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Abstract. Software systems are prone to evolution in order to be kept
operational and meet new requirements. However, for large systems such
evolution activities cannot occur in a vacuum. Instead, specific action
plans must be devised so that evolution goals can be achieved within
an acceptable level of deviation or, risk. In this paper we present an
approach that allows for the identification of plans in the form of actions
that satisfy a goal model when the environment is constantly changing.
The approach is based on sequences of mutations of an initial solution,
using a local search algorithm. Experimental results indicate that even
for medium size models, the approach outperforms in execution time
the weighted Max-Sat algorithms, while it is able to achieve an almost
optimal solution. The approach is demonstrated on an example scenario
of re-configuring a dynamically provisioned system.
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1 Introduction

Complex software systems are prone to continuous change and re-configuration.
Software maintenance, hardware upgrades, and dynamic provision of resources
in elastic or autonomic systems, are just a few of the factors that drive the need
for designing systems that assist administrators to compile action plans. In this
context, the focus is to devise a) models that represent system goals; b) models
that associate such goals with tasks and actions ; and c) reasoning methodologies
that allow for the selection of tasks and actions in order to form coherent plans.
The software engineering community has responded with models to represent
system-wide functional and non-functional properties as well as, formalisms to
associate such functional properties with design decisions, tasks, actions, and
stakeholder views. These models include i* [1], KAOS [2, 3], the Goal-oriented
Requirements Language (GRL) [4], the Extended Enterprise Modeling Language
(EEML), and the Unified Modeling Language, to name a few. Similarly, reason-
ing on these models has emerged as a key problem in order for useful logical
and sound conclusions to be reached. Such reasoning approaches are based on
logic deductions (rules), propagation of labels, domain specific heuristics or, SAT
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solvers. SAT solvers in particular have been a focal point of the research con-
ducted in this area. However, there are still open issues to be investigated when
the goal models themselves are modified as a result of changes in the operating
environment or, as a result of the actions incurred so far.

In this paper, we investigate the use of local search algorithms and boolean
expression evaluators to reason with Decision Task Models introduced in Section
3, when labels related to cost and benefit values, for actions and tasks, are altered
as a result of context changes. Experimental results indicate that the approach
allows for obtaining a solution that is within 90% range of the optimal value at
a fraction of time that is required by a Weighted Partial MAX-SAT algorithm
to compute the optimal solution for the problem at hand. Applications of such
reasoning include the formation of plans to re-configure autonomic systems, plan
for software and hardware upgrades in a large scale where the administrators
must conform to specific guidelines (e.g. ITIL), or devise alternative plans to
meet specific goals and requirements. We illustrate the approach by a running
example depicted in Fig. 2, that focuses on a goal model that denotes how
high quality of service can be maintained in an elastic cloud based system. The
approach has been evaluated on a large number of sizeable goal models that have
been compiled by an automated construction process with positive results.

The paper is organized as follows: Section 2 provides an outline of the pro-
posed approach. Section 3 introduces the elements of Decision Task Models
(DTMs) and discusses their semantics. In Section 4 a formalization for DTMs is
provided along with a process for the transformations of DTMs to CNF formu-
las. Subsequently, in Section 5 two reasoning approaches are discussed based on
operating environment for the task model and in Section 6 experiment results are
discussed to provide an evaluation for the proposed framework and algorithms.
Finally, related work is discussed in Section 7 and Section 8 concludes the paper.

2 Process Outline

The outline of the proposed framework process is depicted in Fig. 1. Initially,
certain tasks and actions, along with the relationships that exist between them
are modeled in a Decision Task Model (DTM) like the one presented in Fig. 2,
which describes what tasks and actions can be performed in order to maintain
the QoS to a required level. Given such a model, we are interested in determining
the optimal (or at least, suboptimal) plan to accomplish the root task while the
weights assigned to each node change dynamically as a consequence of contextual
changes. For example, for the model of Fig. 2, the weights of A5 and T11 change
from C1 and B1 to C2 and B2 respectively, leading to different optimal solutions
as this is summarized in Tables 3 and 4. An impossible low negative weight value
(i.e. high cost) deems an action unachievable, while a high positive weight value
(i.e. high benefit) deems a task achievable.

The first step towards plan determination is to extract a CNF formula that
fully captures the logical dependencies modeled by the DTM. This enables the
reduction of plan determination to the SAT problem, and as a consequence allow
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Fig. 1: The proposed framework for optimal and efficient plan determination

the use of a SAT solver. Moreover, as nodes in DTMs are annotated with weights
which may change as a consequence of certain context changes, we are interested
in finding an assignment that not only satisfies the CNF formula but also has
the best score, in terms of node weights. This optimization problem, referred
to as optimal plan determination, can be reduced to an instance of Weighted
Partial Max-SAT problem, hence a Max-SAT solver can be utilized to solve it.
The steps required for the determination of the optimal plan are depicted as
dashed rectangles in Fig. 1.

However, as the context (and thus node weights) may change dynamically,
computing an approximate solution may be a preferable alternative to optimal
plan determination, as Max-SAT is a known NP-hard problem. In this paper, we
propose the use of a local search algorithm as an effective technique for efficient
plan determination. The steps required for the determination of an effective plan
are depicted as bold rectangles in Fig. 1.

3 Decision Task Modeling

In order to model the actions that realize certain tasks, and to express seman-
tic and temporal relationships that exist between tasks and actions, we pro-
pose a metamodel which borrows notions from the goal model theory. The pro-
posed DTM metamodel, an instance of which is illustrated in Fig. 2, retains the
AND/OR-decomposition schema used in goal models. However, additional mod-
eling elements are used to capture logical and temporal relationships, increasing
thus the expressiveness of the proposed notation. In the rest of this section we
briefly describe the semantics of the various modeling artifacts.
Nodes: DTM nodes may be either Tasks or Actions. The former may be AND/OR
decomposed and represent a collection of actions or subordinate tasks, where ei-
ther more than one subtasks or actions should be combined together, or one or
more subtasks or actions may be alternatively selected to accomplish the task.
In contrast, action nodes represent atomic activities. In the example DTM of
Fig. 2, tasks are depicted as ellipses and Actions as hexagons.
Links: The DTM metamodel contains three types of links between nodes namely,

Logical Preconditions (
lp−→), Temporal Preconditions (

tp−→), and Contributions.
The former two links interconnect task and action nodes and express temporal
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Fig. 2: An Example Decision Task Model

dependencies. More specifically,
lp−→ links resemble precedence links originally

introduced in [5], and indicate the fact that the target node can only be per-

formed as long as the source node has already been performed. In contrast,
tp−→

links denote a weaker notion of precondition, which implies that in case both
the target and the source node participate in a plan (i.e. a sequence of actions),
then the target task/action must performed after the source task/action.

Finally, in a similar manner as in [6], we consider four types of contributions
namely, ++S/−−S meaning that the target node is satisfied/denied when the
source node is satisfied, and; ++D/−−D meaning that the denial of the source
node leads to the denial/achievement of the target node. However, in the context
of this paper, contribution links can terminate only to task nodes as an action is
only satisfied when the corresponding atomic activity is performed and it cannot
be fulfilled otherwise.

4 DTM Formal Definition and CNF Generation

In this section we are going to introduce a process that transforms DTMs into
CNF formulas that fully capture the constraints modeled by the DTM. This
reduces the problem of plan determination to an instance of the SAT problem,
and allows for the use of SAT solvers. However, before going into the details of
CNF formula generation, we are going to formally define DTMs.

4.1 DTM Formal Definition

A DTM contains a set of task or action nodes which are connected with each
other through decomposition rules or rules that describe binary relations on the
set of nodes i.e. binary rules such as Precondition, and Contribution links. Hence,
we formulate the following definition for DTMs:
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Definition 1 A Decision Task Model is a tuple of the form 〈N,Rd, R〉, where
N = Nt ∪Na with Nt and Na denoting the sets of task and action nodes respec-
tively, Rd is the set of decomposition rules, and R the set of binary rules.

In the above definition, a decomposition rule rd ∈ Rd describes the way a
parent task node p is AND/OR decomposed to a set {c1, c2, · · · cn} of child task
or action nodes. There must be one decomposition rule for each task node p,
which is formally written as:

rd = 〈T, p, {c1, c2, · · · , cn}〉 where T ∈ {AND,OR}.

For example, task node T7 (“Achieve throughput below threshold”) in Fig. 2
is AND-decomposed to action nodes A10 (“Assign VM”) and A11 (“Migrate
Jobs”), so the corresponding decomposition rule is 〈AND, T7, {A10, A11}〉.

A binary rule r ∈ R between source node s and target node t is denoted as:

r = 〈T, s, t〉 where T ∈ {lp,++S/D,−−S/D}.

where as discussed above, for contribution rules the target node t ∈ Nt. In the
example DTM in Fig. 2, task node T7 participates as the target node of three
binary rules, namely 〈++S, T9, T7〉, 〈−−S,A17, T7〉 and 〈lp, T10, T7〉.

Finally, given a DTM 〈N,Rd, R〉 and a node b ∈ N , we can define for each
type T of binary rule the following set of nodes:

N [T ](b) = {s ∈ N |∃r = 〈T, s, b〉 ∈ R} where T ∈ {lp,++S/D,−−S/D},

which includes the source nodes of all rules of type T for which node b is the
target node. Given the DTM of Fig. 2, the following sets can be defined for node
T7 : N++S(T7) = {T9}, N−−S(T7) = {A17}, and N lp(T7) = {T10}.

4.2 Boolean Rules and CNF Formula Extraction

Given a DTM, a corresponding set of Boolean rules that capture all the con-
straints in the model can be generated. The semantics of those rules as well as
their mappings to CNF clauses are originally presented in [7], and for the sake
of presentation completeness summarized in Table 2. The required CNF for-
mula can then be easily extracted by taking the conjunction of the CNF clauses
corresponding to each individual Boolean rule.

The generation of Boolean rules starts by extracting set N lp(p), and also the
following two sets for each task node p ∈ Nt of the DTM :

Npos(p) = N++S(p) ∪N−−D(p) = {e1, · · · , ek} ∪ {f1, · · · , fl} (1)

Nneg(p) = N−−S(p) ∪N++D(p) = {g1, · · · , gm} ∪ {h1, · · · , ho} (2)

which, along with the decomposition rule rd = 〈T, p, {c1, c2, · · · , cn}〉 for node
p, determine the set of Boolean rules that must be generated for this node.
According to whether some or all of those sets are empty, a different set of rules
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Table 1: AND/OR rules generation for task and action nodes. There is always a
decomposition rule rd = 〈T, p, {c1, c2, · · · , cn}〉 for each task node p ∈ Nt.

Npos(p) Nneg(p) N lp(p)
Generated AND/OR Rules

p ∈ Nt p ∈ Na

= ∅ = ∅ = ∅ p← T(c1, c2, · · · , cn) -

= ∅ = ∅ {b1 · · · bq} p← AND(b1 · · · bq, p d) p← AND(b1 · · · bq, p leaf)

= ∅ 6= ∅ = ∅ p← AND(p d,¬p c neg) -

= ∅ 6= ∅ {b1 · · · bq}
p← AND(p `,¬p c neg)

-
p `← AND(b1 · · · bq, p d)

6= ∅ = ∅ = ∅ p← OR(p d, p c pos) -

6= ∅ = ∅ {b1 · · · bq}
p← OR(p `, p c pos)

-
p `← AND(b1 · · · bq, p d)

6= ∅ 6= ∅ = ∅
p← OR(p d, p c)

-
p← AND(p c pos,¬p c neg)

6= ∅ 6= ∅ {b1 · · · bq}
p← OR(p `, p c)

-p c← AND(p c pos,¬p c neg)

p `← AND(b1 · · · bq, p d)

is generated as this is illustrated in Table 1. Additionally, the following apply
for the pseudo-variables p c pos (contributions that positively affect the target
node p), p c neg (contributions that negatively affect the target node p), and p d
(decomposition rule for node p) that appear in Table 1:

p c pos← OR(e1, · · · , ek,¬f1, · · · ,¬fl)
p c neg← OR(g1, · · · , gm,¬h1, · · · ,¬ho)

p d← T(c1, c2, · · · , cn)

where T is the type of the decomposition rule and nodes ei, fi, gi and hi corre-
spond to the ones in equations (1) and (2). It is important to note that p c pos
(p c neg) is substituted by e1 or ¬f1 (g1 or ¬h1) in case k = 0 or l = 0 (m = 0 or
o = 0) respectively, while if both of k and l (m and o) are equal to zero, set Npos

(Nneg) is empty, and the pseudo-variable p c pos (p c neg) does not appear in
the rules. For example, given task node T7 of Fig. 2 for which N lp(T7) = {T10},
Npos(T7) = N++S(T7) = {T9}, and Nneg(T7) = N−−S(T7) = {A17}, the fol-
lowing Boolean rules are generated based on the last case of Table 1:

T7← OR(T7 `,T7 c) (3)

T7 `← AND(T10,T7 d) (4)

T7 c← AND(T9,¬A17) (5)

T7 d← AND(A10, A11) (6)
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Table 2: Mapping of Boolean rules to CNF Clauses

Boolean Rule Equivalent Constraints CNF Clauses

o← AND(i1, i2, · · · , in)
¬i1 ⇒ ¬o, · · · ,¬in ⇒ ¬o, (i1 ∨ ¬o) ∧ · · · ∧ (in ∨ ¬o)∧
i1 ∧ i2 ∧ · · · ∧ in ⇒ o (¬i1 ∨ ¬i2 ∨ · · · ∨ ¬in ∨ o)

o← OR(i1, i2, · · · , in)
i1 ⇒ o, · · · , in ⇒ o, (¬i1 ∨ o) ∧ · · · ∧ (¬in ∨ o)∧
i1 ∧ i2 ∧ · · · ∧ in ⇒ o (i1 ∨ i2 ∨ · · · ∨ in ∨ ¬o)

which can be directly mapped to CNF clauses as this is illustrated in Table 2.
For example the following CNF formula corresponds to rule (5):

(T9 ∨ ¬T7 c) ∧ (¬A17 ∨ ¬T7 c) ∧ (¬T9 ∨A17 ∨ T7 c)

Finally, Boolean rules are also generated for action nodes when they are the

target of
lp−→ links. This case is also presented in Table 1 (second row).

5 Reasoning

The extracted CNF formula for the DTM provides a formal model of logical rela-
tionships between the DTM nodes. Such a model can be used to apply reasoning
techniques in order to identify possible DTM model resolutions as combinations
of actions, that if performed in coordination, can realize the root task of the
DTM model. In this respect, finding such a task resolution equals to solving the
SAT problem for the extracted CNF which would assign truth values to both
tasks and actions, and then executing all actions assigned as true. However, as
discussed above, DTM nodes may be annotated with weights indicating either
benefit (for task nodes) or cost (for action nodes). So we are not only interested
in finding an assignment that satisfies the CNF formula, but also an assignment
that has the best score taking into account the cost/benefit of each true node.

Given the nature of the problem, different strategies can be utilized based
on whether the model resides in static or dynamic environments. The former
are characterized by absent or extremely rare changes of assigned benefits and
costs to DTM nodes, while the latter by frequent context changes that lead to
changes for the weights associated to all or to a subset of the model’s nodes.

5.1 Reasoning in Static Environment

Optimal plan determination is an optimization problem that can be reduced
to an instance of Max-SAT problem called Weighted Partial Max-SAT (WP-
MAXSAT). In WP-MAXSAT we have two sets of clauses namely, hard and soft
clauses. The former are the clauses that a solution assignment must satisfy, while
the latter are clauses that have weights and the solution must satisfy only those
that ensure the maximum total weight.
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In our case, the generated CNF corresponds to the hard constraints of the
WP-MAXSAT, while the weight-node pairs are used to build the soft constraints
of the problem. For example, given the weights illustrated in Table 3 two single
literal soft clauses namely, (T2) and (A8) with weights 97 and -412 respectively
are generated for nodes T2 and A8.

5.2 Reasoning in Dynamic Environment

An exhaustive WP-MAXSAT algorithm can be applied to get an optimal plan
determination; however, having to apply such an algorithm for each context
change can limit significantly the applicability of the approach, especially when
working with task models of significant size and complexity in dynamically alter-
ing environments. In such cases, computing an approximate to optimal solution
may be a preferable alternative instead of attempting to compute the optimal
solution, for two primary reasons. First, the average time between any two con-
text changes may be less than the average time required to compute the optimal
solution, making the application of typical WP-MAXSAT algorithms impracti-
cal. Secondly, even when the time between any two context changes is adequate
for WP-MAXSAT, the extra time required to compute the optimal solution may
ultimately impose higher aggregate costs than utilizing a good-enough, approx-
imate solution to perform the task right after the context change occurs. Before
examining a search process to approximate optimal solutions for task models,
we introduce certain concepts required for the definition and application of a
local search algorithm that can efficiently explore the solutions space.

Boolean Rules Evaluation. Boolean rules, which have been introduced in the
previous section, consist of a set of input variables (i.e. variables denoted as i1 to
in in Table 2) and a single output parameter (i.e. variable o in Table 2). Given a
Boolean rule Br, we are going to use the notations In[Br] and Out[Br] to signify
the input variables and the output parameter of rule Br respectively.

Definition 2 We say that a Boolean rule Bra directly requires rule Brb , denoted

as Bra
req−−→ Brb iff Out[Brb ] ∈ In[Bra ].

For example, for the rules presented in the previous section, rule (4) directly
requires rule (6) as variable T7 d appears in the input variables of the former
and is also the output parameter of the latter rule.

Definition 3 We say that a Boolean rule Bra requires rule Brb , denoted as

Bra
req∗−−−→ Brb iff Bra

req−−→ Brb or there exist a Boolean rule Brk such that

Bra
req−−→ Brk and Brk

req∗−−−→ Brb .

Rule (3)
req∗−−−→ (6) as (3)

req−−→ (4) because of T7 `, and (4)
req−−→ (6) as we have

previously mentioned.

Furthermore, the
req∗−−−→ operator provides a mechanism that allows us to

create sequences of Boolean rules in which every rule depends only on rules that
appear earlier in the sequence. More precisely:
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Definition 4 We say that a sequence of Boolean rules Br1 , Br2 , · · · , Brn is
a proper one if for every pair Bri , Brj of Boolean rules in the sequence, Bri

appears earlier than Brj in case Brj
req∗−−−→ Bri .

Hence, sequence (6)(5)(4)(3) is a proper sequence of Boolean rules, while se-

quence (3)(6)(5)(4) is not, as (3)
req∗−−−→ (6) and the latter appears after the for-

mer in the sequence. If circular dependencies exist in a set of Boolean rules, no
proper sequence of those rules exists. However, as the DTMs used have no cycles
because of the validation phase illustrated in Fig. 1, we ensure that no circular
dependencies exist in the Boolean rules sets generated from DTMs, and so there
is always a proper sequence for them. Proper sequences of Boolean rules can be
computed at definition-time through typical topological sorting algorithms.

Additionally, given a set B = {Br1 , Br2 , · · · , Brn} of Boolean rules we define
the following two sets of variables:

L[B] =

n⋃
i=1

In[Bri ]−
n⋃

i=1

Out[Bri ] I[B] =

n⋃
i=1

Out[Bri ] (7)

where the former contains the variables that appear only as input while the
latter those that appear as output parameters in the Boolean rules of set B.
We call variables in L[B] and I[B] leaves and inner respectively and we assign
weights to them as follows: those that correspond to nodes of the initial model
have the same weight as the node, while those that correspond to pseudonodes
(i.e. nodes added during CNF generation) have a zero weight. Finally, using a
proper sequence of Boolean rules and an assignment on L[B] elements we can
propagate the truth assignment to I[B] elements, and by adding the weights of
all true variables we can calculate the total weight of the given sequence.

Local Search on DTM Leaves. Motivated by the above scenarios, we propose
a parameterized local search algorithm that can be applied as soon as context
changes occur and provide solutions whose quality generally converge to the
optimal after a number of iterations. The iterations of the search algorithm can
be configured through input parameters so that the search process can be tunned
to run within acceptable execution times. The defined search algorithm operates
on L[B] and attempts to rapidly reach solutions of improving quality. It should
be noted that while a WP-MAXSAT algorithm has to be applied to the whole
weighted model (that is, variables corresponding to both inner and leaf nodes)
to compute the optimal solution, the proposed search algorithm constructs truth
assignments for leaves only by mutating previous ones. In this way, the search
space is considerably smaller, particularly for task models of significant depth
and complexity (i.e. high inner to leaf nodes ratio). The search process begins
by examining a fixed size pool of cached solutions that fulfill the model’s hard
constraints, and selects the best-performing one. For the process to start even one
cached solution suffices, and this solution can be obtained with low computation
cost by utilizing a simple SAT solver applied once and offline. The solutions
pool is enriched with new solutions as these are discovered at execution-time.
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Algorithm 1 Leaves Local Search

Input: X: Initial solution, B: Boolean rules, L[B]: Leaves of B, FF : flips-factor, NF :
neighborhood-factor

1: S ← X
2: x ← {xn}, where xn = 〈n, v〉, xn ∈

X ∧ n ∈ L ∧ v ∈ {TRUE,FALSE}
3: for i = 1 to FF ∗ |L[B]| do
4: y ← x
5: d ← random integer ∈ [1, NF ∗

|L[B]|]
6: for j = 1 to d do
7: ym ← ¬xn, where n random leaf
8: end for

9: if evaluate(y,R) then
10: Y = propagate(y,R)
11: if weight(Y)≥weight(X) then
12: S ← Y
13: x← y
14: end if
15: end if
16: end for
17: return S

By keeping the solution pool with a fixed size we allow for better computation
complexity for seed selection when a context change occurs. Once such a solution
is selected, the local search algorithm is applied on L[B] in order to gradually
reach better solutions.

The proposed Leaves Local Search (LLS) algorithm begins with setting as
current solution the one provided and proceeds by computing an initial leaves
truth assignment based on the provided solution (lines 1-2). Then, the algorithm
applies a set of assignment mutating steps for a fixed number of times which is
equal to a specified flips factor parameter (FF ) times the number of leaves.
During the mutating steps, the assignment’s values are flipped in random pairs,
for up to a different number of pairs in each iteration which is equal to a specified
neighborhood factor (NF ) parameter times the number of leaves (lines 5-8). The
new leaves truth assignment is evaluated against a precomputed proper sequence
of Boolean rules to examine whether it leads to a solution of the model, i.e. root
R is satisfied (line 9). If the new leaves assignment leads to a solution for the
model, then the respective DTM solution’s weight is compared to the currently
selected solution and provided that the former is better, it becomes the selected
solution, while the next iteration of the mutating process will be applied to
the leaves assignment that led to the new solution (lines 10-15). Finally, the
algorithm returns the best solution met throughout the search.

5.3 Reasoning Example

To illustrate the application of the WP-MAXSAT algorithm and the execution
of the LLS algorithm for different contexts (i.e. different weights t1, t2) and for
different FF values, we use the DTM presented in Fig. 2. In this respect, Table
3 contains two weight assignments (t1 and t2) in the DTM example, where the
second assignment (t2) reflects changes in the initial weights (t1) of nodes A5 and
T11 as a result of a context change. As discussed before, task nodes are annotated
with positive weight values indicating the benefit included in fulfilling the task
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Table 3: Weights assignment for two context changes (DTM in Fig. 2)

A11 A17 A4 A5 A6 A8 A9 T11 T2 T4 T5 T6 T7

Weight (t1) -709 -359 -26 -957 -841 -412 -79 0 97 608 643 664 976

Weight (t2) -709 -359 -26 -593 -841 -412 -79 599 97 608 643 664 976

Table 4: Results on Running Example

Leaves Local Search WP-MAXSAT

FF 0 1 2 3 4 5 ≥ 6 -

Weight (t1) -395 1022 1172 1757 1731 1584 1757 1757

Weight (t2) 568 1546 1520 2255 2255 2255 2255 2255

while action nodes are annotated with negative values reflecting the associated
cost for executing the activity. The model’s nodes that are not included in Table
3 have weights that are equal to zero. Based on the above weight annotations,
we apply WP-MAXSAT and compute an optimal solution for the problem with
total weights equal to 1757 for context t1 and 2255 for context t2.

In order to apply the LLS algorithm we utilize a solution computed by a
SAT solver which will be used as a seed. Table 4 presents the results of the LLS
algorithm with different FF values for both the initial weight assignment as well
as the one after the context change. As the number of iterations increases the
acquired solution converges to the optimal one. Also, the LLS algorithm required
less iterations (FF ≥ 3 for context t2 vs. FF ≥ 6 for context t1) in order to reach
the optimal solution during the second run. This relationship between the rate
of context changes and the solution quality performance of LLS is examined in
the next section. In this respect, in order to evaluate and assess the performance
of the algorithm with regard to solution quality, as well as the computational
requirements we discuss a series of experiments in the following section.

6 Case Studies and Experiments

In order to evaluate the applicability and the performance of the proposed frame-
work we conducted a series of experiments with randomly generated task models
of varying size and complexity. Using these models we evaluated the application
of a WP-MAXSAT algorithm with regards to execution time required for models
of different size. Additionally, using the same models, we evaluated and compared
the performance of the search process presented in the previous section with re-
gard to the execution time required as well as the quality of acquired solution
for different FF values.

In order to evaluate the proposed framework we implemented a random task
model generation mechanism which, given certain parameters, such as model
size, task vs. actions ratio, AND vs. OR decompositions ratio and maximum
binary rules coverage returned a randomly generated task model. Due to space
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limitations, the results presented and discussed in this paper were acquired with
the following task model generation configuration: a) model size (|N |): 20 - 300,
with an interval of 20 nodes b) task vs. actions ratio: 1 c) AND vs. OR decom-
position ratio: 1 d) Maximum binary rules coverage: 30% (percentage of nodes
participating in on or more binary rules) We used the above configuration and
acquired 10 randomly generated models per model size, for 15 model sizes. For
each model, we simulated five context changes each of which assigned different
weight values to 10 percent of the nodes and for each context change we ran
the WP-MAXSAT algorithm to get the optimal solution, as well as the WP-
MINSAT algorithm to get the worst solution for the model with regard to total
weight. In order to evaluate and compare the search process performance vs. the
WP-MAXSAT results, we used the following measures:

– twp−maxsat: WP-MAXSAT algorithm execution time,

– tFFlls : LLS algorithm execution time with flips factor FF , and

– QS = WS−Wworst

Woptimal−Wworst
: solution quality,

where WS is the total weight of the solution, and Woptimal and Wworst being the
total weights of the solutions computed by WP-MAXSAT and WP-MINSAT al-
gorithms respectively. For each generated model the search process was executed
for the following parameter values: FF ∈ {5, 10, 15, 20, 25, 30, 35, 40}, NF = 0.2
and average values were computed for the above measures.

6.1 Results

The presentation of the results is split into: (a) evaluation of time performance
through considering twp−maxsat and tFFlls , and (b) evaluation of solution quality
through computing QS for different model sizes and flips factor values.

Time Performance. Fig. 3 depicts the average twp−maxsat versus model size.
The execution time required by the WP-MAXSAT algorithm scales exponen-
tially with regard to model size, which is expected due to the nature of the
problem. Additionally, Fig. 3 depicts the average t5lls as well as the average t40lls
for all examined model sizes (FF = 5 and FF = 40 are the minimum and
maximum flips factor values considered in our experiments) while results for all
intermediate FF values lie between the results for the two extreme values de-
picted. t5lls is generally proportionate to FF ; however, independent of the FF
value, the average tlls scales almost linearly to the number of nodes. For large
models, LLS is significantly faster compared to applying WP-MAXSAT. For in-
stance, for model size equal to 300 nodes and flips factor value equal to 40, LLS
required on average 1

1000 of the time that WP-MAXSAT required and compute
solutions of high quality (QS = 0.938) as will be discussed in the next section.

Solution Quality. Fig. 4 presents how QS varies versus FF values for model
sizes of 100 and 300 nodes. The quality of the initial solution is depicted for
FF = 0 and it is around 0.5 for both model sizes. From that point on, as FF
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increases, the quality converges asymptotically to the optimal solution getting
its maximum value for FF = 40 (0.961 for size = 100 and 0.938 for size = 300).

Finally, Fig. 5 depicts the average solution quality for the proposed search
process, with regard to the number of consecutive context changes using average
values from 3 models of 200 nodes and 30 context changes. As the number of
consecutive context changes in a dynamic environment increases and the LLS
algorithm is applied more times, the solution quality provided by the algorithm is
improved for each run. Also, the lower the FF, the more evident the improvement
effect is. This effect can be explained by the fact that context changes are gradual,
allowing for the algorithm’s seed solutions that originate from the solutions’
cache to be of higher quality. In this respect, as the starting point for each
application of the algorithm gets better, the outcome with regard to solution
quality is improved, indicating thus in environments with high rates of gradual
context changes, using the proposed search technique can provide further benefit.

7 Related Work

Decision support and action selection for a given context and a given set of
goals is a key problem that still motivates researchers and practitioners to de-
vise solutions for. There are two main facets to this problem, namely decision
support for static environments, and dynamic decision support for dynamic en-
vironments. In the first category, [8] discusses a qualitative approach as well as
a numerical approach for reasoning with goal models. In [9] an approach of eval-
uating qualitative or quantitative satisfaction levels of goals and tasks through
the propagation of appropriate values via the goal model links, is presented.

A variation to these approaches are utility based decision support approaches
that aim also to maximize or minimize a utility function such as benefit or cost
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for each task and action, or the number of constraints that are satisfied for each
possible plan. Assuming that a goal or other type of model can be represented
as logic formulas a number of reasoning approaches based on SAT reasoners are
applicable. In [10] an algorithm that implements Weighted Partial MAX-SAT by
successively invoking a SAT solver and by attempting to minimize the penalty
for not satisfying soft-constraints, is presented.

In [11], GRASP a search algorithm for propositional satisfiability is proposed.
The search algorithm is based on the concept of identification of assignments that
cause conflicts at a given level, and then non-chronologically backtrack to ear-
lier levels to improve pruning of the search space. In [12] an extension of the
GRAPSP algorithm augmented with path re-linking that attempts to intensify
and focus the search around good-quality isolated solutions that have been orig-
inally computed by the GRASP algorithm is presented. The basic difference of
the GRASP and also the path re-linking augmented GRASP algorithms from
the approach here is that, in our approach we do not utilize backtracking or a
and we are solely based on mutations of the possible assignments of truth values
to the variables in the given set of clauses. The quality of the produced solution
is based on the number of mutations (i.e. iterations) and the size of possible
mutations in each flip. The augmented GRASP algorithm guarantees a better
approximate solution to the Weighted MAX-SAT than ours, as it already starts
from known good (elite) solutions, but on the other hand requires the use of
GRASP as its initial input.

In the second category, the environment is considered dynamic in the sense
that actions of a plan may become impossible once the plan is devised and
started being enacted because the environment is dynamically altered. Work
in this category relates to approaches proposed in autonomous agents and au-
tonomic software systems. In [13] an approach that allows for reasoning about
partial satisfaction of soft-goals is discussed. The approach is based on the anno-
tation of softgoals with reward (e.g. benefit), and penalty (e.g. cost) functions.
The approach utilizes Dynamic Decision Networks (DDN) in order to identify a
selection of softgoals that provide an optimal decision with respect to softgoal
satisfaction and the utility functions used. The difference from our approach is
that we do not require the compilation of intermediate models such as a DDN,
and we allow for utility functions (rewards, and penalties) to vary dynamically
as the system operates. In [14] a framework that implements an adaptation
manager for autonomic systems is proposed. The framework is based on the
Goal-Attribute-Action model and allows for a decision to be reached regarding
the selection of actions in order to adapt or re-configure an autonomic system
according to specified goals that need be reached.

8 Conclusion

In this paper, we investigated the use of local search algorithms and boolean
expression evaluators to reason with DTMs when labels related to cost and
benefit values for actions and tasks are altered as a result of context changes. The
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approach allows for obtaining a solution that is within 90% of the optimal value
at a fraction of time that is required by a Weighted Partial MAX-SAT algorithm
to compute the optimal solution for the problem at hand. The applicability and
the performance of the proposed framework was evaluated with promising results
by conducting a series of experiments with randomly generated task models of
varying size and complexity.
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