
Incremental Model Synchronization in Model Driven

Development Environments

Ali Razavi1, Kostas Kontogiannis1,2, Chris Brealey3, Leho Nigul3
1University of Waterloo, {arazavi,kostas}@swen.uwaterloo.ca

2National Technical University of Athens, kkontog@softlab.ntua.gr
3IBM Canada Lab, {cbrealey, lnigul}@ca.ibm.com

Abstract

Most modern model driven software devel-
opment environments rely heavily on model
transformations for generating various software
design artifacts and eventually even source
code. However, during development, mainte-
nance and evolution activities, these software
artifacts are subject to updates and refactoring
operations. In such model driven development
environments, these software artifacts need to
be re-synchronized every time one of them is
altered, so that they all remain consistent ac-
cording to some specific rules, relations and do-
main constraints. Until now, the standard ap-
proach to model synchronization has been the
re-application of all transformation rules, aim-
ing thus for the complete re-generation of all
artifacts in all models involved. This complete
re-application is a safe yet computationally ex-
pensive way to ensure consistency among mod-
els. In this paper, we present a method for
re-synchronizing software models in an incre-
mental fashion by utilizing an indexing model.
In this respect, using the proposed methodol-
ogy, the time required for maintaining global
model consistency is proportional to the size

Copyright c© 2009 Ali Razavi, Kostas Kontogian-
nis, IBM Canada Ltd. Permission to copy is hereby
granted provided the original copyright notice is repro-
duced in copies made.

of the changes and not that of the models in-
volved. The proposed approach has been ap-
plied for the incremental re-synchronization of
large and complex models in the Eclipse Web
Tools Platform (WTP). Results indicate that
this solution can significantly reduce the time
required to re-synchronize models in such com-
prehensive development environments as WTP.

1 Introduction

Throughout their life-cycle, software artifacts
are constantly maintained and evolved. These
artifacts specify different aspects of a software
project including requirements, architecture,
design, and implementation, and therefore are
syntactically and semantically interdependent.
These maintenance and evolution activities are
applied in an incremental way and in iterative
evolution cycles. As such, changes made to one,
impact the others. Modern Integrated Devel-
opment Environments (IDESs) aim to provide
a workspace in which these artifacts can be
programmatically accessed and manipulated.
In this respect, IDEs strive to provide facili-
ties for transparent and effective propagation
of changes across a diverse set of artifacts in
the workspace. These artifacts need to be syn-
chronized when one or more of them is altered
so they all remain consistent according to spe-

216



cific rules, constraints and properties.
Artifact synchronization for modern IDEs has

to be a fast and responsive process. Ideally,
the users should be able to seamlessly reconcile
all the dependent artifacts with the modified
ones. This requires the synchronization pro-
cess to be incremental; meaning that the num-
ber of changes that need to be made to bring
the artifacts into a consistent state should be
proportional to the relative size of the changed
elements and not the total size of the models.
Most of the current tools equipped with model
synchronization rely on non-incremental model
transformation techniques which can be time
consuming for large projects where many mod-
els and artifacts are involved.

A so far neglected, yet imperative case of
model synchronization, deals with situations
in which two or more artifacts are generated
from one another by an existing model trans-
formation. In this context, consistency rules
between these models are embedded and hid-
den in the implementation logic of the model
transformation rules themselves. More often
than not, these model transformations do not
support bi-directional mappings; hence unable
to reflect the modifications made to the tar-
get artifacts back to the source artifacts. Sys-
tematic and automated support for synchro-
nization of models under such conditions uti-
lizing a unidirectional model transformer can
potentially save a significant amount of effort,
which, otherwise, would be required to reverse-
engineer the logic of the generating transforma-
tions, and re-implement these transformations
in a bi-directional and incremental framework.
The solution to this problem becomes more
obscure for generative development processes
which utilize multiple transformations to form
a model driven software development chain.

In this paper we propose a novel method for
incremental synchronization of software arti-
facts when these artifacts are generated using
model driven generative development processes
and environments. The proposed framework
treats its subject transformation as a black-
box. Therefore, other than assuming the trans-
formations to possess some generic properties,
the framework requires no detail knowledge of
the transformation rules. Our proposed scheme
has thus the advantage of saving the often toil-

some effort of re-implementing such transfor-
mations in a new language or framework.

The following diagram illustrates the prob-
lem of model synchronization in a more precise
manner.

M
TGen ��

Δ1

��

N

Δ2

��
M ′ TGen �� N ′

Δ1
Sync �� Δ2

Let TGen be a collection of transformations
that generate a target model N from source
model M , and let Δ1 be a change operation
on model M that yields M ′. Let’s also assume
that models M and N are synchronized, that
is, they are consistent according to some rela-
tion, R. A simple approach to re-synchronizing
M ′ and N is to re-apply all transformations
available in TGen on M ′ to obtain N ′. How-
ever, when M is large enough relative to Δ1,
and/or TGen is computationally expensive, this
complete re-generation approach will not be re-
sponsive enough for modern interactive devel-
opment environments. Furthermore, the com-
plete regeneration of M ′ does not provide any
means for reflecting the changes made to the
target model, N ′, back to the source model,
M ′. As the diagram depicts, a mapping such
as Sync could be used to generate from Δ1 a
sequence of change operations, Δ2, that is ap-
plicable to N , and results in the same model
as N ′ = TGen(M ′) which is consistent with M ′

according to the same relation, R. We say that
Sync is incremental, if the number of elements
in N that Δ2 modifies to obtain N ′ is minimal.

The architecture of our proposed solution is
depicted in the block-diagram diagram of Fig-
ure 1. The crux of our idea is to store the mu-
tual information for all inter-related models in
one place, and refer to them by a unique iden-
tifier across all the heterogeneous models in a
system. To achieve that, we devise a process
called Conceptualization. This process involves
identifying, abstracting, tagging and centraliz-
ing the data encapsulated within a software ar-
tifact into logical entities called Concepts. Re-
lated artifacts share mutual information that
can be linked by concepts. In other words, two
or more inter-related elements which reside in
different artifacts can be made refer to the same

217



Conceptualizer

TransformationInput 
Artifact

Output 
Artifact

ConceptPool

Synchronizer

changes changes

Figure 1: Architecture of the Synchronization
Framework (arrows denote dataflow)

concept by referencing its unique identifier.
Concepts are stored in a centralized location

referred to as Concept Pool. The framework
provides facilities to efficiently trace a concept
from any given position inside a model, to its
corresponding entity in the concept pool and
vice versa. The synchronizer unit listens for
changes in the interrelated artifacts. When a
change occurs, the system updates the values of
the corresponding concepts in the concept pool.
When the models need to be re-synchronized,
the values in the affected concepts in the con-
cept pool are propagated to the model elements
that are indexed by the same unique identi-
fier of the modified element. This propagation
takes the form of value replacement, and can
be carried out in linear time with respect to
the number of elements involved. As the fig-
ure indicates, the synchronizer is able to prop-
agate changes in both directions, notwithstand-
ing the subject transformation’s support for bi-
directionality or lack thereof.

The rest of this paper is organized as follows.
A review of the related work is presented in
Section 2. Section 3 presents the preliminary
information, establishes our used notation and
terminology, and introduces our running exam-
ple. The detail of the proposed methodology
is presented in Section 4. Section 5 discusses
the application of the proposed framework on
Eclipse Web Tools Platform (WTP) [16] and
reports the results of our evaluations. Finally,
Section 6 presents possible avenues for future
work, and concludes the paper.

2 Related Work

The major premise of our work is to avoid
re-implementation of an existing transforma-

tion in another language or framework. This
sets an immediate diverging point between our
approach and that of other incremental syn-
chronization frameworks, majority of which
define some sort of specification mechanism,
whereby an existing transformation has to be
re-implemented. In contrast, we take the
transformation’s implementation as a black-
box, and build the support for incremental syn-
chronization around it, only assuming a few
generic properties about the transformation.

A catalogue of various model synchroniza-
tion schemes is offered in [3]. The paper fo-
cuses on formulating the external behavior of
model transformations. A general classifica-
tion of model transformation frameworks can
be found in [7]. Two features that specifi-
cally concern the problem of model synchro-
nization are bi-directionality and incremental-
ity. The paper introduces several frameworks
that support either or both of these features,
most notable of which is the Object Manage-
ment Group’s Query View and Transformation
(QVT) [5]. QVT proposes the Relation and
the Core languages, both of which capable of
denoting incremental and bi-direction transfor-
mations with different expressiveness and com-
plementary levels of abstraction.

Triple Graph Grammar (TGG) is a graphi-
cal, declarative, incremental and bi-directional
model transformation methodology based on
graph transformation [14]. It has been advo-
cated to be an effective foundation for tool inte-
gration [2]. Beanbag is an emerging framework
which offers a language that supports intra-
relations between models [18]. Our conceptu-
alization scheme also supports intra-relations.

Bi-directional transformations and their ap-
plication in model synchronization have been
investigated by researchers in the programming
languages community. Foster et al. proposed
the Harmony framework based on the notion
of Lenses for bi-directional synchronization [8].
They propose a language in which programs are
inherently bi-directional. The Harmony frame-
work has a state-based perspective on change.
Contrariwise, Alanen and Porres have inves-
tigated syntactic merging, differentiation and
union of structural models in [1] by adopting an
operational and compositional view of changes.

One solution that works with existing trans-

218



formations is SyncATL, proposed by Xiong et
al. in [17]. They have extended the bytecode of
the ATL virtual machine [4], whereby support-
ing automated backward synchronization of
models linked by an ATL transformation. For
the forward synchronization, SyncATL relies
on re-invoking the transformation and merging
the results with the existing target. The pro-
posed technique, however, does not address in-
cremental synchronization at all, as the frame-
work relies on re-executing the transformation
for forward change propagation. The other
drawback of this approach is its tight integra-
tion with a specific technology, i.e. ATL.

Another framework with the theme of build-
ing incremental synchronization around exist-
ing transformation engines is presented in [12].
This time the Tefkat transformation engine,
which has logical programming flavor, is dec-
orated with support for incrementality. In
Tefkat, transformation rules are specified as
logical predicates, and are performed using
SLD resolution. Their synchronization frame-
work avoids redundant computation in succes-
sive transformation of the same model by pre-
serving the intermediate SLD trees. Another
logic based framework which exploits answer
set programming for change propagation is pre-
sented in [6].

In [15], Tratt articulates the spectra of chal-
lenges involved in model driven tool integration
with model transformations being their center-
piece. The paper stresses the importance of
the particularly challenging problem of change
propagation and enumerates the reasons for
inadequacy of solutions based unilaterally on
commonly championed panaceas such as bidi-
rectional transformations or traceability. He
concludes that a comprehensive change prop-
agation scheme, to be pragmatically effective,
should function tractably over the most com-
mon patterns of transformations.

The problem of incremental model synchro-
nization parallels the extensively investigated,
yet in some degrees open, problem of view
maintenance in databases. Two noteworthy
approaches to this problem are presented in
[9] and [11]. The view maintenance problem,
along with the view update problem, have in-
spired software engineers to look at interrelated
software artifacts as essentially different views

of a common database. The bi-directionality
of synchronization can thus be remedied by so-
lutions transpired for the view update prob-
lem, and incremental synchronization becomes
analogous to view maintenance. In spite of
similarities, there are also key differences be-
tween maintaining database views and syn-
chronization of software models that warrant
a distinct research agenda dedicated to the
latter. Briefly, database views are defined in
few, precise view definition languages, upon
which the database community has come to a
unanimous consensus. In comparison, model
transformation frameworks are rather diverse
and immature. Furthermore, the relational
database model denotes flat structures. In con-
trast, models comprise containment hierarchies
which pose a semantic for deletion that can be
peculiar to handle using purely relational tech-
niques.

Finally, CLIME [13] and MView [10] are con-
straint based consistency management frame-
works for incremental maintenance of software
artifacts. These frameworks rely on the exis-
tence of a well-defined set of constraints for en-
suring the consistency of the interlinked mod-
els, and are capable of incremental resolution
of inconsistencies for such cases.

3 Notations and Definitions

Automatic transformations are used in many
software development environments to gener-
ate new artifacts from the existing ones. Web
Services is one such domain that incorporates
various software specifications. For example,
at the very core of Web Service models lies the
web service implementations coded in a pro-
gramming language such as Java, and a ser-
vice description denoted in an XML based for-
mat called Web Services Description Language
(WSDL). In this context, WSDL can be gener-
ated from Java source code via a transforma-
tion, as depicted in Figure 2. When an ele-
ment of the source artifact, such as the name
of the method in this example, is updated, or a
method is added to the source code, the target
file, e.g. WSDL in this case, has to be changed
accordingly. We will use this simplified version
of Java2WSDL transformation and its pertain-
ing source and target artifacts of Figure 2 as

219



package test.dy.proj;
public class SrvImpl {

public String method(String str) {
return str;

}
}

<wsdl:portType name="SrvImpl">
<wsdl:operation name="method">

….
</wsdl:operation>
</wsdl:portType>

Axis
Java2WSDL

Java
SrvImpl.java

WSDL
SrvImpl.wsdl

Figure 2: Generating WSDL from Java Classes

:Definition

:Types

method:
Element

:ComplexType

str:
Element

SrvImpl:
PortType

method:
Operation

Java2WSDL
SrvImpl: 
Class

method: 
Method

str: 
Param

Figure 3: Abstract Models of Java and WSDL

our running example to demonstrate the vari-
ous steps of our generic incremental model syn-
chronization methodology.

In the running example, the source and tar-
get models are respectively in Java and WSDL
formats. To cope with this diversity, our pro-
totype utilizes Eclipse Modeling Framework
(EMF) to programmatically access the models
in a unified environment. The abstracted mod-
els of Java and WSDL artifacts of Figure 2 are
depicted in Figure 3. As shown, the abstract
model of Java code encloses only on the parts of
the original artifact that are pertinent for the
context of the transformation. As a result, the
information regarding the bodies of the meth-
ods, such as variable definition or control flow,
are discarded during abstraction.

For our purpose, model elements are in-
stances of the types defined in a metamodel
that describes their constituting model. They
are information bearing entities that enclose
primitive and complex information in their at-
tributes. They can also have several containers,
each containing other model elements. Model
elements can also reference other model ele-
ments. The following definition captures the
aforementioned characteristics.

Definition 1 Model element m is a tuple
(C, A,R, T ), in which C is the list of containers,
A is the list of attribute values, R is the list of
references, and T is the type of m. Each con-
tainer Ci ∈ C is a list that comprises model el-
ements of certain types. T is a set of mappings
to the elements of the metamodel that uniquely
ascribe types to each fragment of m.

We use the same letters as function names
for projection of individual components of
model elements, that is to say, m =
(C(m), A(m),R(m), T (m)). It should be noted
that the names, types and constraints of the at-
tributes and containers are all specified in the
metamodel and not in the model element itself.
This separation allows for type (and also name)
agnostic manipulation of model elements. Us-
ing this definition, the Java model of Figure 3
is denoted as:

Class = (〈〈Method1〉〉, 〈”SrvImpl”, ”test.dy.proj”〉, ∅, Class)
Method1 = (〈〈Param1〉〉, 〈”method”, ”String”〉, ∅, Method)
Param1 = (∅, 〈”param”, ”String”〉, ∅, Param)

Definition 1 is recursive, since the members of
containment lists are assumed to be model el-
ements themselves. Similar to model elements,
models can also be denoted using Definition 1
by simply assuming that they are the top level
elements of their containment hierarchy.

We use a compositional representation for
change in models, that is, every change op-
eration is expressed as a composition of finer
grained change operators. This requires identi-
fying a number of atomic change operations as
a starting point. We introduced three atomic
change operations that take part in change
composition. Atomic changes, and composite
changes by extension, are defined as math-
ematical functions. The notations used for
each of the atomic changes are listed as follows:

Table 1: Atomic change operations
Signature† Description
� : M×T × (C ∪ N0) �→ M Insert Element
� : M× (C ∪ N0) �→ M Delete Element
� : M× (A ∪ N0) × Σ∗ �→ M Update Attribute
† In the above signatures, M is the set of all model

elements, A is the set of all attributes, T is the set
of all types and C is the set of all containers. Σ∗ is
the set of all valid attribute values.

The semantics of composition is also similar
to that of mathematical functions. For exam-
ple, the following composite change operation
adds a new parameter to the method of the
Java example, and then, updates its name to
“param2”:

�(�(Method1, params,Param), name, ”param2”)

220



4 Incremental Synchronization

4.1 Conceptualization

Concepts are defined as primitive abstract en-
tities that semantically associate two or more
information carrying elements across a pool of
heterogeneous software models. Models con-
sist of model elements, which enclose several
attributes to represent information. A concept,
however, can be even smaller than an attribute
value; attribute values can be composed of mul-
tiple concepts. From this point of view, models
provide organization, structure and semantics
to an amalgamation of concepts by encapsulat-
ing them into various model elements of differ-
ent types.

Furthermore, related artifacts share mutual
information. Conceptualization assists the syn-
chronization of this mutual information in two
major ways. First, concepts provide a sys-
tematic way for tracing the propagation of
transformed data piecemeal, inside and out-
side the boundaries of the artifact in which
they are located. Second, concepts can es-
tablish fine-grained interdependencies between
two or more inter-related artifacts; different el-
ements in multiple artifacts can be forced to
refer to the same concept by referencing its
unique identifier. Conceptualization is the pro-
cess of extracting, indexing, tagging and cen-
tralizing concepts. Concepts are stored in a
database embedded in the development envi-
ronment. This database is referred to as the
Concept Pool.

For the case of the Java2WSDL example, the
dependencies between the source and the tar-
get of the transformation are established using
concepts, as illustrated in Figure 4. Propagat-
ing changes from one model to another in this
scheme takes the form of updating the perti-
nent concepts in the concept pool followed by
fetching the new values to each affected ele-
ment, provided that there exists mechanisms
whereby the system can pinpoint the related
concepts in the concept pool for a given model
element. For example, in Figure 4, if the
method argument name “str” is changed in the
Java model, the framework updates its related
concept in the pool and notifies its dependent
element in the WSDL side, i.e. WSDL message,

to updates its “name” attribute with the new
value. A modification made to the elements of
the target side can also be propagated to the
source side likewise.

4.2 Shadow Models

As mentioned earlier, it is essential to locate
the concepts associated with each model ele-
ment, and also respond to queries about ele-
ments sharing the same concepts. To enable
the latter, an index of identifiers of related
model elements for each concept is stored in
its corresponding entry in the concept pool.
We propose Shadow Models, that is, intermedi-
ate models intended to facilitate answering to
queries about elements sharing the same con-
cepts. Shadow models closely mimic the struc-
ture of the original models. They are, in fact,
produced by exchanging the values of the iden-
tified concepts in the models by their unique
identifiers. Shadow models make accessible the
identified concepts in the concept pool; e.g a
concept entry of an attribute value in the con-
cept pool can be located by obtaining its con-
cept ID from the exact same position of the
attribute in the shadow model.

The algorithm for creating shadow models
is listed below as Algorithm 1. In the algo-
rithm, the value of the model elements that
contain a recognized concept are replaced by
the identifier of said concept. An important
practical note when generating unique concept
identifiers is to ensure that they are still valid
identifiers with respect to the grammar of both
the source and the target artifacts. For the
case of Java, this means that they need to
be constructed using the characters allowed in
the Java grammar and the WSDL schema for
class and method names and also WSDL iden-
tifiers. This requirement is to guarantee that
the Shadow model is a valid artifact of the same
type of the original one, and can be used as in-
put to transformers.

The de-Shadow operation, listed in Algo-
rithm 2, performs the opposite operation of the
Shadow algorithm. That is, it scans through
the shadow artifacts, extracts the patterns for
concept IDs from the attributes of model ele-
ments (an attribute can contain more than one
concept by means of concatenation), it fetches

221



yyXR2SÊ6GÖaö32xf3qË

AFed2R2SŠöaè32xrq2D3

Figure 4: Conceptualization of Java and WSDL models

Algorithm 1 Shadow(M)
Require: Model M = (C, A,R, T ) and

Concept-Pool CP
Ensure: Shadow Model S
1: S ← Clone(M)
2: for all m ∈ S do
3: for all ai ∈ A(m) do
4: �(m, i, CP.getConceptID(ai))
5: end for
6: end for
7: return S

the values of the found concept IDs from the
concept pool, and replaces the IDs with the
values.

Algorithm 2 de-Shadow(S)
Require: Shadow Model S = (C, A,R, T ) and

Concept-Pool CP
Ensure: de-Shadowed Model M
1: M ← Clone(S)
2: for all s contained in M do
3: for all ai ∈ A(s) do
4: id[1..n] ← matchConceptID(ai)
5: v ← ai

6: for j ← 1 to n do
7: cv ← CP.getConceptV al(id[j])
8: v ← replace(v, id[j], cv)
9: end for

10: �(s, i, v)
11: end for
12: end for
13: return M

Figure 5: Shadow/Transform/de-Shadow Pipeline

We insist that shadow artifacts be valid doc-
uments of the same type of the source model,
because we use them as inputs to the trans-
formation to generate shadow models of the
target domain, thereby achieving traceability
through the common concepts appearing in
both shadow models. Figure 5 shows the out-
line of the process of creating target models
using shadow artifacts.

4.3 Synchronization Process

The idea of propagating model dependencies
using shadow models relies on the presump-
tion that, under the course of the transforma-
tion, the unique concept IDs in the shadow
artifact are not subject to manipulations that
make them unrecognizable in the resulting tar-
get shadow model. In other words, the essence
of transformations for which this methodol-
ogy is applicable is re-organization of concepts.
Therefore, the attribute values of model ele-
ments should only be subject to a category of
re-writing operations that do not dismantle the

222



concept IDs. For example, the transformations
are allowed to concatenate two concept values,
or add a prefix (or a suffix) to a concept. Op-
erations such as shuffling the characters of a
concept, cutting some of the letters or anything
else that does not preserve the concept IDs are
not directly permitted. This, however, is not a
major limitation for two reasons. On the one
hand, concepts are defined to be the most prim-
itive and finest grained pieces of information in
a model. With that perspective, a wide range
of meaningful transformations are expected to
simply re-organize these quanta of information
into different encapsulating data types, rather
than tearing them apart. On the other hand,
it is possible to work around these limitations.
In Section 6 we discuss the outlines of an ex-
tension to the framework that allows anomaly
cases of string re-write operations.

As a result of Conceptualization and exploit-
ing Shadow models, we can ensure that the
source of a model transformation and its prod-
uct, the target artifact, are entangled recipro-
cally using their mutual concepts. These con-
cepts are stored in the central concept pool
along with other concepts in the system, and
each is individually and uniquely identifiable
by a universal ID. When one of the attributes
of any of the objects belonging to either the
source or the target artifact is subjected to an
update value modification, essentially the value
of one or more concepts that constitute the
value of that particular attribute are updated
in the concept pool. The affected concepts are
also tagged as modified and the time-stamp of
the latest change is also recorded in the corre-
sponding entry of those concepts in the concept
pool. Two strategies are conceivable for prop-
agating the values of updated concepts to the
other artifacts that carry those concepts. The
first strategy is to disseminate the changes to
all the artifacts which incorporate the affected
concepts. This needs maintaining a list of ref-
erencing artifacts for each concept entry in the
concept pool. The second strategy for the syn-
chronization to be carried on lazily, meaning
that synchronization is invoked for each arti-
fact, only when it is opened or it is focused by
the user. The outline of the synchronization
process that is composed of three Phases, is
listed below.

Change Propagation Process
1 Phase A: Conceptualization
2 Create Models from Artifacts
3 Extract Model Concepts
4 Store concepts in Concept Pool
5 Create Shadow Models

6 Phase B: Artifact Generation
7 Generate Artifact from source Shadows
8 de-Shadow the generated shadow artifact

9 Phase C: Change propagation
10 Upon Change in Source or Target:
11 Update related concepts in Concept Pool
12 For all modified concepts
13 Get the locations of all referencing elements
14 If synchronization strategy is immediate
15 push the changes to all impacted elements
16 else
17 monitor accessing the affected models
18 push the changes when they are opened

In the first phase of the process above, we
set the stage for incremental model synchro-
nization by abstracting the involved software
artifacts as EMF compliant models, creating
unique IDs for the concepts, and compiling
shadow models. In the second phase of the
process, we execute the artifact generations on
the created shadow models, thereby obtaining
the shadow model for the target artifacts. Sub-
sequently, we run the de-Shadow algorithm to
convert the target shadow to the desired target
artifact. Finally, the third phase of the pro-
cess applies the framework whenever a change
operation in one model creates the need of re-
synchronizing with the rest. The framework
traces the modified elements to their concept
entries in the concept pool, and updates the
pertinent values there.

Figure 6 illustrates synchronization of
the Java2WSDL example utilizing the
Shadow/Transform/de-Shadow process. On
the top of Figure 6, lies the Java source code,
which is the input artifact of the Java2WSDL
transformation. The Shadow operation,
depicted as an arrow of the same name,
encapsulates the following operations in the
order given: First, abstraction of the Java code
into the model format (Figure 3). Second,
Conceptualization of the resulting model.
Third, performing Algorithm 1 on the abstract
model. Finally, serializing back the resulting
shadow model into the Java code format. The
result is the shadow code, which, as portrayed
in the figure, is structurally identical with the
original code in the segments that are relevant
to the transformation, save the values of the

223



Axis Java2WSDL

_@jmwmclname : Concept

value = SrvImpl
refID = _@jmwmclname
P1 = Java:/Package/Class/name
P2 = WSDL:/Definition/PortType/name

__cidb__rGDasQ6LÀO6w__cide__

__cidb__rGDasQ6LÀO6w__cide__

deShadow

C tidb GGDGG Q6LÀÀL O6 id

package test.dy.proj ;
public class __cidb__rGDasQ6LÀO6w__cide__ {

public String __ cidb__rGDqgn6LÀO6w__cide__ (String __cidb__rGgjYnEdLÀO6w__cide__ ) {
return null ;

}
}

package test.dy.proj ;
public class SrvImpl {

public String method (String param) {
return param;

}
}
Shadow

hadow

<wsdl:portType name “__cidb__rGDasQ6LÀO6w__cide__ ">
<wsdl:operation name=" __cidb__rGDqgn6LÀO6w__cide__ ">

….
</wsdl:operation>

</wsdl:portType>

<wsdl:portType name ="SrvImpl">
<wsdl:operationname ="method">

….
</wsdl:operation>

</wsdl:portType>

Figure 6: Synchronization by Shadow

concepts which are replaced by their unique
identifiers. Specifically for this transformation,
the bodies of the methods are ignored by the
transformation, hence no manifestation in the
abstract models, and consequently, neither in
the shadow code.

The shadow code is used as the input to
Java2WSDL, whereby yielding the shadow
WSDL. To obtain the target model, Algo-
rithm 2 is run over the target shadow, as il-
lustrated in Figure 6 as the de-Shadow arrow.
Any two related elements in either sides of the
transformation, e.g. the name of the Java class
and that of the WSDL portType, refer to the
same entity in the concept pool and thus have
the same value, inasmuch as the concept IDs
obtained by looking at the same locations of
these elements in their shadows are identical.

It should be noted that the update synchro-
nization aided by concepts and shadow mod-
els is two-way, even if the original transforma-
tion is unidirectional. This is one of the major
benefits of the proposed approach. The syn-
chronization engine only exploits the artifacts,
their shadows and the implicit correspondences
denoted in the concept pool. No further invo-
cation of the original artifact generator is re-

quired in this process. There is no distinction
between the source and target of the transfor-
mation after it is applied initially. It is there-
fore possible that the target of the original
transformation becomes the source of model
synchronization, i.e. the updates that need to
be propagated are made to the model which
was the product of the transformation. The
overall process of synchronization using con-
cepts and shadow models is listed in the follow-
ing. The system allows two possible synchro-
nization strategies. The first strategy is classi-
fied as direct, that is, the framework pushes all
changes to all impacted models as the changes
happen. The second strategy is classified as
lazy, that is, the models are left inconsistent,
and the invalidated elements are updated from
the concept pool, whenever they are accessed
for the first time or when there is an explicit
request for re-synchronization.

A special case that deserves further attention
is when an updated attribute carries more than
one concept. It can be represented by concate-
nation of conceptualized values and prefixes (or
similarly suffixes). For example an attribute
can comprise a fixed prefix, the first name, a
hyphen–which is another invariant segment–

224



and the last name of a person. The first
name and the last name are the conceptualized
and variable segments of the attribute value,
whereas the title and the hyphen are constant.
When the value of such attribute is updated,
the system should sort out the concepts that
are modified and extract the new segmental
values corresponding to those concepts. To de-
tect the altered concepts, the attribute value is
screened against its counterpart in the shadow
model. The fixed segments appear in both se-
quences and are used for aligning concept IDs
and their segmental values.

4.4 Propagation of Insertion

Unlike Update operations, Insertion and Dele-
tion operations are structure altering changes.
Propagation of insertion and deletion induced
changes for an arbitrary model transformation
can be multifaceted and complex. This com-
plexity can fortunately be addressed by assum-
ing that the transformation has certain proper-
ties, namely, continuity and monotonicity. The
former is to guarantee that the transformation
is not sensitive to any particular instance model
in its domain, but rather it transforms them all
uniformly. The latter requires the change op-
erations to have similar effects on both sides.
These two properties seem to be valid for a
wide range of model transformations used in
practice..

Model elements, according to Definition 1,
have containers, which can be inter-dependent
across multiple models. In other words, the
dependency of element types can be viewed
as dependency between the containers of those
types. This interpretation of dependency links
implicitly requires that insertion of an element
to one container (only) result in addition of el-
ements in its inter-dependent containers. We
assume that, Insertion (and similarly Deletion)
homogeneously results in Insertion (and respec-
tively Deletion) type of changes in other inter-
related containers. We refer to this property
of transformations as monotonicity. If inser-
tion of an element results in update or deletion
type of changes in the target model, then the
transformation is non-monotonic.

Furthermore, we assume that inducing an ele-
ment into a container follows a uniform pattern

of insertions that is independent to the number
of elements inside said container. For example,
addition of the third parameter to a method
does not trigger a different pattern of changes
in its inter-dependent containers, than does the
addition of the second parameter for that mat-
ter. We call this property of transformations
continuity and such transformations are called
continuous.

Although these two assumptions may seem
too restraining, in practice they are in compli-
ance with the majority of artifact generators.
In fact, the space of transformations that com-
mon relational frameworks such as QVT, TGG,
Tefkat etc. are capable of expressing are also
continuous and, for the most part, monotonic.
The explicit definitions of the transformation
rules that happen to violate either of these two
assumptions have to be known. The proposed
framework allows for extension points inside
the concept pool for incorporating such rules,
so as to achieve complete synchronization.

The proposed methodology for the propa-
gation of Insertion involves deliberately in-
jecting each container in the shadow model
with a dummy placeholder element called a
μ-template. These template-injected shadow
models are thereafter used as input to the ar-
tifact generation process, and, as a result, the
μ-templates will be transformed and instanti-
ated as target artifacts.

More specifically, using μ-templates, the tar-
get artifact is generated with an additional
hypothetical new element. When an actual
insertion change to a container takes place,
the added element replaces the available μ-
template in the container. In other words, this
μ-template is consumed into an actual element
in the source artifact and a new unsubstanti-
ated μ-template is inserted to accommodate fu-
ture insertions.

In other words, in this process we a priori as-
sume the possibility of having an additional el-
ement to be inserted in the future for each con-
tainer, and reserve in advance an appropriate
structure and space (i.e. the μ-template) for
such elements in the container. When needed,
we use these reserved places for adding a new
element to the containers they reside in, by up-
dating the values of their attributes and render-
ing them as visible.

225



µInject

SrvImpl: 
Class

method: 
Method

str: 
Param

µ:
Method

µ:
Param

µ:
Param

SrvImpl: 
Class

method: 
Method

str: 
Param

Figure 7: Injecting μ-templates

Consuming the reserved space of μ-templates
prohibits the opportunity for adding more el-
ements to the container in the future; sim-
ply because each container only had one extra
space. Therefore, to continue supporting inser-
tion of new elements into the container, it is
important to create a new reserved space be-
fore consuming the available μ-template. The
second assumption enables us to provide a new
μ-template by simply duplicating the old one
and assigning new concepts to it and so on.

To better demonstrate how Insertion induced
changes can be propagated by utilizing μ-
templates, we proceed with the example sce-
nario of synchronizing an insertion of a method
argument to the Java side with its correspond-
ing WSDL model. The process is illustrated
in Figures 7, 8, 9 and 10. The first step
of the process is injecting μ-templates into the
containers of the source artifact. To disguise
this amalgamation from the user and make the
synchronization as transparent as possible, μ-
templates are in fact injected into the Shadow
models right after their creation. Shadow mod-
els, as discussed, closely mirror the structure of
an artifact and are hidden from the user. Fig-
ure 7 shows (the shadow of) an abstracted Java
code for a web service on the right hand side.
On the left, the same Java model is shown after
it is populated by μ-templates. As the figure il-
lustrates using dashed lines, in every container
in the model, an extra element is injected.

As stated previously, the shadow of the source
artifact, instead of the artifact itself, is used to
generate the target artifact. The same steps
are essentially involved for synchronizing In-
sertion changes, with the addition of inject-
ing the source shadow model with μ-templates.
Figure 8 shows the shadow model of the Java

Java2WSDL

µ:
Element

µ:
Element

µ:
Complex
Types

µ:
Element

µ:
Operation

SrvImpl: 
Class

method: 
Method

str: 
Param

µ:
Method

µ:
Param

µ:
Param

:Definition

:Types

method:
Element

:ComplexType

str:
Element

SrvImpl:
PortType

method:
Operation

Figure 8: Transformation of μ-templates

abstraction populated with μ-templates, and
its resulting WSDL model which includes μ-
templates in several places. μ-templates are
discerned from normal elements by having all
the concepts they encapsulate marked as μ-
template in the concept pool. In other words,
any model element that hosts a μ-template
concept is a μ-template, and therefore, shall
not have a manifestation in the target model.
This requires a slightly different de-Shadow al-
gorithm to check and skip over elements that
contain concepts flagged as μ-template.

When an element is inserted in one of the
containers of the source artifact, the first step
is to conceptualize the new element, i.e. ex-
tracting the concepts that appear in the new
model element. This is realized by consuming
the μ-template that had been provided for in-
sertion of new elements in the container. The
μ-template is turned into a normal element by
essentially removing the μ-template flags from
all its concepts’ entries in the concept pool.
When consumed, μ-template concepts’ IDs re-
main intact. The synchronization framework,
when encounters such concepts in other mod-
els, deduces that they belong to the consumed
μ-template concepts. The container of the con-
sumed μ-templates need to be populated by
new μ-templates to allow for further insertion
of model elements. Therefore a new μ-template
is created and injected into the container. Fig-
ure 9 illustrates the steps involved during in-
sertion of a new element dubbed as consuming
a μ-template.

In order to synchronize the target model with
the modified source model, the de-Shadower
is reapplied on the target shadow model. As
mentioned, the μ-template concepts were con-

226



Duplicating a 
µ-Template

SrvImpl: 
Class

method: 
Method

str: 
Param

µ:
Method

µ:
Param

µ:
Paramarg2: 

Param

SrvImpl: 
Class

method: 
Method

str: 
Param

µ:
Method

µ:
Param

µ:
Paramµ:

Param

SrvImpl: 
Class

method: 
Method

str: 
Param

µ:
Method

µ:
Param

µ:
Param

Consuming a
 µ-Template

to add a param

Concept Pool

arg2str µ

Concept Pool

str µ

Concept Pool

str µ µ

Figure 9: μ-template Consumption

µ:
Element

µ:
Element

µ:
Complex
Types

µ:
Element

µ:
Operation

:Definition

:Types

method:
Element

:ComplexType

str:
Element

SrvImpl:
PortType

method:
Operation

µ:
Element

µ:
Element

µ:
Complex
Types

µ:
Element

µ:
Operation

:Definition

:Types

method:
Element

:ComplexType

str:
Element

SrvImpl:
PortType

method:
Operation

arg2:
Element

Concept Pool

arg2str µ

Concept Pool

arg2str µ

Figure 10: Propagating Insertion

verted to normal elements in the concept pool
at consumption time, i.e. when the source
model was subjected to insertion. Therefore,
the de-Shadower, when reinvoked over the tar-
get shadow model, would no longer discard
these elements and will render them in the out-
put model, as demonstrated in Figure 10. Sim-
ilarly to the source model, a new μ-template
needs to be placed in the container to enable
further insertion of elements in it. Unlike the
source model, providing a new μ-element to the
target model involves a few more steps than
simply duplicating the former μ-element and
adding brand new concepts to it. In particu-
lar, the dependency links between the new μ-
template and the one that was just inserted
in the source model have to be established by
making them reference the same concepts. To
achieve that, we need to find out the concept
IDs that are assigned to the newly created μ-
template in the source model, when the old μ-
template was consumed. As usual, our medium
for communicating such information is the con-
cept pool. Therefore, this can be enabled by
providing pointers in the entries of consumed
μ-template concepts in the concept pool to the
new concepts created for the new μ-template.
For example, in Figure 9, when the μ-template
is consumed and its value is updated to “arg2”
in the concept pool, it points to the concept as-
sociated with the newly created μ-template in

its container. The target side is only aware of
the consumed μ-templates’ IDs, since the new
ones were not present in the model at the time
of transformation. However, the de-Shadow al-
gorithm follows these pointers for each concept
to reach the new μ-template’s concept IDs.

Using μ-templates, we have reduced the prob-
lem of propagating Insertion to an already
solved problem of propagating Update.

4.5 Propagation of Deletion

Deletion is handled simply by hiding model ele-
ments whose concepts are tagged with the spe-
cial flag deleted in the concept pool. For exam-
ple, when the parameter of a method is deleted
from the source code, all the concepts of its cor-
responding element in its abstract model are
tagged as deleted in the concept pool. When
synchronization is carried out on other models,
the framework simply conceals the elements,
any of whose concepts are flagged as deleted in
the concept pool.

When considering containment, propagating
deletion changes raises some ontological issues.
More specifically, we need to recognize the
existential causality relationships between the
model elements in order to properly identify the
elements that have to be purged as a result of a
deletion change. The semantics of containment
relationship provides useful guidelines for such

227



reasoning. Briefly, deletion of a containment
results in purging all its contained elements
and, consequently, their constituting concepts.
When performing inter-model change propaga-
tion, all the elements whose any concepts are
flagged as deleted will be flagged as deleted like-
wise.

5 Experiments and Evaluation

For the evaluation of the proposed framework,
we have designed a prototype which we ap-
plied it for the incremental synchronization
of models in the Eclipse Web Tools Platform
(WTP). WTP encompasses several types of
software artifacts each having different for-
mat and schema. Furthermore, it extensively
uses transformations for converting these ar-
tifacts to one another. One such transforma-
tion, which we have used throughout this pa-
per for presentation, and also for conducting
our assessments, is Java2WSDL. Java code is
a textual file that is parsed into an Abstract
Syntax Tree (AST), and is compiled into a
binary class file. In contrast, WSDL is an
XML document that conforms to the WSDL
schema, which is specified in the XML schema
format. Moreover, because of its extensibility
type definitions, which are XML schema ele-
ments, the type definition part of WSDL con-
forms to XML Schema for XML Schema (the
meta-meta-model of XML).

Figure 11 compares the execution time of syn-
chronization against that of re-transformation
of increasingly larger Java classes, i.e. with
more methods, and their resulting WSDL files.
The Y (i.e. elapsed-time in seconds) axis is
outlined in logarithmic scale. This graph also
shows the framework’s setup time, that is, the
time spent to initialize the framework and cre-
ate the shadow models. It is evident that the
time cost of synchronization is almost inde-
pendent of the models’ sizes; contrary to the
time required for regeneration, which acutely
increases as the size of the input model grows.
From the graphs in Figure 11, we observe that a
Web Service system exposing close to ten thou-
sand methods (a quite excessive figure for prac-
tical systems) is taking approximately 1000 sec-
onds to regenerate all the models using all the
available transformation rules (top line), while

Figure 11: Performance Evaluation(Log Y-Axis)

the time to perform the initial setup and to in-
crementally synchronize the models is approx-
imately 6 seconds and 8 seconds respectively.

The Java2WSDL transformation, in fact,
ranges over multiple input files. This situa-
tion arises when one Java class references an-
other class through methods’ argument types
or return types. In such cases, Java2WSDL
also creates type definition for the referenced
class in the WSDL file. To further assess the
performance of our synchronization framework,
we utilized this aspect of the transformation
as an instance where the complexity of the
subject transformation also progressively in-
creases. Figure 12 shows the result of syn-
chronization for hierarchies of multiple Java
beans and their corresponding WSDL. The
setup time is higher than the previous exper-
iments, albeit still markedly faster than re-
generation. This difference is predominantly
due to the relatively high overhead of file I/O
in Eclipse workspace, and the fact that the
experiment with multiple beans naturally in-
volves many more such operations. The re-
sults in this Figure indicate that for a system
composed on 512 beans the complete regener-
ation takes approximately 300 seconds while
the setup time for the incremental synchroniza-
tion process takes approximately 150 seconds.
Once the setup process is complete, then syn-
chronization due to insertion and undate in-
duced changes takes almost constant time of
less than 10 seconds. Nevertheless, the setup
process takes place only once at the beginning,
so, in effect, it does not slow down the synchro-
nization phase.

The extra space required by the shadow mod-

228



Figure 12: Performance for multiple beans

Figure 13: Shadow files space overhead

els is reported in Figure 13. As the figure de-
picts, the space overhead of shadow models and
μ-templates tends to be on the same order of
magnitude of the size of the models, hence it
does not pose any limitations on the system.

6 Conclusion and Future work

In this paper, we propose a novel method for
incremental synchronization of software arti-
facts. Our technique differs from the previous
undertakings primarily in the fact that it uses
the original artifact generators as black boxes.
As such, other than some generic assump-
tions about the type of the transformations, it
needs no detailed knowledge of the consistency
rules. In contrast to the approaches based on
incremental transformation engines, our pro-
posed model synchronization framework nei-
ther needs denotation of transformations in a
new language, nor it requires the transforma-
tions to be re-executed after they are used for
the initial creation of the target models. The
framework even when used in conjunction with

unidirectional artifact generators, is capable of
propagating updates in the opposite direction
of that of the used artifact generator. The
synchronization scheme results in models that
comply with the original transformation.

The proposed approach is based on a pro-
cess we refer to as Conceptualization. This
process extracts the mutual information of two
or more inter-related artifacts and stores them
in a central concept pool. Shadow Models are
used as input to the transformations for provid-
ing effective traceability between concepts and
model elements in interlinked models. We uti-
lize the technique to provide instant and incre-
mental propagation of Update induced changes
between models. To support incremental syn-
chronization of Insertion induced changes, we
also propose the notion of μ-templates, some
localized place holders in the shadow models.

Treating transformations as black-boxes has
the advantage of eliminating the cost associ-
ated with reverse engineering of consistency
rules between software artifacts. However, the
proposed solution, even though covering a wide
spectrum of practical model transformations,
is limited by the concept preservation assump-
tion made for the case of update changes, and
also by continuity and monotonicity assump-
tions made for insertion propagation. The idea
of concept pool is nonetheless extensible. In ad-
dition to plain values, concepts can be allowed
to assume embedded rules defined in an exten-
sion language for explicit denotation of concept
dependencies inside the concept pool. For a
given transformation, we partition its domain
into segments that comply with the assump-
tions, as well as singularity areas that need spe-
cial treatment. We can leverage such embed-
ded rules to also automate the synchronization
of the singularity areas in the transformation’s
domain along side the regular segments. We
are currently integrating this extension into the
framework.

Further improvements to the conceptu-
alization process can be achieved through
automated meta-model comprehension. We
plan to utilize knowledge representation
techniques such as formal concept analysis to
enhance that stage of our framework, and to
apply the framework for the re-synchronization
of software models in Integrated Development

229



Environments such as RSA.

Acknowledgement
This work is supported by an IBM Center for
Advanced Studies Fellowship.

References

[1] M. Alanen and I. Porres. Difference and
union of models. UML 2003 PROCEED-
INGS, pp. 2–17, 2003.

[2] C. Amelunxen, F. Klar, A. Königs, T.
Rötschke, and A. Schürr. Metamodel-
based tool integration with MOFLON.
In 30th Int. Conf. on Software Engineer-
ing (ICSE’08), pp. 807–810, Leipzig, Ger-
many, May 2008.

[3] M. Antkiewicz and K. Czarnecki. De-
sign space of heterogeneous synchroniza-
tion. In R. Lämmel and J. Visser, editors,
GTTSE’07, LNCS. Springer, 2008.

[4] ATL. Specification of the ATL Virtual
Machine version 0.1. LINA and INRIA,
Nantes, France, 2005.

[5] MOF QVT final adopted specifi-
cation, Nov 2005. OMG document
ptc/05-11-01.

[6] A. Cicchetti, D. Di Ruscio, and R. Eramo.
Towards propagation of changes by model
approximations. In EDOCW ’06: Enterp.
Dist. Object Computing Conf. Worksh.,
page 24, Washington DC, USA, 2006.

[7] K. Czarnecki and S. Helsen. Feature-
based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3):621
– 45, 2006/07/.

[8] J. N. Foster, M. B. Greenwald, J. T.
Moore, B. C. Pierce, and A. Schmitt.
Combinators for bidirectional tree trans-
formations: A linguistic approach to the
view-update problem. ACM Trans. Pro-
gram. Lang. Syst., 29(3):17, 2007.

[9] T. Griffin and L. Libkin. Incremental
maintenance of views with duplicates. pp.
328 –, San Jose, CA, USA, 1995.

[10] J. Grundy, J. Hosking, and W.B. Mu-
gridge. Inconsistency management for
multiple-view software development envi-
ronments. IEEE Transactions on Soft-
ware Engingeering (TSE), 24(11):960 – 81,
1998/11/.

[11] A. Gupta, I. S. Mumick, and V.S. Sub-
rahmanian. Maintaining views incremen-
tally. volume 22, pp. 157 – 166, Washing-
ton, DC, USA, 1993.

[12] D. Hearnden, M. Lawley, and K. Ray-
mond. Incremental model transformation
for the evolution of model-driven systems.
volume 4199 LNCS, pp. 321 – 335, Gen-
ova, Italy, 2006.

[13] S.P. Reiss. Incremental maintenance of
software artifacts. IEEE Transactions on
Software Engineering (TSE), 32(9):682 –
97, Sept. 2006.

[14] A. Schürr. Specification of graph transla-
tors with triple graph grammars. volume
903 of LNCS, pp. 151–163, Herrsching,
Germany, June 1994.

[15] L. Tratt. Model transformations and tool
integration. Journal of Software and Sys-
tems Modeling, 4(2):112–122, May 2005.

[16] Eclipse Webtools Platform Project
http://www.eclipse.org/webtools/

[17] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M.
Takeichi and H. Mei. Towards automatic
model synchronization from model trans-
formations. In ASE’07: Proceedings 22nd
conf. on Automated Software Engineering,
pp. 164–173, New York, 2007.

[18] Z. Hu, M. Takeichi, H. Song, H.
Mei, Y. Xiong, H. Zhao. Bean-
bag: Operation-based synchronization
with intra-relations. Technical Report
GRACE-TR-2008-04, Tokyo, Japan.

230




