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Abstract—Linux-based clusters have become more 
prevalent as a foundation for High Performance 
Computing (HPC) systems. With a better 
understanding of network performance in these 
environments, we can optimize configurations and 
develop better management and administration 
policies to improve operations. To assist in this 
process, we developed a network measurement tool to 
measure UDP, TCP and MPI communications over 
high performance networks, such as Gigabit Ethernet 
and Myrinet.  In this paper, we report on the use of this 
tool to evaluate the network performance of three high 
performance interconnects in HPC clusters: Gigabit 
Ethernet, Myrinet, and Quadrics’ QsNet and discuss 
the implications of those results for configurations in 
HPC Linux clusters.   
 
Keywords: Network performance analysis, 
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1. Introduction 
It is now possible to build powerful platforms 

for high performance computation from off-the-
shelf computers and network devices. In 
particular, the Linux-based commodity cluster 
constructed with general purpose computers is an 
increasingly popular model and seems to be a 
trend for future HPC [14,17].   Commodity cluster 
computing can be characterized as being cost 
effective, flexible, extensible, and easy to 
maintain.  However, since these commodity 
clusters are built with essentially standalone 
computers and network devices, they do not 
necessarily guarantee high performance. The 
performance power of a standalone computer 
usually depends on its operating system, CPU and 
memory speed, and a variety of other factors. For 
HPC clusters, network communication is another 
key factor for cluster performance—a 

communication bottleneck in an HPC cluster may 
lead to a significant loss of overall performance in 
the cluster and the applications making use of it.  
Detailed network performance analyses that 
identify these bottlenecks and other performance 
issues are capable of yielding insight that 
developers can use to build better applications and 
administrators can use to better configure, 
manage, and administer their clusters. 

Traditional network measurement tools, 
however, do not necessarily work well in 
evaluating the performance of HPC environments, 
as the network interconnecting a cluster plays a 
more critical role in supporting the applications 
distributed across the compute nodes in the 
environment. Furthermore, some functionality and 
parameters required for detailed performance 
evaluations cannot be found in currently available 
network benchmarking tools. To better understand 
network behavior in HPC environments, we 
developed a Linux-based network benchmark 
toolset, named Hpcbench [5].  Hpcbench is able to 
accurately and effectively measure UDP, TCP and 
MPI communication throughput and latency in 
high performance networks, recording the detailed 
communication parameters and kernel statistics 
under a variety of parameters.  

In this paper, we first provide a survey of 
present network benchmarking tools and related 
work in Section 2, and justify the need to develop 
a new benchmark tool for HPC environments. In 
Section 3, we discuss the design and 
implementation of Hpcbench. In Section 4, we use 
Hpcbench to test and analyze HPC networks 
through a collection of experiments. Our 
experiments were based on three of the most 
commonly used interconnects in HPC systems: 



 

Gigabit Ethernet, Myrinet [1,2] and Quadrics’ 
QsNet [10]. Finally, in Section 5, we provide 
concluding remarks, and discuss future work. 

2. Related Work 
Measurement of network performance in high 

performance computing environments is 
recognized as an important element.  Typically, 
however, the focus is on the performance of a 
particular interconnect or protocol [3,15].  For 
example, there has been work to measure different 
MPI libraries [6,9] or specific interconnects, such 
as Quadrics QsNet [10].  These measurements are 
always useful, but as computational hardware 
changes and libraries improve, it is important to 
be able to measure not just the interconnects but 
the protocols, particularly to understand their 
configurations within a particular environment.  
As stated [15] in a study of protocol-dependent 
message passing: “It is vital to take the time to 
measure and optimize the performance of the OS 
and message-passing system when dealing with 
gigabit speed hardware.” 

To study the high performance networks one 
would find in an HPC environment, it is 
preferable to use an active measurement model as 
it allows direct measurements of network 
performance and behaviour without the 
inaccuracies or assumptions introduced by other 
approaches. While this can cause disruptions to 
the HPC environment during experimentation, this 
inconvenience is well worth the better quality 
results that can be obtained in the process. There 
are many existing tools available that involve 
active measurements. Some of the most frequently 
used tools include Udpmon[4], Netperf[8], 
Iperf[6] and NetPIPE[16]. However, all of these 
tools were designed as general purpose network 
benchmarking tools, and have their own 
limitations and restrictions that make them 
unsuitable for HPC environments. For example, 
Udpmon measures UDP communication using 
hardware-dependent assembly language to access 
an Intel CPU cycle counter for high-precision 
timing, and therefore it can only be used on 
IA32/IA64 platforms. Iperf supports multi-
threading and parallel TCP streams, but does not 
measure network latency. NetPIPE works well 
with connection-oriented protocols, such as TCP 

and MPI, but does not support UDP 
communication.  

Although these tools work reasonably well for 
the specific tasks for which they were designed, 
they are limited in functionality and lack a feature 
set capable of supporting many of the interesting 
experimental scenarios for HPC environments. As 
examples, none of the above tools could test non-
blocking communication, and none specialize in 
high performance interconnects, capable of testing 
all three of the most common communication 
protocols in commodity clusters: UDP, TCP and 
MPI.  In determining appropriate configurations 
for specific cluster environments, the 
administrator may need to explore the impact of 
various parameters for each of these protocols for 
specific environments, such as block size, buffer 
size or even specific network card configuration 
settings.  In theory, it is possible to modify these 
tools to support network performance analysis in 
HPC environments, since most of the tools are 
open source. However, in practice, their 
implementations are quite complex and difficult to 
extend for the additional required functionality. 

3. Overview of Hpcbench 
With this in mind, we felt that the best option 

was to implement our own network benchmarking 
tool, Hpcbench, focusing specifically on HPC 
environments. Hpcbench was designed to measure 
the high-speed, low-latency communication 
networks in Linux-based HPC systems.   The 
objectives of Hpcbench include high accuracy and 
efficiency; support for UDP, TCP and MPI 
communications; tunable communication 
parameters of interest in an HPC environment; 
and detailed recording of test results, 
communication settings, and system information. 

Hpcbench was written in C and uses BSD 
sockets and MPI APIs. It is comprised of three 
independent sets of benchmarks measuring UDP, 
TCP and MPI communications. As the 
benchmarks are based on a common 
infrastructure, the implementation and usage of 
each benchmark are quite similar, allowing us to 
easily compare the results for the different 
communication protocols.   

Currently, Hpcbench can be freely downloaded 
from its website at: http://hpcbench.sf.net.  For 



 

further details, the reader should refer to [5].   

4. Network Performance Analysis 
and Experiences Using Hpcbench 

In this section, we report on our experiences in 
using Hpcbench in the analysis of the network 
performance of three high performance 
interconnects: Gigabit Ethernet, Myrinet, and 
Quadrics’ QsNet. (Note that the experimental 
results presented here are highlights of some of 
the more interesting results of our study; for 
complete results, the reader is urged to consult [5] 
for details.) To avoid unwelcome loads and 
interactions that could complicate results, all 
experiments were conducted using dedicated and 
completely idle machines in our experimental 
environment. All MPI communication is based on 
MPICH 1.2.5 [7] built with default settings.  

4.1 Testbed Introduction 
Our testbed includes two Linux-based clusters 

named “mako” and “hammerhead” in 
SHARCNET [12], a distributed HPC Network in 
Ontario, Canada.  

The hammerhead cluster consists of 28 Compaq 
ES40 Alpha SMP servers. Each server is 
configured with 4 x 833MHz Alpha EV6 
processors, 4GB RAM, an Alteon AceNIC 
Gigabit Ethernet Adaptor (PCI 64bits/33MHz), a 
Quadrics QSW Elan3 PCI Network Adaptor, and 
Redhat Linux 7.2 as its operating system, with 
kernel 2.4.21-3.7qsnet #9 SMP.  For its 
interconnects, it uses a Nortel Passport 8600 
switch (Gigabit Ethernet) and a Quadrics’ QsNet 
switch. 

The mako cluster consists of eight HP DL360 
Intel Xeon SMP servers. Each server is configured 
with 4 x 3GHz Intel Xeon Hyperthreading 
processors, 2 GB RAM, a Broadcom Tigon 3 
Gigabit Ethernet Adaptor (PCI-X 
64bits/100MHz), a Myricom PCI-X Network 
Adaptor, and Redhat Linux 9.0 as its operating 
system, with kernel 2.4.20-8smp #1 SMP.  For its 
interconnects, it uses an HP ProCurve 2800 
(Gigabit Ethernet) switch and a Myrinet switch. 
We evaluate UDP, TCP and MPI over Gigabit 
Ethernet in this experimentation.  TCP/IP 
communication was not configured for operation 
over the proprietary Myrinet and QsNet networks, 

so we only tested their MPI communication based 
on the same version of MPICH.  

4.2 Communication Throughput on 
Gigabit Ethernet 

We select two idle nodes in two clusters and 
test their UDP, TCP and MPI communication over 
Gigabit Ethernet. 

Figure 1 shows the results of UDP 
unidirectional throughput versus datagram size, 
measured by Hpcbench in an exponential test 
mode with default socket buffering. The Intel 
cluster achieved 961Mbps peak UDP throughput, 
while the Alpha cluster gave 530Mbps peak UPD 
throughput. In high throughput situations, the 
UDP sender’s CPU load was approximately 10% 
in the Intel system compared to 15% for the Alpha 
system; the receiver’s CPU load was 
approximately 15% in the Intel system and 20% 
for the Alpha system. 
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Figure 1: UDP Throughput on Gigabit Ethernet 
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Figure 2: TCP Throughput on Gigabit Ethernet                             
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Figure 3: MPI Throughput on Gigabit Ethernet 

Figure 2 shows the TCP unidirectional 
throughput on the Gigabit Ethernet environment 
as measured by Hpcbench. When message size is 
greater than 2KB, the Intel system delivered a 
stable throughput around 940Mbps and the Alpha 
system delivered about 520Mbps throughput. At 
the same time, the CPU usage varied from 18% to 
29% in both systems (the receivers had slightly 
higher load than the senders).  

Figure 3 shows the MPI point-to-point 
communication over Gigabit Ethernet measured 
by Hpcbench. The Intel system delivered a peak 
938Mbps unidirectional throughput, which 
dropped to around 800Mbps when message size 
was larger than 64KB. The Alpha system only 
provided about 310Mbps peak MPI throughput. It 
is likely that the poor performance in this case 
came from inefficiencies in the implementation of 
TCP-based MPICH for that platform, because 
TCP communication in the same system has much 
higher throughput.  

The above experiments demonstrate that the 
Intel Xeon system performed much better than the 
Alpha system, with higher throughput and lower 
CPU usage.  To help understand this difference, 
we used Hpcbench to conduct further UDP tests. 
UDP was used for further testing rather than TCP 
because UDP communication has less protocol 
overhead than TCP and other connection-oriented 
protocols, and UDP does not utilize transmission 
control. Usually, UDP can better reflect maximum 
network throughput than TCP.  

Using Hpcbench, UDP experiments with larger 
socket buffer sizes were conducted. This testing 
found that the Alpha cluster could provide a 

maximum 650Mpbs UDP unidirectional 
throughput with a better selection of buffer size. 
From detailed log files generated by Hpcbench, 
significant data loss was observed in the sender 
during the UDP processing when the socket buffer 
was quite large (1MB, for example).  At the same 
time, however, no data loss was observed in the 
network according to the log data collected by 
Hpcbench. Consequently, it is reasonable to 
believe that the bottleneck in the Alpha cluster 
came from the relatively slow sender.  For further 
details, please refer to [5]. 

4.3 Communication Throughput Using 
Myrinet and QsNet 

In the Intel cluster, we conducted experiments 
to test MPI point-to-point communication over 
Myrinet using Hpcbench. The results are shown 
below in Figure 5. 
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Figure 4: MPI Communication Throughput on 

Myrinet                         
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      Figure 5: MPI Communication Throughput on 

QsNet 

As shown in Figure 4, unidirectional MPI 



 

throughput over Myrinet could reach 1995Mbps, 
while non-blocking (synchronized MPI_Isend and 
MPI_Irecv) bidirectional throughput achieved 
3885Mbps.  In contrast, QsNet in the Alpha 
cluster delivered a maximum of 1600Mbps 
unidirectional MPI throughput, while the non-
blocking bidirectional throughput dropped to 
around 1250Mbps when message exceeded 
500KB, as shown in Figure 5. This may have 
occurred because the Alpha machines were not 
fast enough to handle the heavy system load. 

Consulting the data logs recorded by Hpcbench, 
we observed that the communication on Myrinet 
and QsNet only consumed a single CPU’s clock 
cycles in a 4-processor SMP system.  In fact, 
communicating processes completely occupied 
CPU1’s utilization, resulting in a sharp 25% 
overall CPU load in both Intel and Alpha clusters. 
This could come from the fact that both Myrinet 
and QsNet technologies use a zero-copy (OS-
bypassing) technique for message passing 
between two nodes. Unlike traditional interrupt-
driven TCP/IP communication, there is no 
interrupt interaction between the Linux kernel and 
the NIC in Myrinet and QsNet communications. 
Instead, the data goes directly from user space 
into the NIC without kernel processing. 
Consequently, different CPUs in an SMP system 
are unable to cooperate to handle one 
communication session. During benchmarking, 
the sender application attempted to send as much 
data as possible to the NIC, and used as many 
CPU resources it could get to do so. A similar 
situation also occurred on the receiver side.  

We also conducted multi-link communication 
experiments over Myrinet using Hpcbench. When 
the number of communication links exceeded the 
number of CPUs, we found that the Intel Xeon 
system had reached a 100% CPU load in both the 
sender and the receiver, while the overall 
throughput in the network remained nearly the 
same.  On the other hand, the kernel is involved in 
TCP/IP communications.  Consequently, multi-
link communication can introduce a high system 
load, but will not overwhelm the system for 100% 
usage. When the network becomes saturated or 
congested, the kernel will block application 
transmission to ensure that communication can be 
serviced properly. 

4.4 Communication Latency on Gigabit 
Ethernet, Myrinet and QsNet 

High throughput does not necessarily imply low 
network latency. The overall performance of some 
applications is very sensitive to network latency. 
Hpcbench measures network latency in terms of 
round trip time (RTT) from the application layer, 
using various underlying transports, giving us 
UDP RTT, TCP RTT and MPI RTT. The 
traditional ping utility instead evaluates the ICMP 
RTT with a relatively coarse resolution 
(milliseconds), and may not work properly or 
accurately enough in a low-latency network. 

Figure 6 shows the Intel Xeon cluster’s RTTs 
for different protocols on the Gigabit Ethernet 
with message (datagram) size less than the 
Maximum Transmission Unit (MTU, 1500 Bytes 
in our experimental testbed).   The results show 
that the UDP and TCP’s RTTs were around 56-
60µsec for tiny messages (1~32 Byte), implying 
around a 28µsec one way network latency for 
these two protocols. MPI RTTs, on the other 
hand, started from nearly 72µsec, making it a 
higher latency protocol than TCP and UDP in our 
experimentation, according to Hpcbench.  Figure 
7 demonstrates that the network latency in the 
Alpha cluster was much higher than that of the 
Intel cluster according to experimentation with 
Hpcbench. The minimum RTTs in the Alpha 
cluster were about 240µsec for UDP and TCP, 
and about 350µsec for MPI communication. 
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Figure 6:  Intel Cluster RTT on Gigabit Ethernet                       
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    Figure 7:  Alpha Cluster RTT on Gigabit 

Ethernet 

From the statistics recorded by Hpcbench, we 
observed that the interrupt coalescence technique 
[11] was used in the Alpha cluster but not in the 
Intel cluster. Interrupt coalescence was used by 
Alpha machines’ Gigabit Ethernet network cards 
to reduce the system load for network 
communication. Unfortunately, this technique can 
also introduce significantly larger network 
latency. We can also see that all curves in Figure 
8 are not linearly smooth, in part due to the effect 
of interrupt coalescence.  
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Figure 8: MPI RTT on Myrinet and QsNet 

Figure 8 shows MPI communication latency in 
Myrinet and QsNet. The RTTs with tiny messages 
could be as low as 14µsec in both interconnects, 
which is significantly lower than Gigabit Ethernet. 

In many HPC environments, including the 
current configuration of SHARCNET, Myrinet 
and QsNet are used only to provide a message 
passing environment for parallel computing. From 

our findings, these two interconnects are 
confirmed ready to support IP. In such an 
environment, other communication, such as 
shared storage access, could benefit from the 
advantage of these high-speed, low-latency 
technologies. 

5. Conclusions and Future Work 
In this paper, we analyzed the network 

performance (throughput and latency) of Gigabit 
Ethernet, Myrinet and Quadrics’ QsNet using 
UDP, TCP, and MPI communication mechanisms 
as transports.  We looked at a variety of 
parameters affecting overall performance, 
including packet size, buffering, and blocking 
versus non-blocking communication primitives.   
These experiments reconfirmed beliefs about 
network performance, providing empirical 
evidence to support these intuitions:  
• Protocol overhead can have a significant impact 
on performance in an HPC network.  For example, 
in Gigabit Ethernet experiments, we saw that UDP 
outperformed TCP, which outperformed MPI 
(based on TCP in this case).  This was the case for 
both throughput and latency testing. 
• Node configuration can have a significant 
impact on performance in an HPC network.  Our 
experimentation showed that, for Gigabit 
Ethernet, our Intel Xeon cluster with faster 
processors and system bus outperformed our 
Alpha cluster.  We also directly observed the 
effects of interrupt coalescence in our Alpha 
cluster on latency. 
• Depending on cluster configuration, it is 
possible for the compute nodes themselves to be a 
performance bottleneck.  Our experimentation 
demonstrated, for example, that the processors in 
our Alpha systems were unable to keep up with 
the load placed on them, limiting effective 
throughput. 
• Technologies such as Myrinet and QsNet can 
outperform Gigabit Ethernet, both in terms of 
throughput and latency.  If they can be afforded, 
they are definitely an asset to HPC cluster 
systems. 

In addition to verifying such intuitions, our 
experimentation also yielded some interesting 
results about the specific configurations under 



 

test, and also illustrated the necessity of such 
experimentation in order to determine appropriate 
configurations to maximize throughput: 
• For UDP and TCP communication over Gigabit 
Ethernet on both the Alpha and Intel clusters, 
message sizes greater than 1Kb achieved greater 
throughput but message sizes greater than 1Mb 
did not result in improved throughput. 
• For MPI communication over Gigabit Ethernet 
on the Alpha cluster, the greatest throughput was 
achieved when message size was 4Kb or greater.  
Again, there was little improvement with message 
sizes beyond 4Kb.  For the Intel cluster, the best 
throughput was achieved with message sizes 
between 4Kb and 100Kb.  Message sizes beyond 
100Kb actually resulted in degraded performance. 
• For MPI uni- and bidrectional nonblocking 
communication on Myrinet on the Intel cluster, 
message sizes greater than 1Mb resulted in the 
best throughput.  However, throughput for 
bidirectional nonblocking communication 
decreased for message sizes greater than 10Mb. 
• For QsNet on the Alpha cluster, generally, 
message sizes of 10Kb resulted in the best 
throughput for both blocking and nonblocking 
communication.  The exception occurs with 
bidrectional nonblocking communication where 
throughput decreases when message sizes larger 
than 10Kb are used.   This seems to be a result of 
the slower performance of the Alpha processors, 
as they seem unable to handle the volume of 
packets. 

There are a number of interesting directions for 
subsequent work.  While Hpcbench already 
supports a large number of variables and protocol 
options for experimentation, there are other 
features that should be added, for example support 
for other MPI methods of communication besides 
point-to-point.  Naturally, as the feature set of 
Hpcbench increases, more work will be required 
in terms of interfacing with the toolset and in 
managing the larger sets of possible experiments.  

Another interesting topic for future 
experimental study is the relationship between 
network performance, computational performance 
and particular applications.  For example, in a 
Gigabit Ethernet cluster, different applications 
place different demands on the network.  Are 
there network configurations that are better for 

certain types of applications?   For certain types of 
application mixes, are there preferred 
configurations for overall performance. 
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