
Report on Evaluation Experiments Using Different
Machine Learning Techniques for Defect Prediction

Marios Grigoriou
Dept. of Computer Science

Western University
London, ON. Canada

mgrigori@uwo.ca

Kostas Kontogiannis
Dept. of Computer Science

Western University
London, ON. Canada

kostas@csd.uwo.ca

Alberto Giammaria
IBM

IBM Austin Laboratory
Austin TX. USA

agiammaria@us.ibm.com

Chris Brealey
IBM

IBM Toronto Laboratory
Toronto ON. Canada
cbrealey@ca.ibm.com

Abstract—With the emergence of AI, it is of no surprise that
the application of Machine Learning techniques has attracted the
attention of numerous software maintenance groups around the
world. For defect proneness classification in particular, the use
of Machine Learning classifiers has been touted as a promising
approach. As a consequence, a large volume of research works
has been published in the related research literature, utilizing
either proprietary data sets or the PROMISE data repository
which, for the purposes of this study, focuses only on the use of
source code metrics as defect prediction training features. It has
been argued though by several researchers, that process metrics
may provide a better option as training features than source code
metrics. For this paper, we have conducted a detailed extraction
of GitHub process metrics from 150 open source systems, and
we report on the findings of experiments conducted by using
different Machine Learning classification algorithms for defect
proneness classification. The main purpose of the paper is not
to propose yet another Machine Learning technique for defect
proneness classification, but to present to the community a very
large data set using process metrics as opposed to source code
metrics, and draw some initial interesting conclusions from this
statistically significant data set.

Index Terms—Machine learning, software maintenance, defect-
proneness, experiments, data set, open source systems.

I. INTRODUCTION

The problem of classifying a file as failure prone or not has
attracted the attention of the software engineering community
early on. Early approaches focused on the use of software
metrics to compute maintainability and software health indexes
[19] [20]. These approaches were based on the compilation of
linear or non-linear formulas to yield maintainability indexes
which were assumed to be associated with the overall health of
a component or a system. In this respect, the assumption was
that a higher maintainability index would indicate a software
component (function, method, file, or module) that has a low
probability of exhibiting a failure. As research progressed in
this field, the software engineering community experimented
with approaches focusing on the static and dynamic analysis
as well as the analysis of project data, such as the number,
type and time interval between bug fixes [24] [25]. These
approaches utilized statistical analyses and heuristics to ex-
perimentally yield predictions related to the fault-proneness
of a software component. However, over the past few years,
research in this area has decisively shifted towards the use of

Machine Learning (ML) techniques. These techniques aim to
first identify a collection of source code related and process
related features which can serve as classiffiers for fault-
proneness, and second apply these features for training ML
models using a variety of ML algorithms (see Section II). Once
such models are trained they can be used to classify whether
a newly seen software component is defect prone or not.

The challenge that arises using such ML techniques is that
they yield models which perform as black boxes and do
not provide any explanation on how their results have been
reached, as they are purely dependent on the training data set
provided, and the ML algorithm used. Another challenge that
arises is when ML models are trained on source code metrics
alone. Large software systems are rarely implemented using
a single programming language and are often composed of a
collection of different frameworks, configuration scripts and
dynamically linked components. That makes the extraction of
accurate source code metrics an almost impossible task. On
the contrary, process related metrics can be extracted quite
accurately and easily from various DevOps tools such as
GitHub, Jira, Jenkins, and Slack.

This paper aims to shed light on two major issues.The first
issue is to identify, through the use of process metrics and
extensive experimentation, the technique, or the combination
of techniques and features, that best classify whether a soft-
ware component (i.e. file) can be considered defect prone
or not. The second issue is whether process metrics can be
used instead of source code metrics and whether these can be
used to train models that yield similar of better classification
results in a single project or across projects. These issues are
formalized by the following research questions:

RQ1: By using a very large set of open source projects
to experiment with, which is the best combination of
classifiers which are fast, easily trainable and able to
yield the best results as these are measured in terms of
accuracy, precision, recall, F1, and AUC?

RQ2: What is an optimal subset of available process metrics
which can be easily calculated and at the same time
yield the best results when provided as input to different
classifiers?

RQ3: Is it possible to perform defect-proneness classification
using process metrics while maintaining classification
performance measures comparable to similar techniques
reported in the literature which use source code metrics?

RQ4: Is it possible to perform cross project defect proneness
classification in the sense that data from different projects
can be used to train a model which will then be used to
perform defect proneness prediction on other unknown
projects for which not enough training data may be
available?

For this paper we take an experimental approach, aiming
to draw conclusions by applying the techniques under exam-
ination to a very large collection of open source projects.
More specifically, we have considered a collection of 150
open source systems from which we have extracted various
process metrics utilising a custom-made extraction tool. The
open source projects were selected based on their complexity,
size, prevalence, and the quality and availability of process
repository data. The importance of the work reported in this
paper lies on two parts. First, in the best of our knowledge, it
is the first work which utilises such a large data set, providing
thus a much more statistically significant result than previously
reported works, and second providing answers to research
questions which can assist researchers advance the state-of-
the-art in the area.

The paper is organised as follows. Section II presents
related work. Section III discusses the features and the feature
extraction process. Section IV presents the different Machine
Learning techniques which we have evaluated. Section V
presents the results obtained, while Section VI discusses and
interprets the obtained results. Finally, Section VII concludes
the paper and offers pointers for future work.

II. BACKGROUND

In the related literature there is a wealth of approaches for
defect prediction using Machine Learning techniques. Two
widely-used defect prediction techniques are regression and
classification. The main purpose of regression techniques is
to estimate the number of software defects on a software
component. In contrast, classification techniques aim to tag
whether a software module is faulty or not. It has been shown
that classification models can be trained from defect data on
earlier versions of the system being analyzed. Some of the
most commonly used supervised learning techniques for defect
prediction are outlined below.

Decision Trees (DT): Decision tree algorithms use tree
structures to model decisions and their possible consequences.
In decision trees each leaf node corresponds to a class label
while attributes are represented as internal tree nodes.

Logistic Regression (LR): Logistic regression is a supervised
classification algorithm whereby the target variable O (i.e
output), can take on values in the interval [0, 1] representing
the probability for a given set of input features I to belong to
class 1 or 0.

Random Forest (RF): RF is an ensemble type of learning
method used for both classification and regression problems.
The key idea behind RF is the construction of several decision
trees at training time and outputting the mode/mean prediction
of the individual trees.

Support Vector Machine (SVM): SVM is a discriminative
classifier formally defined by a separating hyperplane. In
SVMs, given a labeled training data set whereby each data
item is marked as belonging to one or the other of two
categories, the algorithm outputs an optimal hyperplane, which
classifies new unseen data in one of these two categories.

k-Nearest Neighbors (k-NN): k-NN is a non-parametric
method that can be used for both classification and regression
problems. In both cases, the input consists of the k closest
training examples in a feature space. The output depends
on whether k-NN is used for classification or regression. In
classification, the output is to categorize an input to one of
equivalence classes. In regression, the output is to assign a
value to the input, usually the average of the values of its
closest k-neighbors.

Naive Bayes Classifiers (NB): These classifiers refer to a
family of simple ”probabilistic classifiers” based on applying
Bayes’ theorem and by considering a strong independence
assumption between features, that is the presence or absence
of a particular feature of a class is not related to the presence
or absence of any other feature.

Neural Networks (NN): Neural Networks are nonlinear
predictive structures that consist of interconnected processing
elements called neurons that work together in parallel within
a network to produce output, often simulating an unknown
function or phenomenon.

Multi-layer Perceptron (MLP): MLPs refer to a class of
feedforward artificial neural network (ANN). An MLP com-
prised of a directed graph of multiple layers of nodes which
are fully connected to the nodes of the next layer. For training
purposes, MLP utilizes a supervised learning technique defined
as backpropagation.

Radial Basis Function (RBF) Networks: RBF Networks are
a type of ANNs used to approximate through training the value
of an unknown function. They are different from MLPs in the
sense that they are feedforward networks comprising of only
three layers, the input layer, the hidden layer and the output
layer.

A. Defect Prediction using Machine Learning

A variety of machine learning methods have been proposed
and assessed for addressing the software bug prediction prob-
lem. These methods include decision trees [4], neural networks
[8], [12], Naive Bayes [7], [11], [17], support vector machines
[6], Bayesian networks [16] and Random Forests [9].

1) Source CodeMetrics Approaches: Deciding whether a
component has a high likelihood to be defective or not has
been proved to have a strong correlation with a number of
software metrics. Identifying and measuring software metrics
is vital for various reasons, including estimating program

execution, measuring the effectiveness of software processes,
estimating required efforts for processes, estimating the num-
ber of defects during software development as well as mon-
itoring and controlling software project processes [21] [22].
Various software metrics have been commonly used for defect
prediction, including lines of code (LOC) metrics, McCabe
metrics, Halstead metrics, and object-oriented software met-
rics. Hence, the automated prediction of defective components
from extracted software metrics evolved as a very active
research area. [36]. In [14], Nagappan aims to find the best
code metric to predict bugs. The conclusion of this work is
that complexity metrics can successfully predict post-release
defects, but there is no single set of metrics that is applicable
to all systems. Hassan et. al have investigated the impact of
different aspects of the modelling process to the end results
and the interpretation of the models [28] [29] [30] [31] [40].

2) Process Metrics Approaches: In [10], Venkata et. al
compared different machine learning models for identifying
faulty software modules and they found that there is no par-
ticular learning technique that performs the best for all the data
sets. In [5], Wang and Yao aim to find bugs without decreasing
the overall performance of the model. In this process, they find
that imbalanced distribution between classes in bug prediction
is the root cause of its learning difficulty. Likewise, in our
paper, we noted the issue and used re-sampling as described in
detail in the section IV-C in an effort to minimise the impact of
class imbalance to the quality of our results. Similarly, in [15],
Zimmermann et. al propose an approach to predict bugs on
cross-language systems. The work examined a large number of
such systems and concluded that only 3.4% of the systems had
precision and recall prediction levels above 75% . The authors
also tested the influence of several factors on the success of
cross-language prediction and concluded that there was no
single factor which led to such successful predictions. The
authors used decision trees to train the model and to estimate
precision, recall, and accuracy before attempting a prediction
across systems. Lastly, in [13], Hassan discusses how frequent
source code “commits” in the repository negatively affect the
quality of the software system, meaning that the more changes
incurred to a file, the higher the chance that the file will contain
critical errors. Furthermore, the author in [13] presents a model
which can be used to quantify the overall system complexity
using historical code-change data, instead of plain source code
features.

III. DATA MODELING

For the purposes of this study we have designed two
separate data models. The first data model denotes the raw
information which can be mined from software repositories,
while the second data model denotes the post-processed raw
data which are in a form that can be consumed by the machine
learning algorithms we have experimented with.

The design goal of the first data model was to have a
structure which would be easy to populate while maintaining a
low memory profile, would facilitate data reconciliation of data

Fig. 1. Data Model for Raw Repository Data

entries originating from different devOps tools (e.g. GitHub,
Jenkins, Jira), would be scalable, and would be able to support
preprocessing workflows of varying complexity at high speeds.
The schema for this data model is depicted in Fig. 1.

The design of the second data model was to have a simple
relational structure which can be easily imported as a tab or
comma delimited file in various machine learning tools and
which can be easily manipulated so that aggregate features can
be easily computed. The features in this second data model are
depicted in Table I.

A. Raw Data Model

For this study we have exhaustively collected process related
metrics from 150 open source systems of various sizes and
complexities. The list of the systems along with all the data
obtained or computed are listed in the anonymous repository
[23].1 The profile of the data set we have considered is
depicted in Table II. The data acquisition process is based on
two steps. The first step is to utilize a custom made client-side
extractor tool which is able to connect to and reconcile data
obtained using various tools and namely GitHub, Bugzilla,
Jira, and Jenkins. However, for this study we report results
on data acquired only from the GitHub repositories of these
150 open source systems. The second step of the raw data
acquisition process is to fuse the information extracted by each
repository record into one repository which conforms to the
raw data schema depicted in Fig. 1. The extractor application
and its data fusion module is implemented using Python 3.

1Please note that the repository is anonymous for the time being, in order
to protect the double blind review process and to facilitate the assessment
of this work by the reviewers. Please do not distribute or use without prior
arrangements with the authors.

As depicted in Fig. 1, the raw data model is founded on the
concept of a Commit, the concept of a File, and the concept of
a CommitProperties. The extracted information is represented
as a Json file stored in a Mongo DB server. As such, a run-
time model of a GitHub repository was created which held
the information of the unique commit records. Every commit
contained a list of fileChanges and the details for each of these
files’ change. This data model represents a GitHub record
structure utilizing simple Python 3 objects which have a very
low memory profile and initialization time.

In this data model a commit is uniquely identified by it’s
commitID, it contains attributes specific to it, including the
author, the commit-time, the files committed as these are
denoted by their FileIds, a commit message, the overall lines
added, deleted as well as a tag field maintaining information
about whether the Commit’s status is indicated as a bug fixing
or as a clean Commit. For each File within a commit, the
added, and deleted lines as well as the current size of the
file are maintained. Storing the fileID is necessary since in
case of a file changing locations the fileID remains the same
even if the file changes name (the names are fully qualified
names with respect to the root folder of a project). In addition
to the version control model, another important component
of this extractor system is the issue tracker component. This
component is far simpler. It is a simple object maintaining a
specific issueID together with the issue tag its message and its
referenced commitIDs. The data model is populated by initially
downloading a complete repository from the corresponding
GitHub site and then moving through each commit on the
master branch adding the relative data iteratively in it, thus
maintaining the initial structure. Once the model is populated
it undergoes several steps of preprocessing. The first task is
to remove all files that cannot contribute to a defect, such
as any non-compilable and non-configuration related files.
The next task is to use a simple heuristic to clean up the
extracted commits so that only actual code changing commits
remain. This entails removing all commits that are clearly
annotated as a refactoring commit, and also removing all
files which have been eventually removed from the system
from all past commits. Finally all merge commits are also
removed since they contain change information pertaining to
different branches and will therefore introduce large ammount
of noisy data points to the dataset. Given that this study
is not focusing on defect introducing software changes, the
removal of refactoring and merge commits from the dataset
will not impact its ability to discern between faulty and healthy
files. After the cleanup stage is completed, the most important
remaining task is that of assigning the class label for each
commit. This task is accomplished by parsing the commit
message for terms that may indicate that it is a bug-fixing
commit as opposed to a clean one, linking commits to issue
tracker entries labeled as faults and optionally, applying the
same parsing as above to the issue tracker messages. The
heuristic terms used to tag a commit as a bug-fixing one
are presented in Section IV-B below. This is an approach
for automatically generating datasets for such applications

TABLE I
FEATURES USED FOR SYSTEM TRAINING

F1: NoOfCommits (CF) F2: LateNightCommits (LNC)
F3: TotalAddedLines (TAL) F4: MaxAddedLines (MAL)
F5: AvgAddedLines (AAL) F6: TotalDeletedLines (TDL)
F7: MaxDeletedLines (MDL) F8: AvgDeletedLines (ADL)
F9: TotalChurn (TCF) F10: MaxChurn (MC)
F11: AvgChurn (AC) F12: TotalCoCommitSize (TCS)
F13: MaxCoCommitSize (MCS) F14: AvgCoCommitSize (ACS)
F15: TotalDistinctAuthors (TDA) F16: AgeInMonths (AIM)
F17: FractalValue (FRV) F18: FailureIntensity (FI)

which has been known to work in the related literature [26].
This approach however has the potential to produce a high
number of false positives in the dataset because of the commit
granularity level at which it is applied. This is due to the fact
that some commits may be only partially defective leading to
wrong labels for the non-defective part [39]. In this case the
entirety of the commit and its modifications are annotated as
bug-fixes, which is not acceptable for commits that contain a
significant percentage of a systems’ files.

B. Post-Processed Data Model

Once the raw data are extracted they are post-processed
in order to yield a data model suitable for input to various
Machine Learning classification tools. Table I provides a list
of the features considered for our study.

C. Explanation of the Features

The FractalValue [27] provides a measure for the contribu-
tion of different authors to a file. It can take any value in the
range (0, 1] where a value of 1 means that a file has had a
single author whereas a value close to 0 means that the file
has had similar contributions from multiple different authors.
TotalCoCommitSize for a file Fi in a system S is the count
of all files Fj ∈ S which have been committed alongside Fi,
counting multiple occurrences of the same files.

IV. MACHINE LEARNING FRAMEWORK

In this section we discuss the machine learning algorithms
used and technical details on how training and testing were
conducted for this study.

A. Machine Learning Models Considered

For our experiments we have considered six different clas-
sification algorithms, and namely (1) Logistic Regression; (2)
Support Vector Machines; (3) Multi-Layer Perceptron; (4)
Decision Trees; (5) Random Forests and; (6) Naı̈ve Bayes.
The selection of these algorithms is based on the fact that
these are the algorithms most commonly used in the related
literature [38], [35], [36] [37].

Each of the aforementioned algorithms comes with its own
benefits and drawbacks. The most important benefit was the
speed at which these can be trained and evaluated while the
most important drawback of all approaches except for Logistic
Regression was the lack of explainability. Nevertheless, the
combination of these algorithms is currently the de-facto
standard in the related literature as base classifiers [36] [38].

B. Commit Tagging

As discussed in Section III-B the raw data repository is
considered as a container of commits. Each commit is tagged
in the repository as a bug fixing commit or a clean commit.
This tagging is based a) on the label of the GitHub commit
record itself, or in the absence of such a label by analyzing
the comments section of the commit record. More specifically,
if the comments section of the commit record contains any of
the keywords ’bug’, ’bugs’, ’defect’, ’defects’, ’error’, ’errors’
’fail’, ’fails’, ’failed’, ’failing’, ’failure’, ’failures’, ’fault’,
’faults’, ’fix’, ’fixes’, ’fixed’, ’fixing’, ’problem’, ’problems’,
’wrong’ which may indicate a bug fixing intention, then the
commit is tagged as a buggy commit (label 1), otherwise as a
clean commit (label 0).

C. File Tagging

In its turn, a commit is considered itself as a container of
files. If a commit is tagged as a bug fixing one (see above),
then all the files in the commit are also tagged as buggy.
This is a heuristic that can introduce many false positives,
but unfortunately in the absence of a gold standard this is the
best approximation and it is also a heuristic which is used in
most papers appearing in the related literature [26]. In our data
model each file also contains details about the contribution of
that file to the commit in terms of the lines of code added or
deleted as a percentage of the overall number of lines of code
added or deleted in the commit.

In the related research literature there is no authoritative
set of tagged files which can serve as a gold standard. The
only such data set is PROMISE which relates only to source
code metrics and does not include process metrics. We have
identified an intersection of 11 projects available in PROMISE
[33] which have a tagging (buggy or clean) and for which we
can extract process metrics. We have used these 11 projects
to answer research question Q3.

As most of the 150 systems which we have considered for
this study are open source systems the operational life of which
spans several years, we have split the commits into two eras.
The rationale behind this split is that very old commits (e.g.
commits which may be several years old) should not bear
significant weight to the overall computation. The first era
consists of the past 70% of the commits and the second era of
most recent 30% of the commits. The experimentation set-up
proceeds then as follows.

Feature Entries
Let Fi,j =< m1,m2,,m18 >i,j denote a feature value

vector entry for file Fi participating in commit Cj , where mk

is the value of a feature fk k ∈ {1, 2, ..18} (see Table I) related
to file Fi in commit Cj .

Let also Fi,S = < v1, v2, ..., v18 >i,S be the feature value
vector entry for file Fi across all commits Cj , Cj ∈ S, in
which Fi appears in, and where each value vp, p ∈ {1, 2, ..18},
is obtained by combining all correcponding mp’s appearing in
feature value vector entries Fi,j .

Let us also assume that the commits C1 C2, ... Cj−1 =
S1 belong to the first era of 70% of commits and Cj Cj+1,
... Cn = S2 belong to the era of the most recent 30% of
system commits. Then the resulting feature value vector, for
all commits S = S1 ∪ S2 containing changes for this file Fi,
will be Fi,S = Fi,S1∪S2 will be << v1, v2, ..., v18 >i,S1 , <
v1, v2, ..., v18 >i,S2>.

Tagging Process
If a commit Ck appearing in the most recent 30% of

the system commits has been identified as a bug fixing
commit then the metrics vector for Fi,k is also tagged as
buggy and is then denoted by the feature value vector
< m1,m2,,m18,1 >i,j . The resulting feature vector
accross all system commits S in which Fi participates is
<< v1, v2, ..., v18 >i,S1 , < v′1, v

′
2, ..., v

′
18 >i,S2 ,1 >>, where:

S1 is the set of all commits Cn Fi participates in and appearing
in the past 70%, and S2 is the set of all commits Ck Fi

participates in, and are appearing in the most recent 30% of the
system commits and at least one such Ck has been identified
as a bug fixing commit.

If all commits Ck for a file Fi which appear in the last
30% have been tagged as a clean commit then the feature
value vector Fi,k is < m1,m2,,m18,0 >i,k, and the
overall feature vector used is << v1, v2, ..., v18 >i,S1 , <
v′1, v

′
2, ..., v

′
18 >i,S2 , 0 >> where: S1 is the set of all commits

Cn, Fi participates in, and are appearing in the past 70%,
and S2 is the set of all commits Ck Fi participates in, are
appearing in the most recent 30% of the system commits and
each such Ck has been identified as a clean commit.

If for a file Fi all of its commits Cn appear in the
past 70% of the system commits (i.e. in the first era), then
the feature value vector, is < v1, v2, ..., vn, DC >i,S1 , <
NULL,NULL, ...NULL >i,∅>> (where DC stands for
”Don’t care” value) and where: S1 is the set of all commits
Cn, Fi participates in, and are appearing in the past 70%.

Example
As an example, consider the file F10 which appears in

commits C5, C50, and C1000 where C5, C50 belong to the
first era (past 70%) while C1000 belongs to the recent 30%
and is tagged as a bug fixing commit. Then the file F10 will
have the following feature vector:

<< v1, v2,, v18, >
10,{5,50},

< v1, v2, ..., v18, 1 >10,{1000}>>

and which is produced by aggregating the feature value
vectors:

< m1,m2, ...,m18, DC >10,5

< m′1,m
′
2,,m

′
18, DC >10,50

< m′′1 ,m
′′
2 ,,m

′′
18, 1 >10,1000

The post processed data model is essentially a relational
table where each line in the table is the feature vector entry
of the file < v1, v2,, v18, Tag >i,S .

The obtained results are then the data considered on this
study in order to answer questions Q1 – Q4.

Rebalancing
In the related research literature rebalancing is applied in

order to avoid overfitting classifiers or other ML models to
the majority class. Likewise we used the random oversampling
technique [2] to tackle this threat, accepting that it may con-
tribute to drift bias in the generated models [29]. The technique
involves randomly selecting instances from the minority class
with replacement before the training stage, to create a new
set of the minority class’ instances which will resemble in
cardinality that of the majority class.

D. Training and Test Set Data and Bias

Once we have calculated the feature vector entries for each
file, we follow the 80-20 split rule for testing and training,
and we consider all the entities in the post processed data (i.e.
entries from the fisrt and second era of the commits). This
was done so that the produced results will be comparable to
the studies published in the relevant research literature [18].
Aiming at reducing the effect of outliers across all 150 systems
considered, we trained and applied a scaler on the training data
to decrease the effective range of all feature values, and also
applied rebalancing on the minority and majority classes as
explained in Section IV-C.

E. Evaluation and Performance metrics

The norm for extracting meaningful results from ML models
is the use of the stratified k-fold cross validation technique
[18]. The bootstrap and leave-one-out validation techniques
were also used to provide a better understanding of how the
models would perform during the application of the trained
model. The performance metrics used in this study are the
ones most frequently mentioned in the literature [29] [32].
In total, 7 different performance measures were calculated
for each one of the variations of the technique and namely
precision, recall, accuracy, F1-score, Brier-score, Receiver-
operator-characteristic/area-under-curve, and where possible,
support. In the context of academic research it has been argued
that an overall high F1-score as well as a high area-under-
curve are good indicators to identify whether a classifier is a
successful one or not. Given, however, that F1 is a combination
of Precision and Recall, it means that a satisfactory value
for it is not necessarily the result of an optimal combination
of it’s constituent values. However, in industry, it is often
preferred to maintain high precision even at the expense of
recall. The rationale is that investigating false positives may
require significant effort, or may result to the prediction system
not being easily adopted by developers.

V. EVALUATION STUDIES

In this section we present the details of the studies we have
conducted for answering the research questions Q1 - Q4. As
stated, some basic statistics of the 150 open source projects
considered, are depicted in Table II.

TABLE II
PROJECT STATISTICS

Project Size Avg. LOC No. of Avg. Age Avg. No.
(in files) Projects (in years) of Commits

148,740 – 20,000 15 MLOC 4 13 77,230
19,999 – 10,000 2.3 MLOC 4 11 18,870

9,999 – 5,000 1.3 MLOC 5 14 13,400
4,999 – 2,000 500 KLOC 18 10 7,288
1,999 – 1,000 457 KLOC 12 15 13,906

999 – 500 231 KLOC 26 10 3,900
499 – 200 86 KLOC 32 9 2,213
199 – 12 50 KLOC 47 9 1,325

A. Study 1: Identification of Best Classifiers

The first study aims to identify through experimentation
the combination of the best classifiers to be used for defect
prediction (classification). Our study here is by far not the
first study of its kind. In [36] the authors have reviewed
various research approaches and concluded that the best results
are consistently given by the application of simple modelling
techniques such as Logistic Regression and Naive Bayes.
Similarly, the authors in [34] reported that the best features
to use are owner experience, overall developer experience,
owner contributed lines, minor contributor count, and distinct
dev count of which only the last one is used in this approach.
However, to our knowledge the study in this paper is the first
of its kind in that it uses a) a very large, comprehensive, and
statistically significant sample of 150 systems in a quest to
obtain conclusive results in the topic, and b) repository process
metrics as opposed to source code metrics which as mentioned
above do not require the use of specialised parsers and source
code metrics calculators.

1) Study Set-up: For this study we have obtained fea-
ture vector entries collected from post-processing raw data
extracted from 150 GitHub [1] repositories, as discussed in
Section III-A and Section III-B. The Data were split into
k-folds to apply k-fold cross validation were k=5. For each
of the folds the training data had to be rebalanced as most
projects exhibit uneven numbers of fault-prone over healthy
files. The rebalancing was performed by oversampling the
minority class. The data were also normalized in order to
map feature values to be in the range of 0 and 1. This was
done by utilising a scaler utility available in Python while the
testing data were scaled using the same scaler model. Finally
the training data were used for training and the remaining for
testing over 5 folds and the results extracted depict the average
of the score extracted for each fold.

2) Obtained Results: Due to space limitations, we only
report the highlights of the obtained results. The full results
list can be found on the data repository accompanying this
paper [23]. For this study we have used all the combinations
of the following classifiers: Decision Trees (DT), Random
Forests (RF), Linear Regression (LR), Multi-Layer Perceptron
(MLP), Support Vector Machines, and Gaussian Naive Bayes

TABLE III
RESULTS OF CLASSIFIER COMBINATIONS

Classifier Accuracy Range AUC Range F1 Range
Combination Median Accuracy Median AUC Median F1

Avg. Accuracy Avg. AUC Avg. F1
0.7 - 1.0 0.61 - 1.0 0.0 - 1.0

DT LR RF 0.89 0.85 0.81
0.89 0.85 0.75
0.69 - 1.0 0.64 - 1.0 0.0 - 1.0

DT GNB LR MLP RF 0.88 0.85 0.79
0.88 0.86 0.75
0.61 - 1.0 0.64 - 1.0 0.0 - 1.0

DT GNB MLP RF SVM 0.87 0.85 0.79
0.88 0.85 0.75
0.61 - 1.0 0.61 - 1.0 0.0 - 1.0

DT GNB LR MLP RF SVM 0.87 0.84 0.77
0.87 0.85 0.74
0.65 - 1.0 0.62 - 1.0 0.0 - 1.0

DT GNB LR RF SVM 0.87 0.84 0.77
0.87 0.85 0.74
0.61 - 1.0 0.63 - 1.0 0.0 - 1.0

LR MLP RF 0.87 0.85 0.79
0.87 0.86 0.75
0.65 - 1.0 0.65 - 1.0 0.0 - 1.0

DT LR MLP RF SVM 0.87 0.86 0.79
0.87 0.86 0.75
0.57 - 1.0 0.62 - 1.0 0.0 - 1.0

DT LR MLP 0.87 0.86 0.79
0.87 0.86 0.75
0.53 - 1.0 0.6 - 1.0 0.0 - 1.0

LR MLP RF SVM 0.86 0.85 0.78
0.87 0.86 0.73
0.65 - 1.0 0.65 - 1.0 0.1 - 1.0

MLP RF SVM 0.86 0.85 0.79
0.87 0.86 0.74
0.57 - 1.0 0.62 - 1.0 0.0 - 1.0

DT LR MLP SVM 0.86 0.85 0.77
0.87 0.85 0.73
0.65 - 1.0 0.64 - 1.0 0.0 - 1.0

GNB LR MLP RF SVM 0.86 0.85 0.78
0.87 0.86 0.74
0.65 - 1.0 0.6 - 1.0 0.0 - 1.0

DT GNB LR MLP SVM 0.86 0.85 0.78
0.87 0.86 0.74
0.61 - 1.0 0.65 - 1.0 0.0 - 1.0

DT MLP SVM 0.86 0.86 0.79
0.87 0.86 0.74
0.65 - 1.0 0.65 - 1.0 0.0 - 1.0

LR RF SVM 0.86 0.84 0.77
0.86 0.86 0.74
0.61 - 1.0 0.64 - 1.0 0.1 - 1.0

MLP 0.85 0.85 0.78
0.86 0.86 0.74
0.53 - 1.0 0.6 - 1.0 0.0 - 1.0

DT LR SVM 0.86 0.85 0.77
0.86 0.86 0.73
0.61 - 1.0 0.59 - 1.0 0.04 - 1.0

GNB LR MLP 0.86 0.84 0.77
0.86 0.85 0.73
0.57 - 1.0 0.63 - 1.0 0.0 - 1.0

GNB MLP SVM 0.85 0.85 0.77
0.86 0.86 0.73
0.61 - 1.0 0.63 - 1.0 0.1 - 1.0

LR MLP SVM 0.85 0.85 0.77
0.86 0.86 0.74

(GNB). These combinations in all 150 projects produced 9,324
individual results. The summary of these results are depicted
in Table III.

The results indicate that if the Accuracy criterion is to be
considered first amongst the top ranked combinations with
respect to AUC, and F1 score, then the best combination of
classifiers across all projects are the DT LR RF, followed
by the DT GNB LR MLP RF. Furthermore, this observa-

TABLE IV
AUC FOR THE 10 BEST CLASSIFIER COMBINATIONS COMPARED TO

BUGGY/CLEAN RATIO RANGE

Classifier Avg. F1 and Avg. F1 and Avg. F1 and
avg. AUC for avg. AUC for avg. AUC for
B/C ¡ 0.25 B/C = [0.25 - 0.5) B/C ≥ 0.51

DT LR RF
0.55
0.87

0.74
0.85

0.84
0.85

DT GNB LR MLP RF
0.55
0.87

0.74
0.85

0.84
0.85

DT GNB MLP RF SVM
0.55
0.87

0.74
0.85

0.84
0.85

DT GNB LR MLP RF SVM
0.55
0.87

0.74
0.85

0.84
0.85

DT GNB LR RF SVM
0.55
0.87

0.74
0.85

0.84
0.85

LR MLP RF
0.55
0.87

0.74
0.85

0.84
0.85

DT LR MLP RF SVM
0.55
0.87

0.74
0.85

0.84
0.85

DT LR MLP
0.55
0.87

0.74
0.85

0.84
0.85

LR MLP RF SVM
0.55
0.87

0.74
0.85

0.84
0.85

MLP RF SVM
0.55
0.87

0.74
0.85

0.84
0.85

tion becomes more pronounced for projects for which the
Buggy/Clean file ratio is more that 0.5 (see Section VI).
The best combination of classifiers as grouped by the ratio
Buggy/Clean files is depicted in Table IV.

B. Study 2: Identification of Best Features

This part of the study aims to identify the optimal combina-
tion of features that can be used for creating defect proneness
classification models. This kind of research has been carried
out in past work [34], where the authors have proposed
and used different combinations of process metrics features
and investigated their significance, stability, staticness and
portability as well as their performance for defect prediction.

1) Study Set-up: For this study the classifier used was
the DT LR RF which was identified as optimal as shown in
Table III, and was applied on all possible combinations of
the features. For the evaluation of the trained models the k-
fold cross validation with k=5 was used. The extracted results
represent the average over the 5 folds. Rebalancing was used to
equalise the instances pertaining to the minority and majority
classes, and scaling applied to normalise the data points as
to facilitate a better fitting of the models to the data prior to
training. The testing data were not rebalanced but the same
scaling was applied to them as well.

2) Obtained Results: Due to space limitations we report the
summary of the obtained results for all projects, per feature
combination in Table V. For this study we have used all
combinations of the following Features: Number of Com-
mits Feature(CF), Total Distinct Authors (TDA), Total Churn
Feature (TCF), and Total CoCommits Size (TCS). These
combinations in all 150 projects produced 2,220 individual

TABLE V
RESULTS OF FEATURE COMBINATIONS

Feature a. Accuracy Range a. AUC Range a. F1 range
Combination b.Median Accuracy b. Median AUC b. Median F1

c. Average Accuracy c. Average AIC c. Average F1
0.68 - 1.0 0.58 - 1.0 0.0 - 1.0

CF TCF TCS TDA 0.89 0.86 0.8
0.89 0.86 0.76
0.7 - 1.0 0.55 - 1.0 0.0 - 1.0

CF TCF TCS 0.89 0.85 0.81
0.89 0.85 0.75
0.63 - 1.0 0.59 - 1.0 0.0 - 1.0

CF TCS TDA 0.88 0.85 0.8
0.88 0.85 0.76
0.66 - 1.0 0.6 - 1.0 0.0 - 1.0

CF TCS 0.88 0.85 0.81
0.88 0.85 0.76
0.72 - 1.0 0.64 - 1.0 0.0 - 1.0

TCF TCS TDA 0.88 0.84 0.8
0.88 0.84 0.75
0.7 - 1.0 0.55 - 1.0 0.0 - 1.0

TCF TCS 0.87 0.82 0.78
0.87 0.83 0.73
0.6 - 1.0 0.46 - 1.0 0.0 - 1.0

TCS TDA 0.88 0.83 0.79
0.87 0.84 0.74
0.73 - 1.0 0.6 - 1.0 0.0 - 1.0

CF TCF TDA 0.86 0.83 0.78
0.87 0.83 0.72
0.62 - 1.0 0.5 - 1.0 0.0 - 1.0

CF TCF 0.85 0.81 0.76
0.86 0.82 0.71
0.69 - 1.0 0.61 - 1.0 0.0 - 1.0

TCF TDA 0.85 0.8 0.75
0.85 0.81 0.7
0.5 - 1.0 0.6 - 1.0 0.13 - 1.0

CF TDA 0.84 0.81 0.77
0.85 0.82 0.71
0.33 - 1.0 0.4 - 1.0 0.13 - 1.0

CF 0.82 0.8 0.75
0.84 0.81 0.69
0.47 - 1.0 0.44 - 1.0 0.0 - 1.0

TCS 0.84 0.79 0.71
0.83 0.79 0.67
0.63 - 1.0 0.5 - 1.0 0.0 - 1.0

TCF 0.82 0.76 0.69
0.83 0.77 0.65
0.39 - 1.0 0.4 - 1.0 0.07 - 1.0

TDA 0.8 0.81 0.73
0.81 0.81 0.68

results. The full results list can be found on the data repository
accompanying this paper [23].

C. Study 3: Comparison of Process and Source Code Metrics

This study aims at performing a comparison between the
efficiency of using Source Code Metrics versus using Process
Metrics for carrying out Fault-Proneness prediction. It is
carried out on a subset of data made available for software
engineering research as part of the PROMISE repository [33].

1) Study Set-up: All combinations of the available clas-
sifiers were used for this experiment and the Feature com-
bination used was the one identified as optimal in Section
V-B. To select the subset of systems on which to conduct this
study we manually investigated the contents of the PROMISE
repository to identify projects for which a valid Git repository
is still available. Given the age of the repository and it’s
specific structure this process yielded only 11 systems for

which process metrics could be mined. For these 11 systems
the data between the PROMISE dataset and our system were
reconciled. The reconciliation process consisted of only using
data pertaining to files present both in data extracted from Git
repositories and in the PROMISE dataset. In addition, the files
had to be active with at least a single commit in the latest 30%
of the total commits of the system. The files’ classes were set
from the manually curated PROMISE dataset. The process
used afterwards is the same as in Sections V-A and V-B.
The data were rebalanced in both cases and independently
scaled. The process presented so far was designed to give
both approaches an equal ammount of data and to be easily
replicated by other researchers. The evaluation of the models
was implemented using k-fold cross validation where k=5 for
each of the approaches, Source-Code Metrics and Process
Metrics respectively, and the presented results depict the
average over all 5-folds of this evaluation.

2) Obtained Results: Due to space limitations, we report
here the highlights of the obtained results. The full results
list can be found on the data repository accompanying this
paper [23]. For this study a voting classifier was utilised using
all combinations of the following classifiers: Decision Trees
(DT), Random Forests (RF), Linear Regression (LR), Multi-
Layer Perceptron (MLP), Support Vector Machines(SVM),
and Gaussian Naive Bayes(GNB). The Features used were:
Number of Commits Feature(CF), Total Distinct Authors
(TDA), Total Churn (TC), and Total CoCommitsSize Feature
(TCS) for extracting process metrics and all features available
were used from the PROMISE dataset. This process was
applied on 11 projects and yielded a total of 756 results for
each metric type. The results are shown in Table VI.

D. Study 4: Cross Project Validation
For this study, we have trained the classifiers in a collection

of projects (training set) and we have applied them to another
set projects (testing set) for comparing the obtained results
with the ones obtained when the classifiers are trained and
applied only in one project.

1) Study Set-up: For this study the optimal classifier iden-
tified in Section V-A and the optimal feature combination
identified in Section V-B were used. To prepare the data we
filtered the available systems selecting only those having less
than 20K and more than 250 files and then split these into three
performance classes using the ratio of fault-prone over healthy
files in the system. This yielded a total of 26 projects with a
B/C ratio in the interval [0, 0.25), 20 projects with a ratio in
the interval [0.25, 0.5) and 44 projects with a B/C ratio ≥
0.5 (see also Table IV). These groups were then divided into
two randomly selected groups, and one group was used for
training a model while the other group was used for evaluation.
Given the uneven size of the different systems it was necessary
to upsample the data available for each one of them so as
to have all projects represented approximately equally in the
training set and avoiding it being dominated by the largest
systems. Rebalancing of the minority and majority classes was

TABLE VI
PROCESS METRICS VS SOURCE CODE METRICS

Classifier Combination Process Metrics Source Code Metrics
Avg. F1 Avg. F1
Median F1 Median F1
Avg. AUC Avg. AUC
Median AUC Median AUC

DT GNB RF

0.8
0.93
0.77
0.74

0.58
0.58
0.67
0.63

DT MLP RF

0.81
0.93
0.77
0.76

0.6
0.61
0.67
0.65

DT RF SVM

0.81
0.93
0.75
0.74

0.6
0.62
0.67
0.65

RF

0.8
0.93
0.79
0.76

0.59
0.61
0.66
0.63

DT LR RF

0.81
0.92
0.76
0.77

0.61
0.61
0.68
0.65

DT GNB MLP RF SVM

0.8
0.84
0.75
0.73

0.59
0.59
0.68
0.65

DT GNB LR MLP SVM

0.79
0.82
0.75
0.75

0.59
0.59
0.68
0.67

GNB LR MLP RF SVM

0.79
0.82
0.76
0.74

0.58
0.6
0.68
0.66

DT LR SVM

0.79
0.82
0.75
0.74

0.58
0.6
0.65
0.65

SVM

0.79
0.82
0.76
0.75

0.57
0.59
0.65
0.64

carried out on the upsampled data separately for each project to
provide the training algorithm with equal ammounts of positive
and negative instances. In this study there was no reason to
use the k-fold cross validation technique as the evaluation of
the trained model happened on other systems than the ones
used for training.

2) Obtained Results: For this study a total of 45 results
were obtained one for each system used for testing. Due to
space limitations we report here a summary of these results.
The full set of results can be found in [23]. The results are
presented in a condensed form and grouped by faulty over
healthy ratio in Table VII.

VI. DISCUSSION

A. General Observations

The first observation is that each software system is unique,
and there is no single best classifier which can be used to
provide accurate defect proneness classification results for all
projects. What we have observed is that a classifier or a col-
lection of classifiers can produce high performance scores (i.e.

TABLE VII
CROSS PROJECT WITH REBALANCING

Cross Cross Cross
vs. vs. vs.

Own Own Own

B/C Value Avg. Accuracy
Accuracy Median

Avg. AUC
AUC Median

Avg. F1
F1 Median

B/C < 0.25 0.75 vs. 0.60
0.81 vs. 0.63

0.77 vs. 0.94
0.78 vs. 0.94

0.4 vs. 0.63
0.43 vs. 0.64

B/C ∈ [0.25,0.5) 0.69 vs. 0.76
0.74 vs. 0.76

0.73 vs. 0.86
0.76 vs. 0.86

0.62 vs. 0.78
0.66 vs. 0.77

B/C ≥ 0.5
0.73 vs. 0.86
0.74 vs. 0.84

0.75 vs. 0.88
0.74 vs. 0.85

0.76 vs. 0.85
0.77 vs 0.84

high accuracy, high F1, and high AUC) for one project, and
poor scores on another (see also “No Free Lunch Theorem”
[3]).

The second observation is that we were not able to identify
a feature, or a collection of features, that guarantee (i.e. with
certainty) that such a classifier or a set of classifiers can be
trained to always yield high performance scores. The only
measure we have found to be a very good indicator of quality
results is the Buggy/Clean ratio, where in the vast majority
of cases, if a project has a Buggy/Clean ratio ≥ 0.5 it is
almost certain that there exist a classifier or a combination of
classifiers which can produce F1 and AUC scores higher that
0.85. This essentially means that classifiers work best when the
data (number of buggy vs. clean files) are balanced. Classifiers
on projects with Buggy/Clean ratio values less than 0.2 almost
certainly perform poorly.

The third general observation is that there is a need to devise
techniques for accurate tagging (i.e. to assign a buggy or clean
label to a file) to be used for training purposes. The heuristics
used so far in the literature and in this study, may introduce
many false positives for training, skewing thus the obtained
results. Furthermore, there is a need to devise techniques for
introducing a temporal effect on the data, meaning that distant
past commits should carry less weight than recent commits.

Overall, ML shows to be an interesting technique for defect
proneness classification but we have not reached a point yet
to identify how these classifiers can be trained effectively to
yield trustworthy results for an arbitrary given project.

B. Detailed Observations

For research question RQ1: The combinations of classifiers
which included one or more tree-based models performed on
average better than any other combination of classifiers. This
may have to do with the nature of the problem which lends it-
self more naturally to a binary type of classification (i.e. Buggy
or Clean) in which tree-based classifiers may perform better.
We can say that combinations of classifiers which include
Decision Trees and Random Forests, on average, outperform
other combinations. Having said that, our observation is that
there are no guarantees that these classifiers will perform as
well when applied to a new arbitrary project, but there is a
higher likelihood they will.

For research question RQ2: By examining the obtained
results the features having the highest probability of generating

high quality results is the combination of all four features,
followed by the combination of CF (number of commits) and
TCS (total co-commit size) and TCF (total churn). However,
looking at the minimal set of features which can be used and
still produce high quality results is any combination of two
of CF (number of commits) and TCS (total co-commit size)
and TCF (total churn). Another observation is that the TDA
(total distinct authors) feature on its own does not provide high
quality results, but only when combined with other features.

For research question RQ3: Here we can say that process
metrics seem to outperform the source code metrics for defect-
proneness classification purposes. This is an encouraging
observation as process metrics are language agnostic and their
compilation does not require specialised parsers and metrics
extractors. This result was anticipated, as software metrics may
more often exhibit a variability in values over the different
commits while the files maintain their tag value (i.e. Buggy or
Clean), and vice versa, that is metrics may more often exhibit a
variability in values over the different commits while the files
change their tag value. This property may generate conflicting
data for the classifier. In contrast, process metrics may exhibit
a variability too, but maintain a better type of “history” feature
values as the project evolves.

For research question RQ4: Here our observation is that
cross project classifier training and application does not yield
high quality results. When classifiers are trained in some
projects and applied to other projects the classification results
are not as accurate as when the classifier is applied to the same
project as the one it is trained on. This may be explained from
the fact that the profiles of process metric values are kind of
project specific as they depict the history of the project and the
activity on each file. This is an interesting result, as it disputes
the case of one trained model fits all.

C. Threats to Validity

We identify three threats. The first threat has to do with the
way tagging is performed in order to create a training set. For
our study we consider for tagging purposes the most recent
30% of the commits, while we maintain historical information
from the past 70% of commits. For the feature value vectors
of the distant past 70% of the commits we are either providing
a DC value or no value (e.g. see Section IV-C). This creates
the potential for false positives to be generated during tagging.
The second threat has to do with how files are tagged within
a single commit. For this study, if a file participates on a bug
fixing commit then we consider all files in the commit as
buggy. This is an overestimate and introduces the possibility
of false positives. The most accurate approach would be to
be able to tag all files in all commits in the history of the
project with their correct label. However, this would be almost
impossible for such large projects we have considered in the
course of this study. It would be though a valid approach for
new projects, where accurate labeling can commence on early
stages of the project. The third threat has to do with the used
features. Since the purpose of the study was to provide results
from a large data set and not to propose new features, we

have considered features which are commonly used in the
research literature. There may be other features which relate to
process metrics and which the community has not considered
yet, which may produce good defect proneness classification
results. This can also be considered an open problem for
further investigation.

VII. CONCLUSION

This paper reports on the results of a set of experiments
conducted in order to evaluate the use of Machine Learning
for defect proneness classification. Over the past few years we
have seen a tremendous growth on research and publications
related to Machine Learning for software maintenance, and
in particular for defect proneness classification and defect
prediction. Even though there is a significant body of work
conducted on evaluating Machine Learning techniques for
defect proneness classification, the significance of this paper is
that it is the first work to our knowledge that examines such a
large corpus of open source data aiming to concretely address
four key research questions which relate to experimentally
identifying the best classifiers, the best features, whether
process metrics outperform software metrics as predictors, and
whether cross project training and application can be a viable
option with respect to the quality of the obtained results. The
experiments conducted revealed a number of observations.
First, Machine Learning techniques are not guaranteed to
perform well in all projects. Each software project has a
specific life-cycle and “personality” profile of its own, and
“a one classifier fits all” approach is not feasible. Second, we
have seen that Machine Learning techniques are more likely to
perform well when the buggy/clean ratio of the system files
is between 0.5 and 2. Note that a ratio of 1 indicates that
there are as many buggy files and clean files. Third, there
was a clear indication that process metrics perform better
or, in some cases, at least as well as software metrics. This
implies that there is a strong indication that process related
metrics can safely be used as predictors. Fourth, training the
classifiers in one set of systems and applying on another is
not a good approach, as the best classification results are
obtained when the classifier is applied on the same system it is
trained on. Overall, ML for defect proneness classification is a
promising area of work that still has a number open problems
to investigate. These include identifying new features to use
as predictors, creating better tagging tools, and combining ML
with static and dynamic analysis to increase the performance
of the classifiers.

REFERENCES

[1] Github, Build software better, together - https://github.com.
[2] Guillaume Lemaı̂tre, Fernando Nogueira, and Christos K Aridas. 2017.

Imbalanced-learn: A python toolbox to tackle the curse of imbalanced
datasets in machine learning. The Journal of Machine Learning Research
18, 1 (2017), 559–563.

[3] Wolpert D.H., Macready W.G. . “No Free Lunch Theorems for Opti-
mization” . IEEE Transactions on Evolutionary Computation, Vol. 1, pp.
67-82, 1997.

[4] Taghi M Khoshgoftaar and Naeem Seliya. 2002. Tree-based software
quality estimation models for fault prediction. In Software Metrics, 2002.
Proceedings. Eighth IEEE Symposium on. IEEE, 203–214.

[5] Shuo Wang and Xin Yao. 2013. Using class imbalance learning for
software defect prediction. IEEE Transactions on Reliability 62, 2
(2013), 434–443.

[6] David Gray, et. al, 2009. Using the support vector machine as a
classification method for software defect prediction with static code
metrics. In International Conference on Engineering Applications of
Neural Networks. Springer, 223–234.

[7] Burak Turhan and Ayse Bener. 2009. Analysis of Naive Bayes’
assumptions on software fault data: An empirical study. Data &
Knowledge Engineering 68, 2 (2009), 278–290.

[8] Mie Mie Thet Thwin and Tong-Seng Quah. 2005. Application of neural
networks for software quality prediction using object-oriented metrics.
Journal of systems and software 76, 2 (2005), 147–156.

[9] Cagatay Catal and Banu Diri. 2009a. Investigating the effect of dataset
size, metrics sets, and feature selection techniques on software fault
prediction problem. Information Sciences 179, 8 (2009), 1040–1058.

[10] Venkata Udaya B Challagulla, Farokh B Bastani, I-Ling Yen, and
Raymond A Paul. 2008. Empirical assessment of machine learning based
software defect prediction techniques. International Journal on Artificial
Intelligence Tools 17, 02 (2008), 389–400.

[11] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data mining
static code attributes to learn defect predictors. IEEE Trans. on Software
Engineering 1 (2007), 2–13.

[12] Jun Zheng. 2010. Cost-sensitive boosting neural networks for software
defect prediction. Expert Systems with Applications 37, 6 (2010), 4537–
4543.

[13] Ahmed E Hassan. 2009. Predicting faults using the complexity of code
changes. In Proceedings of the 31st Intl. Conf. on Software Engineering.
IEEE Comp. Society, 78–88.

[14] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining
metrics to predict component failures. In Proceedings of the 28th
international conference on Software engineering. ACM, 452–461.

[15] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel
Giger, and Brendan Murphy. 2009. Cross-project defect prediction: a
large scale experiment on data vs. domain vs. process. In Proceedings
of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering. ACM, 91–100.

[16] Ahmet Okutan and Olcay Taner Yıldız. 2014. Software defect prediction
using Bayesian networks. Empirical Software Engineering 19, 1 (2014),
154–181.

[17] Peng He, Bing Li, Xiao Liu, Jun Chen, and Yutao Ma. 2015. An
empirical study on software defect prediction with a simplified metric
set. Information and Software Technology 59 (2015), 170–190.

[18] T. T. Wong, “Performance evaluation of classification algorithms by
k-fold and leave-one-out cross validation”, Pattern Recognition, 48(9):
pp.2839-2846, 2015.

[19] Shyam R. Chidamber and Chris F. Kemerer, “A metrics suite for object
oriented design”. IEEE Trans. Software Eng., 20(6):476 pp. 493, 1994.

[20] V. R. Basili, L. C. Briand, and W. L. Melo, “A Validation of Object
oriented Design Metrics as Quality Indicators,” Trans. on Software Eng.
, 22(10):pp. 751 - 761, 1996.

[21] D. Romano, M. Pinzger, “Using Source Code Metrics to Predict Change-
Prone Java Interfaces”, 27th International Conference on Software
Maintenance, 2011.

[22] F. Toure, M. Badri, L. Lamontagne, “Predicting different levels of the
unit testing effort of classes using source code metrics: a multiple case
study on open-source software”, Innovations in Systems and Software
Engineering 14, pp. 15-46, 2018.

[23] https://figshare.com/s/b3741f9d0c3a939669db
[24] F. Zhang, F. Khomh, Y. Zou and A. E. Hassan, “An Empirical Study on

Factors Impacting Bug Fixing Time,” 2012 19th Working Conference
on Reverse Engineering, pp. 225-234, 2012.

[25] Menzies, T., Milton, Z., Turhan, B. et al. “Defect prediction from static
code features: current results, limitations, new approaches”. Automated
Software Eng. 17, pp. 375–407, 2010.

[26] Z. Toth, P. Gyimesiand R. Ferenc. “A Public Bug Database of GitHub
Projects and Its Application in Bug Prediction”. Springer, Intern.Conf.
on Computational Sciences and Its Applications pp. 625 - 638, 2016.

[27] A. Tornhill. “Your code as a crime scene: use forensic techniques to
arrest defects, bottlenecks, and bad design in your programs.” Pragmatic
Bookshelf, 2015.

[28] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Matsumoto. “The
Impact of Automated Parameter Optimization on Defect Prediction
Models”. IEEE Trans. Software Eng., 45(7):pp. 683 - 711, 2018.

[29] C. Tantithamthavorn, A. E. Hassan, K. Matsumoto. “The Impact of
Class Rebalancing Techniques on the Performance and Interpreta-
tion of Defect Prediction Models”. IEEE Trans. Software Eng., DOI
10.1109/TSE.2018.2876537, IEEE, 2018.

[30] M. Kondo, C.P. Bezemer, Y. Kamei, A. E. Hassan, and O. Mizuno. “The
Impact of feature reduction techniques on defect prediction models.”
Empirical Software Engineering 24:pp. 1925 - 1963, 2019.

[31] J. Jiarpakdee, C. Tantithamthavorn, A. E. Hassan. “The Impact of Corre-
lated Metrics on the Interpretation of Defect Prediction Models.” IEEE
Trans. Software Eng. early access, DOI 10.1109/TSE.2019.2891758,
2019.

[32] Y. Kamei, E. Shihab, B. Adams, A.E. Hassan, A. Mockus, A. Sinha,
N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance”, IEEE Trans. Software Eng., 39 (6): pp. 757-773, 2013.

[33] J. Sayyad Shirabad and T.J. Menzies, “The PROMISE Repository of
Software Engineering Databases”, 2005.

[34] F. Rahman, P. Devanbu, “How, and Why, Process Metrics are Better,” in
Proceedings of the International Conference on Software Engineering,
2013, pp. 432 – 441.

[35] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings”. Trans. Software Eng., 34(4): pp. 485
- 496, 2008.

[36] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A Sys-
tematic Literature Review on Fault Prediction Performance in Software
Engineering”, IEEE Trans. on Software Eng., 38(6): pp. 1276 – 1304,
2012.

[37] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison”. Empirical
Software Eng. 17, pp. 531–577, 2012.

[38] C. Tantithamthavorn and A. E. Hassan, “An Experience Report on
Defect Modelling in Practice: Pitfalls and Challenges”. in Proceedings
of the International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pp. 286 – 295, 2018.

[39] L. Pascarella, F. Palomba, A. Bacchelli, “Fine-grained just-in-time defect
prediction”, Journal of Systems and Software 150: pp.22-36, 2018.

[40] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Matsumoto, “The
Impact of Automated Parameter Optimization on Defect Prediction
Models”. IEEE Trans. on Software Eng. 45(7): pp. 683 - 711, 2019.

