
ProtoTalk: A Generative Software Engineering
Framework for Prototyping Protocols in Smalltalk

Ali Razavi
Software Engineering Laboratory

University of Waterloo
Waterloo, ON, Canada, N2L 3G1

arazavi@swen.uwaterloo.ca

Kostas Kontogiannis
Department of Electrical and Computer Engineering

Natl. Technical University of Athens
Athens, Greece 15780
kkontog@softlab.ntua.gr

Abstract

Network protocols are complex systems implemented by collections of
equally complex software components. In many cases, the realization of such
protocols requires extensive prototyping and experimentation with different
alternative implementations. In this paper, we present ProtoTalk, a genera-
tive, domain-specific software framework that utilizes model driven software
engineering principles for prototyping state and message driven protocols
with emphasis on telecommunication and network protocols. The framework
allows first, for modeling a variety of common protocol features by using
mappings from state machines, sequence diagrams and packet encodings to
ProtoTalk models, and second, for the consequent automatic generation of
prototype Smalltalk code from the aforementioned ProtoTalk models. In this
respect, the paper attempts to shed light on the use of generative model
driven programming techniques within reflective object oriented programming
languages and environments. As a proof of concept, we have specified in
ProtoTalk and consequently generated in Smalltalk, several core features of
the Session Initiation Protocol. 1

Keywords

Software Engineering, Domain Specific Frameworks, Generative Program-
ming, Protocol Development

1. Introduction

Network and telecommunication protocols encompass soft-
ware intensive components that are usually intricate and ex-
pensive to design and implement. Object oriented program-
ming on the other hand, has been established over the years
as a robust technology to design, implement and deploy highly
reusable and maintainable software systems. Although we
believe that object oriented methodology is effective for im-
proving the quality of protocols’ code, there is still a significant
gap between the specification of protocols in standards, and
the programming constructs that implement such specifications
in such languages as C++, Java and Smalltalk.

This paper is the summary of our attempt to investigate
the use of generative programming techniques in dynamic and
interactive object-oriented environments for the important do-
main of protocols. More specifically, we introduce ProtoTalk, a
generative domain specific framework based on the Smalltalk

1. This work was conducted at the University of Waterloo and was funded
by CA Labs.

programming language, for the domain of telecommunica-
tion and network protocols. ProtoTalk is implemented in the
Squeak [1] dialect of Smalltalk, and utilizes the extensive
collection of reflective facilities offered by Squeak to generate
Smalltalk source code that implements the corresponding
ProtoTalk specification.

Smalltalk is a dynamically typed object oriented program-
ming language that typically features an interactive environ-
ment. Squeak is a multi-platform and open-source implemen-
tation of Smalltalk that is almost entirely built upon itself [1].
Since Smalltalk offers a broad range of different intercession
and introspection facilities [2], [3], [4], it is often advocated
as an apt candidate for hosting domain specific languages [3].

ProtoTalk promotes the reuse of domain knowledge by
encapsulating that knowledge in its code generators. Further-
more, it aims to support interactive and incremental develop-
ment, refinement and rapid prototyping of a wide spectrum of
protocols from standards and specifications, in an expressive
and flexible fashion. We envision ProtoTalk to be used by
protocol designers for experimenting with various design
choices and alternatives, before commencing a full-fledged
implementation in a detailed and statically typed language,
such as C or C++, which typically requires extensive time
investment. Most telecommunication and network protocol
standards include various degree of enforcement for different
aspects of protocols. More specifically, these standards usu-
ally begin with precise definition of terms, such as MUST,
SHOULD, RECOMMENDED and MAY, purported towards
denoting the degree to which the said standards demand
support for a certain concept. Many of the features of protocols
are either optional or depend on the usage context, therefore
the decision of whether (or how) they should be supported is
left to the implementors. In this respect, ProtoTalk can be used
for the experimentation and prototyping of various aspects of
a protocol specification standard.

The rest of the paper is organized as follows: Section 2
discusses the rationale behind the decisions made in the design
of ProtoTalk by summarizing the domain analysis that has
been conducted. The design and architecture of ProtoTalk
is discussed in Section 2. Section 3 presents the principal
techniques used in the implementation of ProtoTalk. Section 4
demonstrates the usage of ProtoTalk for prototyping part of

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.197

435

the Session Initial Protocol (SIP). Related work is reviewed
in Section 5. Section 6 concludes and outlines the avenue for
future work.

.

2. ProtoTalk

2.1. Background

Squeak is an open-source, multi-platform and interactive
implementation of the Smalltalk programming environment.
In the design of the proposed framework, expressiveness and
flexibility were amongst the major concerns. In this respect,
ProtoTalk provides a set of generic classes which offers
protocol developers the advantages of object orientation and
the use of an advanced dynamic development environment,
such as the one offered by Squeak. This framework can be
used to describe a wide spectrum of layered protocols, and
for generating their corresponding Smalltalk implementations.
Figure 1 depicts the dataflow of ProtoTalk specifications and
the architectural dependencies of ProtoTalk’s components with
those of Squeak.

ProtoTalk
Prototyping
Framework

Squeak
Meta Facilities

ProtoTalk
Specificaton

Smalltalk
Code

ProtoTalk
Layer +
PDU +
FSM

uses
dataflow

ProtoTalk
Concurrency

Fig. 1. ProtoTalk Architecture

By examining various telecommunication and network sys-
tems, one reckons that these systems share several common
concepts, and are usually structured around a reference ar-
chitectural style, the layered architecture [5]. Within each
layer, policies and services offered to the layer above are
generally implemented using reactive software entities, which
run concurrently in an event-driven fashion. Event handling is
often realized by the implicit invocation architectural style [5],
which is often implemented using a variant of the Observer
design pattern [6]. Furthermore, the behavior of protocols is
commonly described using some variant of state machines,
often combined with message sequence charts.

2.2. Layered Architectures in ProtoTalk

As discussed in the previous section, protocols are decom-
posed into hierarchical layers. This common theme is adopted
and elaborated upon in ProtoTalk by allowing several protocol
entities coexist in each layer of the system. Figure 2 illustrates
the general layout of multiple layers in ProtoTalk. Each layer
can have multiple Protocol Entities. Layer stacks in ProtoTalk
are not merely static models of the system; to the contrary,

they are part of the dynamic representations of the protocols.
Each layer is an independent subsystem that provides a set
of services through its Service Access Point or SAP, and uses
its required services via its Service Request Point (SRP). One
layer’s SAP is attached to the SRP of the layer immediately
underneath it.

Services offered by each layer are provided by internal
Protocol Entities. Figure 3 shows a reference architecture
for protocol entities in ProtoTalk. Protocols usually have
some specific data units that have to be passed to the other
communication end using the lower layers’ services. Each
protocol entity in ProtoTalk has a subsystem called Packet
Processor. This subsystem is responsible for marshaling and
de-marshaling of incoming and outgoing data units from
the upper and lower layers. Packet Processors also monitor
incoming control packets of the protocols in order to capture
the raised events. Protocols are reactive entities that respond to
such events by conducting different actions. The architectural
style used for managing events in each protocol is the implicit
invocation. Each protocol entity has a central dispatcher and
can have several event sources, each associated with one or
more event handlers. An event handler registers its interest
in an event via Protocol Dispatcher. Upon occurrence of an
event, the Protocol Dispatcher notifies the event handlers that
have registered interest in the occurred event.

Services encompass the main functionality of protocols.
Each service has a service interface that advertises its usage
signature to other layers. Each protocol entity also relies on
variety of external services for its operation, and therefore
specifies a list of required service interface, items of which
should each lexically match an advertised service from the
lower layer during the generation of the layer stack. This sort
of configuration is akin to the Lego toy blocks, in the sense
that each block has an interface that can be attached only to
those other components that can fill its gaps. When stacking
layers, in case a required service is missing in a lower layer,
ProtoTalk is able to dynamically and automatically modify
the source code of the lower layer to add the skeletons for
the missing service. An important aspect in communication
protocols is the scheme used for establishing connections.
Protocols are usually classified as either connection-oriented
or connection-less [7]. Connection oriented protocols need
to establish and maintain a dialog session with other peers.
The subsystem responsible for management of sessions in
ProtoTalk is called Session Manager. Each protocol can
establish multiple sessions with different peers, using various
underlying services.

2.3. Layers and Protocols definition

Layers and Protocol Entities in ProtoTalk are created from
generic prototypes. These prototypes are configured for a
specific application using Smalltalk’s intercession features.
Figure 4 depicts the UML diagram for the abstract layer and
protocol entity classes. Using meta programming facilities of
Smalltalk [2], these prototypes are incrementally transformed

436

Layer N+1

Protocol-EntityProtocol-EntityProtocol-Entity

Service Request Point (SRP)

Service Acces Point (SAP)

 Layer N

Protocol-EntityProtocol-EntityProtocol-Entity

Service Request Point (SRP)

Service Acces Point (SAP)

Fig. 2. Layered Architecture for Protocols

Protocol Dispatcher

Event
Handler

Service

Timer

Alarm

Timer
Timer

Alarm
Alarm

Packet Processor

Session Manager
Session Manager

Session Manager

Protocol Entity

Fig. 3. Protocol Entity Architecture

AbstractLayer

LayerProtoType

LayerInterface

SAPPrototype SRPPrototype
1

1

1 1

ProtocolEntity

1

1..*

ProvidedServiceInterface RequiredServiceInterface
1

1

0..* 0..*

Fig. 4. Protocols and Layers’ Classes

into refined customized classes, present at the execution time
of the system. As the figure illustrates, the main interface for
each protocol is provided by a ProtocolEntity object. A
layer consists of several such ProtocolEntitys. The fol-
lowing piece of code exemplifies how these generic prototypes
are used to create a protocol stack in ProtoTalk.

|newLayer newProtocol|
newLayer _ LayerPrototype new: #NewLayer

onTopOf: oldLayer.
newProtocol _ ProtocolEntity new.
"configure the protocol by adding PDUs,
Events, Sessions and Services"

newLayer addProtocolEntity: newProtocol useService:
(newLayer service ofType: #Servicetype).

Each prototype class in ProtoTalk contains the required code
for incremental self-configuration. For example, when the user
instantiates a LayerPrototype, what actually happens in
the background is that a new class is generated using the pro-
vided name, and is configured to run over the supplied lower
layer. So the newLayer variable is an instance of the newly

generated class, which is a subclass of LayerPrototype.
Further details of the generation techniques used for imple-
menting ProtoTalk is discussed in Section 3.

2.4. Concurrency and Synchronization

Concurrency is at the heart of any telecommunication
system. The majority of specification and implementation
methodologies for protocols provide means for expressing con-
current functional units. These range from low-level primitives
provided by operating systems’ APIs such as processes and
threads as units of granularity for concurrency, to semaphore
and monitors as synchronization building blocks. However,
concurrent systems described in this level tend to become
quite complex and difficult to understand and debug. There
has been extensive research about expressing concurrent units
in a level of abstraction higher than that of mainstream
operating systems’ APIs. A survey on several methods of
denoting concurrency and distribution in various programming
paradigms is presented in [8]. The concept of Actors in this
regard is a specially intuitive approach to associate high-level
concurrent abstractions with the object-oriented programming
paradigm [9], [10]. The Actor Model is essentially a systematic
way of merging the concept of execution context and abstract
data types into one encapsulated unit. The general behavior
of Agha’s actor model is illustrated in Figure 5. The client
context sends an asynchronous message to the Active Object
which possesses its own thread of execution. The internal
scheduler embedded inside the active object sends the received
messages to the actual behavior object in a first-in, first-out
basis. This scheme implies that actors are atomic objects which
can process queued messages one at a time, but can also be
run in concurrence with the senders of the messages.

Smalltalk provides several primitives for dealing with
concurrency. This includes Process and Semaphore, as
basic constructs, and ProcessScheduler as the under-
lying mechanism for scheduling processes. Processes in

437

Active Object Wrapper

Client
Context

M1 M2 M3

Scheduler

Object

Fig. 5. Agha Actors’ Architecture

Smalltalk are created upon invocation of the fork method
on BlockContext instances. For the details of concurrent
programming in Smalltalk see [11], [12], [3]. So far, there
has been a rich spectrum of research work related to en-
hancing Smalltalk’s concurrency mechanism with higher-level
constructs. Some of the approaches are just class libraries on
top of a standard Smalltalk implementation, while others are
deployed on ad hoc modified virtual machines. A survey of
existing solutions for supporting concurrency and distribution
in Smalltalk can be found in [13]. The most well-known ones
which we reviewed in the context of this work are: CST [14],
ConcurrentSmalltalk [15] and Actalk [16].

CST is developed at MIT and is more suitable for distributed
objects than concurrent ones. The syntax also resembles LISP
syntax more than Smalltalk, which we think is not as expres-
sive as Smalltalk’s native syntax for our application. It also
requires a modified virtual machine which is preferred to be
avoided in the implementation of ProtoTalk.

ConcurrentSmalltalk developed at SONY labs [15], is one of
the first attempts to bring the concept of asynchronous message
passing to Smalltalk. It uses a customized virtual machine for
introducing CBox as a primitive for receiving the return values
of an asynchronous method invocation.

Actalk, developed by Briot [16], is an attempt to implement
Agha’s actor model using Smalltalk processes which run on
top of a standard virtual machine. The concurrency model
implemented in ProtoTalk, although in some ways is similar
to Actalk, differs from it in at least one fundamental way.
Actalk is primarily based on introducing concurrency via in-
heritance which requires the active objects to share a common
superclass; hence results in an inheritance hierarchy for active
objects, parallel to that of “normal” objects. Although there
are some advantages to this approach, its main drawback is
that it discourages (and somewhat hinders) exploitation of
the extensive library of passive objects offered by Smalltalk.
In contrast, ProtoTalk supports metamorphosis of normal
objects into active ones upon need, by utilizing the proxy
design pattern [6]. More specifically, as Figure 6 illustrates,
ActiveObjectProxy instances can be used to wrap pas-
sive objects dynamically, and at runtime, so as to enhance
them with concurrency constructs. This creates a twofold
usage scheme for objects, i.e. active and passive, and thereby
separates the concurrency concerns with the normal func-

tionality that each object provides. ActiveObjectProxy
queues received messages in a MessageQueue. They will
be later scheduled to be applied on the wrapped Object by
an internal scheduler, an instance of MessageScheduler,
as shown in Figure 6.

ActiveObjectProxy

MessageScheduler
+process

AsyncMessag

FutureObjectMessage

MessageQueue

1 1

Object

1 1

Client

Fig. 6. Actors Implementation in ProtoTalk

Another difference between Actalk and ProtoTalk is the
required explicit calling of the respond: methods in Actalk
for getting the result of an asynchronous method invocation.
In contrast, ProtoTalk utilizes the notion of future objects [8].
Therefore, it does not require such a method, and the sender
instantly receives a FutureObject from the corresponding
ActiveObjectProxy. The FutureObject sent to the
client has a valid method which indicates whether the
FutureObject is still being evaluated or is ready for
use. The sender can keep on executing in its own context
until it reaches an expression that requires the value of the
FutureObject. On that point, if the future’s evaluation is
not complete, it suspends. The following code demonstrates
how these active objects are created and used in ProtoTalk:

|actor passiveObject future|
passiveObject _ SamplePassiveObject new.
"Wrap the passive object by active object proxy"
actor _ ActiveObjectProxy new object: passiveObject.
"Send an asynchronous method"
future _ actor aMessage.
"do other stuff"
future value. "wait for the evaluation"

2.5. Protocol Data Unit Specification

Protocol Data Unit (PDU) specification is an important, yet
cumbersome aspect of protocol design. ProtoTalk adopts a
generative approach to assuage this task. A PDU aggregates
other pre-constructed PDUs as its fields. As such, it complies
with the composite design pattern [6]. The following piece of
code exemplifies the usage of PDUPrototype, ProtoTalk’s
entry point for defining PDUs.

|pdu aPDU|
pdu _ PDUPrototype new: #PDUType.
pdu addField: ThirtyTwoBits

named: #myFiel setTo: 16rAAAAAAAA.
pdu addField: Bit named: #anotherName

after: #fieldName setTo: 1.
pdu addField: Bit named: #yetAnotherName

before: #anotherName.

438

aPDU _ pdu new.
aPDU fieldName. "Print It>>" 16rAAAAAAAA
aPDU howManyBits. "Print It>>" 34
aPDU yetAnotherName: 0. "Setting a field"
aPDU asBits.
"Print It>>" 1010101010101010101010101010101010

aPDU field: #fildName. "Print It>>" aFieldName
aPDU fieldAt: 1 asBits. "Print It>>" 1

When a new: message, piggy-backing a symbol (e.g.
#PDUType), is sent to the PDUPrototype class, this class
creates a new subclass of itself named after the argument
of the new: method. It thereafter instantiates the new class
and returns it back. The subsequent messages sent to the
instance belong to a specific category of messages called
prototyping. They are responsible for reconfiguration and
refinement of their classes. More specifically, prototype ob-
jects in ProtoTalk are able to modify the code of their own
class by adding new methods and changing their underlying
code. This is a common theme in other generative parts
of ProtoTalk, such as state machine or message sequence
descriptions. More detail on the mechanics of self-configuring
objects in ProtoTalk is discussed in Section 3.

The prototyping methods of PDUPrototype objects
generate Smalltalk code for various functionalities, including:
integrity and size checking, and marshaling/de-marshaling of
fields into actual packets, examples of both are listed in
the above code. In ProtoTalk, constraining fields’ values,
e.g. constant-value fields, or data fields values of which
solely depend on those of other fields, are possible. An
important application of constant-value fields is in defining
packet preambles while the definition of checksum fields is
an example for which the dependent-value kind of fields is
useful. Furthermore, it is possible to add more syntactic sugar
to PDU definition in ProtoTalk. The following listing achieves
essentially the same functionality of addField method, by
using the + and < operators defined in PDUPrototype.

pdu is: #Method + ’ ’ + ’ ’ + #RequestURI
+ ’VIA’ + #Address.

2.6. State Machine description

Many of the components described as the subsystems of
Protocol Entities are realized using finite state machines.
Components such as event handlers, session managers, ser-
vices and protocol dispatchers, all embed a state machine
inside. State machine definitions in ProtoTalk are designed
to be expressive, extendible and concurrent. Basic classes
involved in state machine descriptions are FSMPrototype,
State and Action. Instances of the latter class are wrappers
of Smalltalk’s block closures. State transitions are realized
using messages. Table 1 illustrates a typical step-by-step
definition of a state machine in ProtoTalk. In each step, the
at:on:switchesTo: message adds a new class (if it does
not exist) that is provided as the argument of switchesTo:.
It also inserts a new method with the name of the argument
of on: and generates the code under the new method for
switching to the newly created state.

TABLE 1. Incremental specification of a FSM

ProtoTalk Code Generated State Machine

|fsm|
fsm _ FSMPrototype new

name:#SrvFSM.

fsm StartsAt:#S1.

S1

fsm at:#S1 on:#M1
switchesTo:#S2
does:#Action1.

S1 S2

M1

Action1

fsm onEntranceTo:#S2
does:#Action2.

S1 S2

M1

Action1

Action2

onE
ntrance

fsm at:#S2 on:#M2
switchesTo:#S3.

S1 S2

M1

M2

Action1

Action2

onE
ntrance

S3

2.7. Message Sequence Definition

foo bar

s1

r1

s2

Fig. 7. A Sample Message Sequence Chart

Message sequence charts are widely used in protocol spec-
ifications for denoting specific scenarios between communi-
cation parties. ProtoTalk provides syntactic support to define
message sequences in an incremental and declarative fashion.
The entries are in the form of predicates that, similarly to
other constructs in ProtoTalk, are sent to prototype classes.
These classes refine themselves, and generate other classes as
needed, when they receive such messages. Figure 7 depicts
a sample interaction scenario, ProtoTalk denotation of which
comes in the following.

foo _ ProtocolEntityPrototype new state:#Idle.
bar _ ProtocolEntityPrototype new state:#BeforeS1.
foo sendsMessage: #s1 to: bar.
bar sendsMessage: #r1 to: foo.
foo sendsMessage: #s2 to: bar.

439

3. ProtoTalk Implementation

3.1. ProtoTalk Concurrency

Concurrency plays a key role in ProtoTalk. It adds
actor’s functionality on top of Squeak’s concurrent pro-
gramming facilities. ActiveObjectProxy is the wrap-
per for passive objects’ behaviors. Upon instantiation,
this object creates a Process that runs an instance
of MessageScheduler inside. At runtime, instances of
ActiveObjectProxy trap the received messages by the
means of doseNotUnderstand: method, and form an
AsyncMessage object for each message. This message is
queued at the end of a SharedQueue shared between the
sender’s context and that of the scheduler. The client is
immediately responded to by a FutureObject which is
subsequently updated by the results of the requested evalu-
ation, once it is complete.

Smalltalk’s processes (and similarly those of Squeak) are
switched cooperatively inside one priority level, thus a higher
priority process will always preempt the lower priority ones
[11]. Even though this might be an apt scheme for multime-
dia applications or graphical user interfaces that for which
Smalltalk was originally designed, having a time-sharing
system for implementation of actors that need to be used
seamlessly, is almost mandatory. In order to keep this scheme
consistent with the rest of the system, we developed a time-
sharing scheduler that only handles ProtoTalk’s active objects.
This ad hoc scheduler runs at the highest priority level
while scheduling actors’ processes at a lower priority. The so
called scheduler, ProtoTalkScheduler, uses round robin
algorithm as its current scheduling policy.

3.2. Generative parts of ProtoTalk

ProtoTalk is a generative framework. As such, it extensively
harnesses Smalltalk’s reflective facilities in order to generate
code incrementally. In this section we review the techniques
used in the implementation of generative packages of Pro-
toTalk. As described in Section 2, many of the ProtoTalk
features are based on generation of new classes at runtime.
Moreover, the customization of these generated classes does
not only happen at compile-time; it, nonetheless, is an in-
cremental process that is often carried out at runtime. This is
enabled by the highly dynamic and flexible meta-facilities that
Smalltalk is famous for [3], [4], [2].
ClassBuilder is frequently used in ProtoTalk for craft-

ing new classes. Once these generated classes are created,
ProtoTalk uses Squeak’s intercession abilities to incremen-
tally populate them with methods and fields. The following
piece of code shows an example of how these facilities are
exploited in ProtoTalk. This pattern is at the core of most
generative features of ProtoTalk, such as layer, PDU, FSM and
sequence chart definitions. An object whose class is altered,
uses Smalltalk’s become: primitive to adapt itself to the
updated class [4].

(ClassBuilder new) superclass: PDUPrototype
subclass: pduName instanceVaraibleNames: ’’
classVariableNames: ’’ poolDictionary: ’’
category: ’ProtoTalk-PDU’.

pduName addInstVarName: fieldName.
pduName compile: (’init’ + (fieldName) asString +
’ ’ + fieldName asString + ’_’ +
fieldType asString + ’new’)
classified: ’initialization’.

ˆ Smalltalk classNamed: (pduName asString)

Although adding new methods to the classes is sufficient for
most cases, there are still situations in which the source code
of an existing method needs to be modified. This can be
accomplished using Smalltalk’s ability to reify the source code
associated to a method as a piece of text. That text can be
parsed using Smalltalk’s built-in parser and can be modified
either at the source or the abstract syntax tree level. The
following snippet shows how ProtoTalk uses this feature:

pduInitSrc _ self class sourceMethodAt: #initialize.
self class compile: (pduInitSrc + ’ ’ +
’self’ + ’ init’ + (fieldName asString))

classified: ’initialization’.

4. Application Development in ProtoTalk

To evaluate efficacy and expressiveness of ProtoTalk, we
used it to developed a partial prototype of the Session Initiation
Protocol (SIP)’s proxies, as specified in RFC 3261 [17]. In
comparison to our previous experience in design and devel-
opment of network protocols, we found several advantages
in using ProtoTalk. As expected, data units and layers were
noticeably easier to define in ProtoTalk than in such statically-
typed languages as C++. This, as mentioned, is mostly the
result of encapsulation of domain knowledge in the form or
reusable code generators in ProtoTalk. The layer adaptation
facilities in ProtoTalk supports reconfiguration of protocols
for investigating different deployment scenarios. For example,
with just a few edits, one can configure the SIP prototype to
operate on top of an application layer protocol such as HTTP,
instead of its conventional underlying layer, TCP.

Session Initiation Protocol is a standard regulated by Inter-
net Engineering Task Force (IETF) specified in RFC 3261.
The main intent behind the design of SIP is to provide
a standard protocol for creation, modification, management
and termination of sessions amongst participants operating in
networks such as the Internet. The established sessions can
carry various communication payloads including voice and
internet telephony applications, multimedia communication
and network games. SIP relies on entities it refers to as proxies,
which act as mediators between SIP communication ends. A
SIP client usually contacts a Proxy in order to initiate a session
with another client. Proxies can operate in stateless mode,
which does not require maintaining any information about
sessions and clients. The typical interaction between clients
and two stateless proxies is depicted in Figure 8.

The following ProtoTalk specification generates stub code
for the sequence diagram of Figure 8. In addition to the
classes and messages, ProtoTalk can generate code for
the state machines implicated by these message sequence

440

caller:
SIPUCA

callerProxy:
SIPProxy

calleeProxy:
SIPProxy

callee:
SIPUCA

INVITE
INVITE

INVITE

180 RINGIN

180 Ringing

180 Ringing 200 OK

200 OK
200 OK

ACK

BYE

200 OK

Fig. 8. SIP Proxy operations in stateless mode

specifications. More specifically, ProtoTalk inserts properly-
aligned wait-states , pertaining to the messages exchanged
in each step of the communication, into the generated
state machines’ code. For example, caller goes into the
waitForRinging state in the anticipation of a Ringing
signal from callerProxy, after it sends an Invite mes-
sage to callerProxy.

caller _ UCA new state:#OffHookState.
callee _ UCA new state:#OnHookState.
callerProxy_ StateLessProxy new state:#Forwarding.
calleeProxy_ StateLessProxy new state:#Forwarding.
caller sendsMessage:#Invite to:#callerProxy.
callerProxy sendsMessage:#Invite to:#calleeProxy.
calleeProxy sendsMessage:#Invite to:#callee.
calleeProxy sendsMessage:#Trying to:#callerProxy.
callerProxy sendsMessage:#Trying to:#caller.
callee sendsMessage:#Ringing to:#calleeProxy.
calleeProxy sendsMessage:#Ringing to:#callerProxy.
callerProxy sendsMessage:#Ringing to:#caller.
callee waitsFor:#OffHookMsg.
callee sendsMessage:#OK to:#calleeProxy.
calleeProxy sendsMessage:#OK to:#callerProxy.
callerProxy sendsMessage:#OK to:#caller.
caller sendsMessage:#ACK to:#callee.

The SIP RFC comprises a myriad of message types. Pro-
toTalk’s PDU definition features can markedly comfort the
effort involved in prototyping of this protocol by facilitating
denotation of SIP data units. A portion of the PDU definitions
for SIP is demonstrated in the following listing:

sipPDU _ PDUPrototype new name: #SIPPDU.
sipPDU is: #Request or: #Response.
Request is: #RequestLine + #MessageHeaders +
(String crlf) + #MessageBody.

RequestLine is: #Method + ’ ’ + #RequestURI + ’ ’ +
#SIPVersion + (String crlf).

Method is: ’INVITE’ or: 16r41434B "Hex for ACK"
or: ’OPTIONS’ or: ’CANCEL’ or: ’REGISTER’ or: ’BYE’.

MessageHeaders hasMany: #MessageHeader.
MessageHeader is: #Accept or: #AcceptEncoding
or: #AcceptLanguage or: #AlertInfo or: #Allow
or: #AuthenticationInfo "..."

The generated classes are instantiated in the following code
which demonstrates an example interaction with the defined
SIP messages in Squeak’s Workspace:

aSipPDU _ SIPPDU new: #Request.
aSipPDU requestLine method: (Method new: #INVITE).
aSipPDU requestLine requestURI: ’sip:bob@biloxi.com’.
aSipPDU messageHeaders add:
(MessageHeader new: #ACCEPT). "..."

aSipPDU asString.
"Print It>>" ’INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP bigbox2.site3.atlanta.com;
branch=z9hGbK77ef4c2312983.1

5. Related Works

Object oriented and component oriented techniques have
been previously acknowledged as effective methodologies for
specification, design and implementation of telecommunica-
tion protocols [18], [19], [20], [21]. An architecture framework
modeling of telecommunication software is presented in [22].
There has been several attempts in raising the level of abstrac-
tion in different phases of protocol development, ranging from
the specification to the verification phase [23].

Specification Description Language (SDL) [24], designed
and proposed by International Telecommunication Union
(ITU), is a de facto standard in protocol specification. SDL is
employed by many telecommunication standardization bodies
and enjoys an extensive degree of tool support from various
vendors. Promela++ [25] is a superset of C which provides
relatively more abstract constructs for denoting network pro-
tocols. Morpheus [26] is a concurrent domain-specific pro-
gramming language that mostly focuses on the architectural
description of protocols. Abdullah in [27] presents a method
for expressing protocol state machines using a format based
on XML. Using XSLT, appropriate C code can be generated
from an XML specification of a state machine. Barbeau
and Bordeleau present a generative programming approach
based on feature modeling to develop C++ implementation
of protocol stacks from feature models [28].

6. Future Work and Conclusion

In this paper, we introduced ProtoTalk, a generative frame-
work on top of Squeak Smalltalk, designed to facilitate it-
erative and incremental prototyping of network and telecom-
munication protocols. More specifically, ProtoTalk provides
features for the denotation of reconfigurable, layered protocol
stacks, and thereafter populating them with protocol entities.
In addition, ProtoTalk provides facilities for the specification
of state machines, message sequences and protocol data units.
Finally, it supports transparent concurrency at the object level
of granularity using the notion of active objects. The dynamic,
incremental and interactive nature of ProtoTalk first allows for
rapid prototyping of protocols from standards and specifica-
tions, and second provides a test bed for experimenting with
many design alternatives that should be eventually resolved in
the final realization of the protocol.

As a proof of concept, we have used ProtoTalk for partially
prototyping Session Initiation Protocol’s (SIP) proxy units as
specified in RFC 3261. As future work, we envision utilizing
VMMaker, a customizable Squeak-based toolkit that allows
for translating Smalltalk programs into functionally equivalent
C code. This can be an appealing feature for ProtoTalk,
since it combines the performance of the C language and
the expressiveness and productivity of Smalltalk for protocol
design. We believe that in addition to the discussed benefits
of ProtoTalk for incremental prototyping of protocols, it also
sheds light on the potential utility of reflective techniques, as

441

well as the aptitude of the Smalltalk language, for hosting
domain specific frameworks and languages.

References

[1] “Squeak official website,” http://www.squeak.org.
[2] C. S. Ali Razavi, “Smalltalk vs. Ruby: Reflective facilities in contrast,”

http://swen.uwaterloo.ca/ arazavi/mplsa.pdf, 2004.
[3] F. Rivard, “Smalltalk: a reflective language,” in REFLECTION’96, April

1996, pp. 21–38.
[4] B. Foote and R. E. Johnson, “Reflective facilities in Smalltalk-80,” in

OOPSLA ’89: Conference proceedings on Object-oriented programming
systems, languages and applications. New York, NY, USA: ACM, 1989,
pp. 327–335.

[5] D. Garlan and M. Shaw, “An introduction to software architecture,”
Pittsburgh, PA, USA, Tech. Rep., 1994.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995.

[7] A. S. Tanenbaum, Computer networks: 2nd edition. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1988.

[8] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, “Programming languages
for distributed computing systems,” ACM Comput. Surv., vol. 21, no. 3,
pp. 261–322, 1989.

[9] J.-P. Briot, R. Guerraoui, and K.-P. Lohr, “Concurrency and distribution
in object-oriented programming,” ACM Comput. Surv., vol. 30, no. 3,
pp. 291–329, 1998.

[10] G. Agha, Actors: a model of concurrent computation in distributed
systems. Cambridge, MA, USA: MIT Press, 1986.

[11] A. Goldberg and D. Robson, Smalltalk-80: the language
and its implementation. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1983. [Online]. Available:
http://portal.acm.org/citation.cfm?id=273

[12] R. Steigerwald and M. Nelson, “Concurrent programming in Smalltalk-
80,” SIGPLAN Not., vol. 25, no. 8, pp. 27–36, 1990.

[13] Y. Gao and C. K. Yuen, “A survey of implementations of concurrent,
parallel and distributed Smalltalk,” SIGPLAN Not., vol. 28, no. 9, pp.
29–35, 1993.

[14] W. J. Dally and A. A. Chien, “Object-oriented concurrent programming
in CST,” in Proceedings of the third conference on Hypercube concur-
rent computers and applications. New York, NY, USA: ACM, 1988,
pp. 434–439.

[15] Y. Yokote and M. Tokoro, “The design and implementation of concurrent
Smalltalk,” in OOPLSA ’86: Conference proceedings on Object-oriented
programming systems, languages and applications. New York, NY,
USA: ACM, 1986, pp. 331–340.

[16] J.-P. Briot, “Actalk: A testbed for classifying and designing actor lan-
guages in the Smalltalk-80 enviroment.” Nottingham, UK: Cambridge
University Press, 1989, pp. 109–129.

[17] IETF, “Request For Comment 3261: Sip: Session Initiation Protocol,”
http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[18] A. Beugnard, “Communication services as components for telecom-
munication applications,” in Proc. Objects and Patterns in Telecom
Workshop (in ECOOP00), Sophia Antipolis, France, June 2000.

[19] G. Koutsoukos, J. Gouveia, L. F. Andrade, and J. L. Fiadeiro, “Managing
evolution in telecommunication systems,” in Proceedings of the IFIP
TC6 / WG6.1 Third Int. Working Conf. on New Developments in
Distributed App. and Interoperable Systems. Deventer, The Netherlands,
The Netherlands: Kluwer, B.V., 2001, pp. 133–140.

[20] S. Böcking, “Object-oriented network protocols,” in Proceedings of the
INFOCOM ’97. Washington, DC, USA: IEEE Computer Society, 1997,
p. 1245.

[21] A. A. Hanish and T. S. Dillon, “Communication protocol design to
facilitate re-use based on the object-oriented paradigm,” Mob. Netw.
Appl., vol. 2, no. 3, pp. 285–301, 1997.

[22] G. Fregonese, A. Zorer, and G. Cortese, “Architectural framework
modeling in telecommunication domain,” in ICSE ’99: Proceedings of
the 21st international conference on Software engineering. New York,
NY, USA: ACM, 1999, pp. 526–534.

[23] R. Lai and A. Jirachiefpattana, Communication Protocol Specification
and Verification. Norwell, MA, USA: Kluwer Academic Publishers,
1998.

[24] H. D. Ellsberger, J. and A. Sarma, SDL–Formal Object-Oriented Lan-
guage for Communication Systems.

[25] A. Basu, G. Morrisett, and T. Von Eicken, “Promela++: a language
for constructing correct and efficient protocols,” INFOCOM ’98. Seven-
teenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, vol. 2, pp. 455–462 vol.2, Mar-2
Apr 1998.

[26] M. B. Abbott and L. L. Peterson, “A language-based approach to
protocol implementation,” IEEE/ACM Trans. Netw., vol. 1, no. 1, pp.
4–19, 1993.

[27] I. S. Abdullah and D. A. Menasc, “Protocol specification and automatic
implementation using XML and CBSE,” in Proc. of the Int. Conf. on
Comm., Internet and Information Tech., 2003.

[28] M. Barbeau and F. Bordeleau, “A protocol stack development tool
using generative programming,” in GPCE ’02: Proceedings of the 1st
ACM SIGPLAN/SIGSOFT conference on Generative Programming and
Component Engineering. London, UK: Springer-Verlag, 2002, pp. 93–
109.

442

