implementation available for other systems such as
SCORE, we were unable to assess and compare
with their performance. For brevity, we report on
highlights of the most important and interesting
experimental results; for complete results, the
reader is urged to consult [11] for details.

3.1. Experiment Design and Setup

Unfortunately, there is a lack of consistency in
proof of concept and implementation of work in
this area. RSVP has multiple competing
implementations available, while other approaches
have implementations for only specific
configurations of Linux or BSD Unix. Some of the
newer approaches have been implemented for
simulation packages like the Network Simulator
ns-2 [6]. As a result, analyses of SCAR involved a

mixture of live network tests and simulations, with
baseline testing to ensure that results were
consistent and comparable, as discussed in [11].

For primary testing, a 400MHz Celeron
workstation with 256MB of RAM was used, as this
most closely matched the configurations of test
machines in related work (again to ease
comparisons). As an operating system, we used
the Knoppix Linux Live CD 3.6 distribution with
kernel 2.4.27. By doing so, there was no need for
swap space or additional overhead as the
lightweight kernel is loaded directly into RAM.
When traffic generation was required, a collection
of Athlon XP 1800 machines with 512MB of RAM
were used, with the same Linux operating system,
connected by 100MB Ethernet.

 For simulations, we used version 2.27 of ns-2.
While there are some limitations when measuring
nodal performance metrics, ns-2 is quite useful in
generating very large topological simulations for
study. Nodal performance was measured through
software instrumentation, as ns-2 is event driven,
and runs independent from processing power. We
used the Celeron for our simulation system as well.

SCAR and SCAR-SP were implemented and
tested in this simulation environment. To
implement these in ns-2, sender and receiver
agents were first created to generate and handle
reservation requests and responses. The sender
agent was additionally responsible for generating
and marking flows, and initiating periodic
refreshes by sending DISC messages.

3.2. Validation of SCAR and SCAR-SP

Before conducting performance and scalability
testing, we first carried out a series of simulations
to validate SCAR and SCAR-SP and ensure that
they were functioning correctly. This involved the
creation, maintenance, and teardown of flows, the
proper scheduling of flows, and tests of flow
protection, admission control, and the policing of
misbehaving flows. In all cases, SCAR and
SCAR-SP performed as they should and were
deemed to be delivering their respective
functionality correctly.

3.3. Performance and Scalability Tests

Many signaling protocols and architectural
designs have been slow to gain footing due to
scalability concerns, which is defined as the
capacity for the network to expand the amount of
flows, nodes, and traffic. These concerns are a

direct result of the overhead required when
signaling tens, if not hundreds, of thousands of
flows simultaneously within core nodes.

3.3.1. Processing Overhead

Processing overhead was calculated as the

percentage of time spent by the test system in
processing messages and maintaining and
scheduling flows. This data was collected using
tools such as top and tcpdump when live tests were
possible, and through instrumentation when
simulations were required.

For test purposes, the reservation refresh interval
was set to 30 seconds in all cases as suggested in
[3], and all flows are set to live for 62.5 seconds
before being regenerated, a value selected for
comparison purposes with previous work in this
area. While flows in the real world will most
likely live for longer periods, we choose a shorter
interval to address scalability concerns during
periods with many short-lived reservations. In
most cases, a session within this interval would
include a setup, two refreshes, and a teardown.

Figure 5. Processing Overhead

We summarize the overhead results in Figure 5.
As can be seen, implementations of RSVP (KOM-
RSVP, and the more optimized T-KOM-RSVP)
had the most overhead, while SCAR and SGS
produced excellent results, with SCAR just edging
out SGS. Both SCAR and SGS could handle
100,000 simultaneous flows with less than a 50%
processing load (with SCAR at 47.0% and SGS at
48.7%). Boomerang performed reasonably well,
but we could not observe YESSIR in this case due
to issues in generating compatible traffic.

3.3.2. Memory Overhead

Memory overhead at intermediate nodes is
largely a function of the number of flows reserved
and maintained at the node. Architectures and

protocols that require more memory run the risk of
exhausting resources on nodes, particularly as the
number of flows increases. Memory requirement
measurements were obtained from monitoring the
/proc file system in testing live implementations,
through instrumentation of simulations, and also
through the examination and analysis of source
code if experimentation proved difficult.

Memory overhead requirements for various
approaches are shown in Figure 6. RSVP
implementations had the highest memory
overhead; the ISI RSVP implementation was also
examined, but found to be quite limited in the
number of flows that could be supported. SCAR
and SGS both had low memory needs, while
Boomerang and YESSIR had moderate needs.
SCAR is quite scalable, as the memory it requires
is independent of the number of flows due its
stateless aggregate philosophy.

Figure 6. Memory Overhead

3.3.3. Network Overhead

Network overhead refers to the amount of
additional network traffic introduced to support the
creation, maintenance, and teardown of flows.
Since SCAR requires state inserted in signaling
messages, it incurs a higher overhead than other
approaches as shown in Figure 7.

Network overhead was computed based on an
analysis of the protocol messages required to
manage the number of flows required, assuming 30
seconds between refreshes and 20 hops end-to-end.
It is important to note that since YESSIR is an in-
band protocol, it adds little network overhead
itself; the overhead reported is primarily that of
RTCP used to carry it.

The higher network overhead for SCAR does not
cause a significant concern. As shown earlier, this
network overhead does not impose a significant

Figure 7. Network Overhead

processing or memory burden on intermediate
nodes. Furthermore, the signaling overhead for
SCAR is minimal in comparison to the network
requirements of the flows themselves. For
example, typical rates on Sprint backbones are
2488Mbps (OC-48) with the number of flows for
any given minute in the area of several hundred
thousand [7]. Signaling overhead for SCAR-SP on
such a link serving a generous 100,000 reserved
flows requires only 0.3% of its link capacity. In
fact, network overhead remains a linear function,
and it is generally not thought of as a problem
when scaling to large numbers of flows in a call
admission organization. When one considers that
processing and memory considerations would
prevent many approaches, including RSVP, from
being able to handle this number of flows in the
first place, SCAR is performing reasonably well.

4. Conclusions and Future Work

This paper presented SCAR, a stateless QoS
architecture for the Internet that can provide end-
to-end guarantees to multiple flows on demand. It
is highly scalable in its memory requirements,
network requirements, and most importantly,
processing requirements. It provides a greater set
of functionality than previous lightweight
protocols and also provides extended billing,
pricing, and security modules, and mechanisms to
achieve optimal resource allocation. It is not
dependant on any particular scheduling algorithm,
and can handle multiple traffic classifications.

A new soft-state signaling protocol, SCAR-SP,
was presented to enable signaling within this new
architecture. Its design allows either the sender or
receiver to make reservations, and allows senders
to specify their unique traffic characteristics to the
network. It can additionally operate through non-

aware intermediate nodes in a transparent
operation. Experimentation has shown that nodes
can handle hundreds of thousands of flows
simultaneously with little performance impact.

In the future, we plan to continue
experimentation and port our ns-2 implementation
for use in live testing. We are also currently
investigating a variety of competing techniques to
reduce the network overhead in signaling in
SCAR-SP. As mentioned earlier, more work needs
to be done in developing billing and security
modules for SCAR, continuing the work in [11].
Additionally, optimization of resource allocations,
which has rarely been addressed in the past, needs
to be researched and tested more thoroughly.

References

[1] W. Almesberger, et al. SRP: A Scalable Resource
Reservation Protocol for the Internet. Computer
Communications, Vol 21, Number 14. Nov. 1998.
[2] S. Blake, et al. An Architecture for Differentiated
Services. RFC 2475, Dec. 1998.
[3] R. Braden, et al. Resource ReSerVation Protocol
(RSVP) -- Version 1 Functional Specification. RFC
2205, Sept. 1997.
[4] I. Brown, et al. Internet Multicast Tomorrow. The
Internet Protocol Journal, Volume 5, December 2002.
[5] T. W. K. Chung, et al. Flow Initiation and
ReServation Tree (FIRST): A New Internet Resource
Reservation Protocol. In Proc. IEEE 1999 Pacific Rim
Conf. on Communications, Computers and Signal
Processing, Victoria, Canada, 1999.
[6] K. Fall, K. Varadhan. The ns Manual. Reference
documentation. Mar. 2005.
[7] C. Fraleigh, et al. Packet-Level Traffic
Measurements from a Tier-1 IP Backbone. Sprint ATL
Technical Report TR01-ATL-110101. Nov. 2001.
[8] Nortel Networks. Introduction to Quality of Service.
Nortel Networks White Paper 56058.25_022403. Mar.
2003.
[9] E. Ossipov, G. Karlsson. SOS: Sender Oriented
Signaling for a Simplified Guaranteed Service. In Proc.
of Third International Workshop on Quality of Future
Internet Services, 2002.
[10] P. Pan, H. Schulzrinne. YESSIR: A Simple
Reservation Mechanism for the Internet,” Proc.
International NOSSDAV Workshop. Cambridge, United
Kingdom, July 1998.
[11] D. Reid. SCAR: A Stateless Architecture for
Achieving Scalable QoS. Masters Thesis. Department
of Computer Science, The University of Western
Ontario. May 2005.
[12] I. Stoica. Stateless Core: A Scalable Approach for
Quality of Service in the Internet. PhD Thesis, CMU,
2000.

