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ABSTRACT

The problem of negative design of DNA languages is addressed, that is, properties
and construction methods of large sets of words that prevent undesired bonds when

used in DNA computations. We recall a few existing formalizations of the problem
and then define the property of sim-bond-freedom, where sim is a similarity relation

between words. We show that this property is decidable for context-free languages
and polynomial-time decidable for regular languages. The maximality of this property
also turns out to be decidable for regular languages and polynomial-time decidable for

an important case of the Hamming similarity. Then we consider various construction
methods for Hamming bond-free languages, including the recently introduced method of

templates, and obtain a complete structural characterization of all maximal Hamming
bond-free languages. This result is applicable to the θ-k-code property introduced by

Jonoska and Mahalingam.

Keywords: codes, DNA computing, DNA languages, maximal languages, construction

methods, trajectories.
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Figure 1: Vertical bars represent bonds between complementary nucleotides. In
(b), the complementary parts 5′ − AGTTCC − 3′ and 5′ − GGAACT − 3′ of the
DNA molecules 5′ − vAGTTCCw − 3′ and 5′ − yGGAACTz − 3′ bind together.
In (c), the molecule 5′ − vAGTTCCwxyGGAACTz − 3′ is twisted at x and its
complementary parts bind together.

1. Introduction

The field of DNA computing is based on the fact that one can encode input

data into a collection of (single-stranded) DNA molecules and then apply on them

a sequence of operations, which results in a modified collection of molecules. This

process can be interpreted as a computation for which the output is obtained by

decoding the data contained in some of the resulting molecules. In practice, the

collection of DNA molecules exists as a ‘soup’ inside a test tube under controlled

physical conditions.

1.1. Bonds between DNA molecules

Most of the operations involved in DNA computations rely on the capability

of controlling the bonds that can be formed between DNA molecules. Such bonds

are created due to the well-known Watson-Crick complementarity property of the

four nucleotides A,C,G, T , which are the building blocks of DNA molecules. More

specifically, the nucleotide A is complementary to T , and C is complementary to

G. This property is important in conjunction with the fact that every molecule has

a certain orientation, which is denoted by placing the symbols ‘5′−’ and ‘−3′’ at

the two ends of the sequence of nucleotides comprising the molecule. For example,

the molecules 5′ − ACCGT − 3′ and 3′ − ACCGT − 5′ are different – they have

different chemical properties.

Under favorable physical tube conditions, if a molecule of the form 5′−X1X2 · · ·

Xk−3′, where each Xi is a nucleotide, encounters the molecule 5′−Yk · · ·Y2Y1−3′ in

which each nucleotide Yi is the complement of Xi, then the pairs (Xi, Yi) will form

k chemical bonds and a double-stranded structure will be created – see Figure 1(a).
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Figure 2: In (a), parts of two DNA molecules bind together although these parts
are not perfect complements of each other. In (b), the same parts appear in one
molecule.

It is important to note that bonds can be formed even between complementary

parts of two molecules, provided that these parts are sufficiently long – see Fig-

ure 1(b). Moreover, a molecule containing two complementary parts can bind to

itself, or to a copy of itself – see Figure 1(c).

The bonds shown in Figure 1 are formed between parts that are perfect comple-

ments of each other. In practice, however, it is possible that two parts of molecules

will bind together even if some of their corresponding nucleotides are not comple-

mentary to each other – see Figure 2.

1.2. The problem of undesirable bonds

The success of a DNA operation relies on the assumption that no accidental

bonds can be formed between molecules in the tube before the operation is initiated,

or even during the operation. With this motivation, one of the foremost problems

in DNA computing today is the following.

Problem 1 Define a large, potential collection of DNA molecules such that there

can be no (sufficiently long and possibly imperfect) complementary parts in any two

molecules, and no (sufficiently long and possibly imperfect) complementary parts

in any one molecule.

In many cases in the literature, this problem is addressed in conjunction with the

uniqueness problem, which involves designing molecules whose parts are different

between each other. The motivation here is that, usually, a DNA operation is

intended only for molecules containing a specific pattern (or specific patterns) of

nucleotides. In this paper, however, we focus on Problem 1.

1.3. Notation for molecules and bonds

We proceed now with establishing the notation that would allow us to describe

formalizations of Problem 1. Specifically, we define the terms word, subword, lan-

guage, involution, and codeword.

A given alphabet can be used to form sequences of symbols that are called words.

For example, 01001 is a word over the alphabet {0, 1}. The length of a word w is

denoted by |w|. For example, |01001| = 5. The prime example of an alphabet will
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be the DNA alphabet {A,C,G, T}. In this case, we agree that the left end of a DNA

word represents the 5′−end of the corresponding DNA molecule. For example, the

word CCATGT represents the molecule 5′ − CCATGT − 3′. If a word w can be

written in the form xyz – this is the catenation of some words x, y and z – then

we say that y is a subword of w. A language is any set of words. We shall use

the expression ‘x is a subword of a language’ as a shorthand for x is a subword of

some word in the language. One use of a language L is to represent all the possible

distinct copies of DNA molecules that might appear in a tube. In this case, we

refer to L as a tube language and we assume that every word in L is of length at

least k, for some parameter k. This parameter represents the smallest length of two

molecule parts for which it is possible to form a stable bond.

To represent the complementarity of nucleotides we use the concept of antimor-

phic involution introduced in [18]. In general an involution of an alphabet Σ is a

function θ : Σ → Σ such that θ(θ(a)) = a, for all symbols a in Σ. The involution is

called antimorphic if we extend it to words such that θ(a1 · · · an) = θ(an) · · · θ(a1),

where each ai is a symbol in Σ. The prime example of an antimorphic involution

will be the DNA involution τ such that

τ(A) = T, τ(T ) = A, τ(C) = G, τ(G) = C.

For example, τ(ACCGTT ) = AACGGT . In general, for two DNA words x and y

of length k, the identity τ(x) = y represents the fact that the molecules (or parts of

molecules) 5′ − x − 3′ and 5′ − y − 3′ could bind to each other. According to the

requirement in Problem 1, if k = 6, the words ACCGTT and AACGGT should not

be subwords of the tube language L.

In the literature on DNA encodings, the tube language L is usually equal to, or

a subset of, K+, where K is a finite language whose elements are called codewords.

The language K+ consists of all words that are obtained by concatenating one or

more codewords from K. For a nonnegative integer n, the notation Kn is used for

the set of all words that are obtained by concatenating any n codewords from K. In

general, K might contain codewords of different lengths. In many cases, however,

the set K consists of words of a certain fixed length l. In this case, we shall refer

to K as a code of length l.

1.4. Formalizations of the problem of undesirable bonds

With the preceding terminology in mind, Problem 1 is called the negative word

design problem in [27]. Now we recall a few existing formalizations of Problem 1

and we propose a new one, which appears to be closer to the intuition behind the

problem. It should be noted, however, that all formalizations are inter-related in

some interesting ways.

One of the most recent attempts to address Problem 1 appears in [13]. In

that paper, the authors require that a tube language L must satisfy the following

property.

P1[k]: If x and y are any subwords of L of length k then x 6= τ(y).
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A language satisfying this property is called a τ -k-code in [13]. An advantage of

this formalization is that the property is defined independently of the structure of

L. This property is also considered implicitly in [3] and [7]. In particular, reference

[3] considers tube languages of the form (sZ)+ satisfying P1[k], where s is a fixed

word of length k and Z is a code of length k – the notation sZ represents the set

of all words sz such that z is in Z.

In [12], the authors introduce the concept of a strictly τ -free code K, which is

a generalization of the notion of comma-free code, and show that the language K+

must be strictly τ -free as well. Here we shall assume that K is of fixed length k. In

this formalization the tube language L is equal to K+. Using the tools of [12], it

can be shown that L is a strictly τ -free language iff (if and only if) L satisfies the

following property

P2[k]: If x is a subword of L of length k and v is a codeword in K then x 6= τ(v).

We note that similar properties are considered also in [20] and [21].

As noted earlier, parts of DNA molecules can bind to each other even if they are

not perfect complements of each other. Hence, although sufficient, the condition

τ(x) = y might not be necessary for the DNA words x and y to stick together.

The common approach to deal with this is to modify the above condition by using

the Hamming distance function H(·, ·). More specifically, for two words x and y

of length k, the relation H(x, τ(y)) ≤ d represents the fact that the molecules (or

parts of molecules) 5′ − x− 3′ and 5′ − y − 3′ could bind to each other. Here, d is a

nonnegative integer less than k.

In [25] and [33], the authors consider codes K of length k satisfying the following

property

P3[d, k]: If u and v are any codewords in K then H(u, τ(v)) > d.

In fact the above property is studied in conjunction with the uniqueness property

H(K) > d – here H(K) > d is the smallest Hamming distance between any two

different words in K.

Reference [8] introduces the H-measure for two words x and y of length k and

explains how this measure can be used to encode instances of the Hamiltonian

Path problem. A similar measure is defined in [2] and is applied to codes of length

k whose words can be concatenated in arbitrary ways. Thus, the tube language

here is L = K+. The code K satisfies certain uniqueness conditions as well as

conditions related to Problem 1. In particular, the tube language L = K+ satisfies

the following property.

P4[d, k]: If x is a subword of L of length k and v is a codeword in K then

H(x, τ(v)) > d.

We note that also reference [29] considers this property for tube languages of the

form K1K2 · · ·Km, where each Ki is a certain code of length k.

With ‘H(x, τ(y)) ≤ d’ as the criterion for x and y to bind together, it appears

that P4[d, k] is the strictest property in the literature for addressing Problem 1.
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This property, however, is not sufficient in general for avoiding undesirable bonds

in the tube. To see this, consider the case where

d = 1, k = 5, K = {ACGAT,CCGAA}.

One can verify that K+ satisfies P4[d, k] and that the DNA words

ACGATACGATCCGAA ACGATCCGAACCGAA

are in K+ and contain the subwords GATCC and CGATC such that

H(GATCC, τ(CGATC)) ≤ 1.

Motivated by the above observation, we introduce the following property of a

tube language L.

P5[d, k]: If x and y are any subwords of L of length k then H(x, τ(y)) > d.

Note that, as in the case of P1[k], the new property is defined independently of

the structure of L. Any tube language satisfying this property will be called a

(τ,Hd,k)-bond-free language.

1.5. Connections

We list now a few interesting connections among the properties P1–P5. We

note that the condition x 6= τ(y) is equivalent to H(x, τ(y)) > 0.

P3 and P5: In Section 3 we introduce the subword closure operation ⊗ such that,

for any code S of length k, the language S⊗ consists of all words w of length

at least k with the property that every subword of length k of w is in S.

Moreover we show how to construct S⊗ from S in linear time. In Section 4.3,

we show that if a code K satisfies P3[d, k] then the language K⊗ satisfies

P5[d, k]. Hence, any constructions of codes K for P3 are relevant to P5.

P4 and P2: It is evident that any language K+ satisfying P4[d, k] also satisfies

P2[k]. Moreover, P4[0, k] is identical to P2[k]. In Section 4.2, we show

that, for every code Q of length q, if the language Q+ satisfies P2[q] then

the language (Qd+1)+ satisfies P4[d, q(d + 1)], for any d > 0. Hence, any

constructions of strictly τ -free codes K are relevant to P4.

P4 and P5: It is evident that any language K+ satisfying P5[d, k] also satisfies

P4[d, k]. Moreover, it can be shown that if K+ satisfies P4[d, k] then (K2)+

satisfies P5[d, k]. Hence, any constructions of codes K for P4 are relevant to

P5.

P5 and P1: Obviously, any language satisfying P5[d, k] also satisfies P1[k].

Moreover, the property P1[k] coincides with P5[0, k]. In Section 4.2, we

show that every language satisfying P1[q], for some positive integer q, also

satisfies P5[d, q(d + 1)] for every d > 0, and conversely, if the language is of

the form K+ and satisfies P5[d, k] then it satisfies P1[k − d] as well. Hence,

any constructions of languages satisfying P1 are relevant to P5.
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Figure 3: Two DNA molecules in which the parts 5′ − AAGCGTTCGA − 3′ and
5′ − TCGGACGTT − 3′ bind together although these parts have different lengths.

1.6. A more general formalization: (θ, sim)-bond-freeness

The choice of the Hamming distance in the condition ‘H(x, τ(y)) ≤ d′ for sim-

ilarity between words is a very natural one and has attracted a lot of interest in

the literature. One might argue, however, that parts of two DNA molecules could

form a stable bond even if they have different lengths. In Figure 3, for example,

the bound parts of the two molecules have lengths 10 and 9. Such hybridizations

(and even more complex ones) are addressed in [1]. Based on this observation, the

condition for two subwords x and y to bind together should be

|x|, |y| ≥ k and Lev(x, τ(y)) ≤ d.

The symbol Lev(u, v) denotes the Levenshtein distance between the words u and v

– this is the smallest number of substitutions, insertions and deletions of symbols

required to transform u to v. With this formulation, the condition for similarity

based on the Hamming distance can be rephrased as follows

|x|, |y| ≥ k and H(x, τ(y)) ≤ d,

where we assume that H(u, v) = ∞ if the words u and v have different lengths. In

general, for any similarity relation sim(·, ·) between words and for every involution

θ, we define the following property of a language L.

P[θ, sim]: If x and y are any nonempty subwords of L then sim(x, θ(y)) is false.

Any language satisfying P[θ, sim] is called a (θ, sim)-bond-free language.

The precise definition of a similarity relation is given in Section 2. There it

is shown that the relations ‘|u|, |v| ≥ k and H(u, v) ≤ d’ and ‘|u|, |v| ≥ k and

Lev(u, v) ≤ d’ are indeed similarity relations. For these relations we shall use the

notation

Hd,k and Levd,k,

respectively.

1.7. Structure of the paper

In this paper we are interested in maximal bond-free languages. Let M be a

fixed language and let P be a property of languages. We say that a language L is

a maximal P subset of M if L satisfies P and there is no word w in M − L such

that L ∪ {w} satisfies P. We note that maximality is a central theme in the theory

of variable-length codes [15].
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In Section 2 we recall the general tools developed in [21] for proving decidability

questions for various language properties, and we show that one can decide in

quadratic time whether a given regular language is (θ, sim)-bond-free. We also

address this problem for the special cases where sim is equal to Hd,k or Levd,k.

Moreover, we show that this problem is decidable even when the given language

is context-free. Then we recall the general tools developed in [19] and [21] for

deciding whether a given language is maximal with respect to a certain property,

and we establish the decidability of whether a given regular language is maximal

with respect to the (θ, sim)-bond-free property.

The decision method for maximality presented in Section 2 is not of polynomial

time. In Section 3, however, we are able to show a polynomial time algorithm for

testing whether a given regular langauge is (θ,Hd,k)-bond-free, for d = 0 or d = 1.

In that section we also introduce the subword closure operation, ⊗, which plays an

important role in the paper.

In Section 4, we consider the problem of constructing tube languages satisfying

the Hamming bond-free property. Firstly, we describe a few direct methods, that

is methods that do not rely on other constructions, and then we show how to use

languages satisfying P1[k] to construct new languages satisfying P5[d, k], that is

(τ,Hd,k)-bond-free languages. Moreover, we obtain a complete structural charac-

terization of all maximal (τ,Hd,k)-bond-free tube languages. In the case of d = 0,

the characterization is quite explicit and allows us to give the exact number of these

languages.

In the last section, we conclude the paper with a summary of our results and a

few directions for future research.

2. Decidability Questions about (θ, sim)-bond-freedom

In this section, we recall the general tools developed in [21] for proving decid-

ability questions for various language properties, and we show that one can decide

in quadratic time whether a given regular language is (θ, sim)-bond-free. We also

address this problem for the special cases where sim is equal to Hd,k or Levd,k.

Moreover, we show that this problem is decidable even when the given language is

context-free. Then, we recall the general tools developed in [19] and [21] for decid-

ing whether a given language is maximal with respect to a certain property, and

we establish the decidability of whether a given regular language is maximal with

respect to the (θ, sim)-bond-free property.

2.1. Notation and basic tools

Here we introduce some notation about binary relations, automata and trans-

ducers, and binary word operations. We assume the reader is familiar with the

notation of Subsection 1.3.

We shall use a fixed non-singleton alphabet Σ and a fixed involution θ : Σ → Σ.

The set of all words (over Σ) is denoted by Σ∗ and includes the empty word λ. The

involution θ can be extended to Σ∗ as a morphic or antimorphic involution – this
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will be specified in the context where it is used.

Recall that a language L is a set of words, or equivalently a subset of Σ∗. The

notation Lc represents the complement of the language L; that is, Lc = Σ∗ − L.

A binary relation γ, say, over Σ is a subset of Σ∗ ×Σ∗. The expression ‘(u, v) is

in γ’ can be rephrased as ‘γ(u, v) is true’ when we view γ as a logic predicate. We

are interested in binary relations intended to define when two words are similar.

Definition 1 A binary relation sim is called a similarity relation with parameters

(t, l), where t and l are nonnegative integers, if the following conditions are satisfied.

(i) If sim(u, v) is true then abs(|u| − |v|) ≤ t, where abs is the absolute value

function.

(ii) If sim(u, v) is true and |u|, |v| > l then there are proper subwords x and y of

u and v, respectively, such that sim(x, y) is true.

We can interpret the above conditions as follows: (i) the lengths of two similar

words cannot be too different and (ii) if two words are similar and long enough,

then they contain two similar proper subwords. In the rest of the section we shall

assume that sim is a fixed, but arbitrary, similarity relation with parameters (t, l).

It is evident that the relation Hd,k defined in Subsection 1.6 is an example of a

similarity relation with parameters (0, k). In the next subsection we show that

Levd,k is a similarity relation as well, with parameters (d, d + k).

Automata, tries and transducers

A nondeterministic finite automaton with λ productions (or transitions), a λ-

NFA for short, is a quintuple A = (S,Σ, s0, F, P ) such that S is the finite and

nonempty set of states, s0 is the start state, F is the set of final states, and P is the

set of productions of the form sx → t, where s and t are states in S, and x is either

a symbol in Σ or the empty word. The automaton is called trim if every state is

reachable from the start state and can reach a final state. If there is no production

with x = λ, the automaton is called an NFA. If for every two productions of the

form sx1 → t1 and sx2 → t2 of an NFA we have that x1 6= x2 then the automaton

is called a DFA (deterministic finite automaton). The language accepted by the

automaton A is denoted by L(A). Any language accepted by some λ-NFA is called

regular. The size |A| of the automaton A is the number |S| + |P |.

A trie is a DFA with the following structure

({[p] | p ∈ Pref(S)}, Σ, [λ], {[s] | s ∈ S}, P ) ,

where S is a finite language, Pref(S) is the set of all prefixes of S, and the set of

productions is equal to

P = {[p]a → [pa] | p ∈ Pref(S), a ∈ Σ, pa ∈ Pref(S)}.

Note that each state [p] represents the prefix p of the input word that has been read

so far by the automaton. This implies that the trie accepts the language S.
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A finite transducer (in standard form) is a sextuple T = (S,Σ,Σ′, s0, F, P ) such

that Σ′ is the output alphabet, the components S, s0, F are as in the case of λ-NFAs,

and the set P consists of productions of the form sx → yt where s and t are states

in S, x ∈ Σ ∪ {λ} and y ∈ Σ′ ∪ {λ}. The relation realized by the transducer T is

denoted by R(T ). A binary relation is called rational if it can be realized by a finite

transducer. For any word w, the symbol T (w) represents the set of all outputs of T

on input w, that is, T (w) = {z | (w, z) ∈ R(T )}. The size |T | of the transducer T (in

standard form) is |S|+ |P |. For any λ-NFA A, one can construct the λ-NFA AT of

size O(|T ||A|) that accepts the language T (L(A)) = {z | (w, z) ∈ R(T ), w ∈ L(A)}

[24].

We refer the reader to [31] or [35] for further details on automata and formal

languages.

Binary word operations

Binary word operations are extensively used in this section as an important

tool for representing interaction of DNA molecules. A binary (word) operation is

a mapping ♦ : Σ∗ × Σ∗ → 2Σ∗

, where 2Σ∗

is the set of all subsets of Σ∗. Hence

the result of the operation ♦ with operands u, v ∈ Σ∗ is generally a language

(u♦ v) ⊆ Σ∗. In some important particular cases we have |u♦ v| = 1 for u, v ∈ Σ∗.

If there is no risk of misunderstanding, we then may assume u♦ v = w, w ∈ Σ∗,

instead of the singleton language {w} ⊆ Σ∗. A typical example is the catenation

operation u · v.

We extend a binary operation ♦ to any languages X and Y as follows:

X ♦Y =
⋃

u∈X,v∈Y

u♦ v. (1)

Let ♦ be a binary operation. The left inverse ♦l of ♦ is defined as [17]

w ∈ (x♦ v) iff x ∈ (w♦l v), for all v, x, w ∈ Σ∗,

and the right inverse ♦r of ♦ is defined as

w ∈ (u♦ y) iff y ∈ (u♦r w), for all u, y, w ∈ Σ∗.

The reversed ♦′ of ♦ is defined by u♦′ v = v♦u.

Several basic binary operations, together with their inverses, can be found in

[26, 16, 19]. Here we shall use binary operations involving trajectories [5, 23, 26].

Consider a trajectory alphabet V = {0, 1} and assume V ∩Σ = ∅. We call trajectory

any string t ∈ V ∗. A trajectory is essentially a syntactical condition which specifies

how a binary word operation ♦ is applied to the letters of its two operands. Let

t ∈ V ∗ be a trajectory and let α, β be two words over Σ. The shuffle of α with β

on the trajectory t, denoted by αttt β, is defined as follows:

αttt β = {α1β1 . . . αkβk | k ≥ 0, α = α1 . . . αk, β = β1 . . . βk, t =
0i11j1 . . . 0ik1jk , where |αm| = im ≥ 1 and |βm| = jm ≥ 1
for all m = 1, . . . , k}.
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Example 2.1 Let α = a1a2 . . . a8, β = b1b2 . . . b5 and t = 03120310101. The shuffle

of α and β on the trajectory t is:

αttt β = {a1a2a3b1b2a4a5a6b3a7b4a8b5}.

The deletion of β from α on the trajectory t is the following binary word operation:

α ;t β = {α1 . . . αk | k ≥ 0, α = α1β1 . . . αkβk, β = β1 . . . βk, t =
0i11j1 . . . 0ik1jk , where |αm| = im ≥ 1 and |βm| = jm ≥ 1
for all m = 1, . . . , k}.

Example 2.2 Let α = babaab, β = bb and assume that t = 001001. The deletion

of β from α on the trajectory t is: α ;t β = {baaa}.

Notice also that for given α, β, t we have always |αttt β| ≤ 1, |α ;t β| ≤ 1.

A set of trajectories is any set T ⊆ V ∗. The shuffle (deletion) of α with β on the

set T, denoted by αttT β (α ;T β), is:

α♦T β =
⋃

t∈T

α♦t β, (2)

where ♦ stands for tt or ;, respectively. The operations ttT and ;T generalize

to languages due to the general principle (1).

The following results are proven in [5, 23, 26] or follow directly by proof tech-

niques used ibidem.

Lemma 1 Let T be a set of trajectories; then

(i) ttl
T = ;T and ttr

T = ;
′
T̃
,

(ii) ;
l
T = ttT and ;

r
T = ;T̃ ,

where T̃ is the set of trajectories obtained by replacing all 0’s for 1’s and vice versa

in all the trajectories of T.

Lemma 2 Let L1, L2 and T be regular languages accepted by the NFA’s A1, A2

and AT , respectively.

(i) There exists an NFA A accepting L1 ttT L2 of the size |A| = O(|A1| · |A2| ·

|AT |), constructible in time |A|.

(ii) There exists a λ-NFA A′ accepting L1 ;T L2 of the size |A′| = O(|A1| · |A2| ·

|AT |), constructible in time |A′|.

2.2. Decidability for regular and context-free languages

Reference [20] defines several classes of languages (language properties) for avoid-

ing undesired bonds. In [21], it is observed that many of these properties can be

expressed using a predicate that involves two binary word operations as parameters.

Definition 2 [21] A mapping P : 2Σ∗

−→ {true, false} is called a strictly bond-

free property (of degree 2), if there are binary word operations ♦lo, ♦up and an

involution θ such that for an arbitrary L ⊆ Σ∗, P(L) = true iff

∀w, x, y ∈ Σ∗ (w♦lo x ∩ L 6= ∅, w♦up y ∩ θ(L) 6= ∅) ⇒ w = λ. (3)
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Theorem 1 (θ, sim)-bond-freedom is a strictly bond-free property.

Proof. We define the mappings simL and simR as follows:

simL(y) = {x ∈ Σ∗ | sim(x, y)}, (4)

simR(x) = {y ∈ Σ∗ | sim(x, y)}. (5)

Recall that a language L is (θ, sim)-bond-free iff

∀x1, y1, x2, y2 ∈ Σ∗, w1, w2 ∈ Σ+,

x1w1y1, x2w2y2 ∈ L ⇒ not sim(w1, θ(w2)) iff

∀x1, y1, x2, y2 ∈ Σ∗, w1, w2 ∈ Σ+,

x1w1y1, x2θ(w2)y2 ∈ L ⇒ not sim(w1, w2) iff

∀x1, w1, y1, x2, w2, y2 ∈ Σ∗,

x1w1y1, x2θ(w2)y2 ∈ L, sim(w1, w2) ⇒ (w1 = λ or w2 = λ) iff

∀x1, w1, y1, x2, w2, y2 ∈ Σ∗,

x1w1y1 ∈ L, x2w2y2 ∈ θ(L), w2 ∈ simR(w1) ⇒ (w1 = λ or w2 = λ) iff

∀x1, y1, x2, y2, w ∈ Σ∗,

({x1wy1} ∩ L 6= ∅, {x2} · (simR(w) ∩ Σ+) · {y2} ∩ θ(L) 6= ∅) ⇒ w = λ iff

∀x, y, w ∈ Σ∗,

(wttT x ∩ L 6= ∅, (simR(w)ttT y) ∩ θ(L) 6= ∅) ⇒ w = λ,

where T = 1∗0+1∗. 2

We note that the above theorem, as well as Corollary 1 and Theorem 3 (see

further below) remain valid even if sim is an arbitrary binary relation that does

not necessarily satisfy the conditions in Definition 1. The following result has been

shown in [21]:

Theorem 2 Let P be a strictly bond-free property associated with operations ♦lo,

♦up . For a language L ⊆ Σ∗, P(L) = true iff

(L♦l
lo Σ∗) ;1+ (θ(L)♦l

up Σ∗) = ∅. (6)

Corollary 1 A language L ⊆ Σ∗ is (θ, sim)-bond-free, iff

(L ;T Σ∗) ;1+ simL(θ(L) ;T Σ∗) = ∅,

where T = 1∗0+1∗.

Proof. Comparing Definition 2 and the proof of Theorem 1, we obtain

x♦lo y = xttT y, x♦up y = simR(x)ttT y.

Observe that for a binary operation ♦,

z ∈ simR(x)♦ y iff ∃w ∈ simR(x), z ∈ w♦ y iff

∃w ∈ simR(x), w ∈ z ♦l y iff ∃w ∈ z ♦l y, x ∈ simL(w), iff

x ∈ simL(z ♦l y),
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as x ∈ simL(w) iff w ∈ simR(x) due to (4), (5). Hence we have

x♦l
lo y = x ;T y, x♦l

up y = simL(x ;T y)

by Lemma 1. The statement now follows by Theorem 2. 2

The above result allows us to construct an effective algorithm deciding whether

a given regular language is (θ, sim)-bond-free.

Theorem 3 Assume that sim is a rational relation. The following problem is de-

cidable in quadratic time.

Input: NFA A.

Output: YES/NO, depending on whether L(A) is a (θ, sim)-bond-free language.

Proof. Let T be a (fixed) transducer realizing the similarity relation sim. Recall

from the previous subsection that given a λ-NFA A, the λ-NFA AT accepts the

language T (L(A)) and is of size O(|T ||A|). Moreover, given a λ-NFA A, we can

construct a λ-NFA of size O(|A|) accepting the language θ(L(A)). Using these facts

and Lemma 2, we can construct a λ-NFA A′ accepting the language

(L ;T Σ∗) ;1+ simL(θ(L) ;T Σ∗)

in time O(|A|2|T |), and so is its size. Then the result follows by Corollary 1. 2

For the case where sim is one of the similarity relations Hd,k or Levd,k defined

in Subsection 1.6, we have the following result.

Corollary 2 The following problem is decidable in time O(dk|A|2) (or O(dk2|A|2),

respectively):

Input: NFA A, integers d ≥ 0 and k ≥ 1.

Output: YES/NO, depending on whether the language L(A) is a (θ,Hd,k)-bond-

free (or (θ, Levd,k)-bond-free, respectively) language.

Proof. We only show the case where the similarity relation is Levd,k. We explain

how to construct a transducer T of size O(dk2) realizing this relation. Then, the

claim will follow from Theorem 3. One can easily construct a transducer T1 of size

O(d) such that (x, y) ∈ R(T1) iff Lev(x, y) ≤ d. Let B be a DFA of size O(k)

accepting all words of length at least k. The required transducer T is equal to

(T1 ↑ B) ↓ B. Here we use the fact that, for each transducer S and λ-NFA C, one

can construct the transducers S ↑ C and S ↓ C, each of size O(|S||C|), realizing the

relations {(x, y) ∈ R(S) | x ∈ L(C)} and {(x, y) ∈ R(S) | y ∈ L(C)}, respectively –

see [24]. The case of Hd,k is analogous. 2

As shown above, there exists an effective algorithm for testing whether a partic-

ular regular language is (θ, sim)-bond-free, for any rational similarity relation sim.

Now we address the same problem for the case of context-free languages. We note

first that for most of the DNA language properties considered in [12, 20, 21] the

problem is undecidable. As the (θ, sim)-bond-free property seems to be rather gen-

eral, it might be surprising that the same problem is decidable. This is shown in

Theorem 4 using the next lemma.
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Lemma 3 For all words u and v, if sim(u, v) is true then there are subwords x and

y of u and v, respectively, such that sim(x, y) is true and |x|, |y| ≤ t + l.

Proof. By inductive use of the condition (ii) in Definition 1, there must be

subwords x and y of u and v, respectively, such that sim(x, y) and either |x| ≤ l or

|y| ≤ l. Then the condition (i) in that definition implies that |x|, |y| ≤ t + l. 2

Theorem 4 Suppose that the similarity relation sim is computable. Then, it is

decidable whether a given context-free language is (θ, sim)-bond-free.

Proof. Let L be the given language (by means of a context-free grammar, for

instance). Observe that the language L ;T Σ∗, where T = 1∗0+1∗, is the set of all

subwords of L. This set is a context-free language, as T and Σ∗ are regular languages

[23]. Also, by definition, L is not (θ, sim)-bond-free iff there are nonempty subwords

u, v of L such that sim(u, θ(v)) holds. In this case, Lemma 3 implies that there are

subwords x and y of u and v, respectively, such that |x|, |y| ≤ t+ l. Hence, to decide

whether L is (θ, sim)-bond-free or not, it is enough to test for all such subwords x, y

of L whether sim(x, θ(y)) holds. 2

Recall that the relation Hd,k defined in Subsection 1.6 is a similarity relation.

Next we show that Levd,k is a similarity relation as well, which implies that the

above theorem applies when sim is one of these two relations – see Corollary 3.

Lemma 4 The binary relation Levd,k is a similarity relation with parameters (d, d+

k).

Proof. An alignment of two words u and v is a sequence of pairs

((u1, v1), . . . , (un, vn))

such that u = u1 · · ·un and v = v1 · · · vn and, for each index i, ui and vi are in

Σ∪{λ} with at least one of them being nonempty. Assume that Levd,k(u, v) is true.

Then Lev(u, v) ≤ d and, therefore, there exists an alignment α as above such that

there are at most d pairs (ui, vi) in α with ui 6= vi. Obviously, abs(|u| − |v|) ≤ d.

Now suppose that |u|, |v| > k + d. There is a prefix

α1 = ((u1, v1), . . . , (uj , vj))

of α such that the word x = u1 · · ·uj is of length k + d. This implies that the

word y = v1 · · · vj is of length at least k. If |y| ≤ k + d then the proper subwords

x and y satisfy Levd,k, as required. If |y| > k + d then, as before, there is a prefix

((u1, v1), . . . , (ur, vr)) of α1 such that the word y1 = v1 · · · vr is of length k + d,

which implies that the word x1 = u1 · · ·ur is of length at least k. Hence, again, the

proper subwords x1 and y1 satisfy Levd,k, as required. 2

Corollary 3 Let d and k be nonnegative integers with k ≥ 1. It is decidable whether

a given context-free language is (θ,Hd,k)-bond-free (or (θ, Levd,k)-bond-free).

2.3. Decidability of maximality for regular languages

In this subsection we use the tools developed in [19, 21] to decide whether a

given regular language is a maximal (θ, sim)-bond-free subset of some given regular

language. These tools involve the concept of a language inequation.
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Let L and M be two languages and let ♦ be a binary word operation. Consider

an inequation of the form

X ♦L ⊆ Xc, X ⊆ M. (7)

In [19], it is shown that this inequation is equivalent to

X ♦r X ⊆ Lc, X ⊆ M. (8)

A language Smax is a maximal solution of (7), or equivalently of (8), if Smax

is a solution (i.e. (7) holds true for X = Smax) and for each x in M − Smax, the

language Smax ∪ {x} is not a solution.

Let S be a solution of (7), or equivalently of (8). We call the language

R = M − (S ∪ S ♦L ∪ S ♦l L)

the residue of S.

Theorem 5 [21] Let S be a solution of (7), let R be the residue of S, and let

Q = {z ∈ Σ∗ | z ∈ z ♦L}. Then S is maximal iff R − Q = ∅.

Lemma 5 For each strictly bond-free property P there is a binary word operation

�P such that for a language L ⊆ Σ∗, P(L) = true iff

L �P L = ∅. (9)

Proof. By Theorem 2, for x, y ∈ Σ∗ we have

x �P y = (x♦l
lo Σ∗) ;1+ (θ(y)♦l

up Σ∗). (10)

2

In the case where P is the (θ, sim)-bond-free property, we shall use the symbol

� for �P .

Lemma 6 The left and right inverses of � are as follows.

(i) z �
l y = (z tt1+ simL(θ(y) ;T Σ∗))ttT Σ∗,

(ii) x �
r z = θ(simR((x ;T Σ∗) ;0+ z)ttT Σ∗).

Proof. In [21] it is shown that

(i) z �
l
P y = (z tt1+(θ(y)♦l

up Σ∗))♦lo Σ∗,

(ii) x �
r
P z = θ(((x♦l

lo Σ∗) ;0+ z)♦up Σ∗).

¿From the proof of Corollary 1, recall that

x♦lo y = xttT y, x♦up y = simR(x)ttT y

and

x♦l
lo y = x ;T y, x♦l

up y = simL(x ;T y).

The above observations imply that the first claim is correct. For the second claim

note that a word w is in x♦l
up y = simL(x ;T y) iff there is a word u such that

u ∈ simR(w) and y ∈ (u ;
l
T v), iff y ∈ (simR(w)ttT v) iff y ∈ w♦up v. 2
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Theorem 6 Assume that the similarity relation sim is rational. Then the following

problem is decidable.

Input: NFAs A and B such that L(A) is a (θ, sim)-bond-free subset of L(B).

Output: YES/NO, depending on whether L(A) is a maximal (θ, sim)-bond-free

subset of L(B).

Proof. Let L = L(A) and M = L(B) and D be a transducer realizing sim.

Lemma 5 implies that L�L = ∅, and (8) implies that L�
r Σ∗ ⊆ Lc. By Theorem 5,

we have that L is maximal iff

M ∩ (L ∪ L �
r Σ∗ ∪ Σ∗

�
l L)c ∩ Qc = ∅,

where we have used the fact that �
rl = �

l′ [19]. The language (L∪L�
rΣ∗∪Σ∗

�
lL)c

can be computed from A, B and D using the following facts for arbitrary λ-NFAs

C,C ′ and transducer F and regular trajectory set S: (i) one can compute λ-NFAs

accepting L(C)ttS L(C ′) and L(C) ;S L(C ′) – see Lemma 2; (ii) one can compute

a λ-NFA CF accepting the language {w | w ∈ F (u), for some u ∈ L(C)} [24]; (iii)

one can compute a transducer F−1 such that w ∈ F (u) iff u ∈ F−1(w) [35]; and

(iv) one can compute λ-NFAs accepting the languages L(C)c and θ(L(C)).

We need now to compute the set Qc. For this, observe first that

u � v =





λ, if u and v contain subwords x and y, respectively,

such that sim(x, θ(y)) holds;

∅, otherwise.

Then, by Lemma 3, we see that u � v = λ iff u and v contain subwords x and y of

length at most t + l such that sim(x, θ(y)) holds. As Q consists of all words w such

that w � w 6= ∅, it follows that each such w must be of the form x1w1y1 = x2w2y2

with |x1| ≤ |x2| and |w1|, |w2| ≤ t + l and sim(w1, θ(w2)). Equivalently, w is in Q

iff one of the following holds.

• w = xw1yw2z with |w1|, |w2| ≤ t + l and sim(w1, θ(w2));

• w = x1svpy2 with |v| > 0 and |w1|, |w2| ≤ t + l and sim(w1, θ(w2)), where

w1 = sv and w2 = vp;

• w = x1svpy1 with |v| > 0 and |w1|, |w2| ≤ t + l and sim(w1, θ(w2)), where

w1 = svp and w2 = v.

Note that, for every word u, the set D(u) is finite and computable. Thus, Q can be

computed as the union Q1 ∪ Q2 ∪ Q3, where

Q1 = Σ∗
( ⋃

|w1|≤t+l

⋃

u∈D(w1)

(w1Σ
∗θ(u))

)
Σ∗,

Q2 = Σ∗
( ⋃

(s,v,p)∈P2

svp
)
Σ∗,

Q3 = Σ∗
( ⋃

(s,v,p)∈P3

svp
)
Σ∗,
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where P2 is the set of all triples (s, v, p) with |sv| ≤ t + l, |v| > 0, θ(vp) ∈ D(sv),

and P1 is the set of all triples (s, v, p) with |svp| ≤ t + l, |v| > 0, θ(vp) ∈ D(svp).

As P1 and P2 are computable, the set Q is computable as well. 2

3. Decidability of Maximality in the Hamming Case

The decision method for maximality presented in Subsection 2.3 is not of poly-

nomial time. In this section, however, we are able to show a polynomial time

algorithm for testing whether a given regular langauge is (θ,Hd,k)-bond-free, for

d = 0 or d = 1. Moreover, we introduce the subword closure operation, ⊗, which

plays an important role in the sequel.

3.1. Some notation

We assume that the reader is familiar with the notation of Subsection 1.3 as

well as the terminology about automata and transducers in Subsection 2.1. In

particular, we assume that θ is an arbitrary antimorphic involution and τ is the

DNA involution.

Let k be a positive integer and let L be a language. We use the notation Subk(L)

to represent the set of all subwords of length k of L. Let d be a nonnegative integer

and let S be a language containing only words of the same length. The Hamming

ball Hd(S) of S is the set {v | H(v, z) ≤ d, for some z ∈ S}. Note that Hd(S) = S

when d = 0.

Lemma 7 Let k and d be integers with k ≥ 1 and d ≥ 0 and let L be a language.

The following statements hold true.

1. θ(Lc) = θ(L)c.

2. Subk(θ(L)) = θ(Subk(L)).

3. H(θ(u), θ(v)) = H(u, v), for all words u and v.

4. Hd(θ(L)) = θ(Hd(L)).

Proof. The proof is based on the definitions of the concepts involved and is left

to the reader. 2

Lemma 8 Let d ≥ 0 and k ≥ 1 be integers. A language L is (θ,Hd,k)-bond-free if

and only if

θ(Subk(L)) ∩ Hd(Subk(L)) = ∅. (11)

Proof. We prove the ‘if’ part and we leave to the reader the proof of the ‘only if’

part. Let w1 and w2 be subwords of L of length ≥ k. We show that H(w1, θ(w2)) >

d. The words w1 and w2 can be written as u1z1 and z2u2, respectively, with

|u1| = |u2| = k. As u1 is in Subk(L) and θ(u2) is in θ(Subk(L)), the assumption of

the ‘if’ part implies that θ(u2) /∈ Hd(u1) and, therefore, H(θ(u2), u1) > d. Hence,

also H(θ(w2), w1) > d holds. 2

In the literature on DNA encodings, and in coding theory in general, the set

of words that are involved in the application of interest are usually formed by
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concatenating shorter words of a certain fixed length. Following this practice, we

consider languages that are subsets of (Σk)+, for some positive integer k. We call

such languages k-block languages. Naturally, any regular k-block language can be

represented by a special type of lazy DFA [34], which we call k-block DFA. This

is a trim deterministic finite automaton such that, for every production pu → q,

the word u is of length k and there is no other production of the form pu → q′ –

this ensures that the automaton is deterministic. The size |A| of a k-block DFA

A is the quantity kn, where n is the number of productions in A. As an example,

consider the 2-state k-block DFA with the following set of productions, P , where s

is the start state, f is the only final state, and K is a finite code whose words are

of length k.

P = {su → f | u ∈ K} ∪ {fu → f | u ∈ K}.

Clearly, the language accepted by this k-block DFA is K+.

3.2. The subword closure operation and the algorithm

Here we consider the problem of deciding in polynomial time whether a given

regular k-block language that is (θ,Hd,k)-bond-free is maximal with this property.

If the language is given in terms of an ordinary DFA the problem appears to be

intractable. On the other hand, we are able to solve this problem affirmatively in

the cases of d = 0 and d = 1, and when the language in question is given in terms

of a k-block DFA – see Theorem 7. We remind the reader that, in the case of

d = 0, the property coincides with P1[k] – see Subsection 1.4. Next we illustrate

the concept of maximality with an example.

Example 3.1 Consider the code K1 = {AA,AC,CA,CC} over the DNA alphabet

and the 2-block language K+
1 . Let S1 = Sub2(K

+
1 ). Then, S1 is equal to K1 and

S1 ∩ τ(S1) is empty. Hence, the language K+
1 is a (τ,H0,2)-bond-free subset of

(Σ2)+. Moreover, there is no word v in Σ2−K1 such that the language (K1∪{v})+

is H0,2-bond-free. For example, if v = AG then GC would be a subword of length

2 of (K1 ∪ {v})+ such that GC = τ(GC). On the other hand, it is possible to add

AG as a subword with the constraint that AG cannot be followed by CA or CC.

In fact we can add also GA as a subword, provided that GA cannot be preceded

by AC, CC, or AG. More specifically, consider the language L2 accepted by the

2-block DFA A2 = (Σ, {1, 2, 3, 4}, 1, {2, 3, 4}, P2), where the set of productions P2

is equal to

{1u → 2, 1v → 3, 1(AG) → 4 | u = AA,CA,GA and v = AC,CC} ∪

{2u → 2, 2v → 3, 2(AG) → 4 | u = AA,CA,GA and v = AC,CC} ∪

{3u → 2, 3v → 3, 3(AG) → 4 | u = AA,CA and v = AC,CC} ∪

{4(AG) → 4, 4(AC) → 3, 4(AA) → 2}.

The language L2 is a proper superset of K+
1 and is a (τ,H0,2)-bond-free subset of

(Σ2)+. In fact in the next example we show that L2 is maximal using Lemma 10.

The operation of subword closure plays an important role in the sequel. Next

we give the formal definition and provide a few basic properties of this operation.
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Definition 3 Let S be a language containing only words of the same length k, for

some positive integer k. The subword closure S⊗ of S is the set

{w ∈ Σ∗ | |w| ≥ k, Subk(w) ⊆ S}.

Lemma 9 Let S be a language containing only words of the same length k, for

some positive integer k. The following statements hold true.

1. S = Subk(S⊗).

2. Let S1 be a language containing only words of the same length k. Then S1 ⊆ S

iff S1
⊗ ⊆ S⊗. This implies that, if S1 6= S then S1

⊗ 6= S⊗.

3. If S = Subk(L), for some language L, then L ⊆ S⊗.

Proof. The proof is based on the definition of S⊗ and is left to the reader. 2

Lemma 10 Let M be a language satisfying the condition Subk(M) ⊆ M ⊆ ΣkΣ∗

and let L be a (θ,Hd,k)-bond-free subset of M , for some integers k ≥ 1 and d ≥ 0.

The following statements hold true.

1. If the language L is not a maximal (θ,Hd,k)-bond-free subset of M then the

following set is nonempty:

(M −L)
⋂ (

Subk(L)
⊗

⋃ (
θ(Hd(Subk(L))c) ∩ {w ∈ Σk | H(w, θ(w)) > d}

))
.

2. Conversely, if a word w belongs to the above set then the language L∪ {w} is

a (θ,Hd,k)-bond-free subset of M and, therefore, L is not a maximal (θ,Hd,k)-

bond-free subset of M .

Proof. Let S = Subk(L) and let D = {w ∈ Σk | H(w, θ(w)) > d}. By (11), the

assumption that L is (θ,Hd,k)-bond-free is equivalent to the condition

θ(S) ∩ Hd(S) = ∅.

We begin with the first statement. The assumption that L is not maximal implies

that there is a word w of minimum length with the property that w ∈ M − L and

θ(S ∪ Subk(w)) ∩ Hd(S ∪ Subk(w)) = ∅.

We need to show that the set (M − L) ∩ (S⊗ ∪ (θ(Hd(S)c) ∩D)) is not empty. We

distinguish two cases. Firstly, assume that w is of length k. Then, Subk(w) = {w}

and θ(w) /∈ Hd(w) and θ(w) /∈ Hd(S). This implies that w ∈ D ∩ θ(Hd(S)c). Now

consider the case where |w| > k. We show that v ∈ S, for all words v in Subk(w).

Let v ∈ Subk(w) and suppose that v is not in S. Then |v| = k and v /∈ L. Moreover,

the assumption about M implies that the word v must be in M . As S ∪ {v} is a

subset of S∪Subk(w), one has that θ(S∪{v})∩Hd(S∪{v}) = ∅, which contradicts

the assumption about the choice of w. Hence, it is the case that Subk(w) ⊆ S,

which implies that w must be in S⊗.
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Now we prove the second statement. Let w be a word in (M−L)∩θ(Hd(S)c)∩D.

Then |w| = k and H(w, θ(w)) > d and w /∈ Hd(θ(S)) and, therefore, H(θ(w), z) > d

for all words z in S. We claim that

θ(Subk(L1)) ∩ Hd(Subk(L1)) = ∅,

where L1 = L∪{w}. Indeed the claim follows easily when we note that Subk(L1) =

S ∪ {w}. Hence, L1 is a (θ,Hd,k)-bond-free subset of M . Now let u be a word in

(M − L) ∩ S⊗ and let L2 = L ∪ {u}. As Subk(u) is a subset of S, we have that

Subk(L2) = S, which implies that θ(Subk(L2)) ∩ Hd(Subk(L2)) is empty. Hence,

L2 is a (θ,Hd,k)-bond-free subset of M . 2

In this paper we shall apply the above lemma for the cases where M is equal to

(Σk)+ or ΣkΣ∗.

Example 3.2 We show that the language L2 defined in the previous example is a

maximal (τ,H0,2)-bond-free subset of (Σ2)+. Assume that L2 is not maximal. Let

S2 = Sub2(L2) and let D = {w ∈ Σ2 | H(w, τ(w)) > 0}. Then S2 consists of the

words AA,AC,AG,CA,CC,GA. As

((Σ2)+ − L) ∩ D = τ(S2) and τ(H0(S2)
c) = τ(S2)

c,

the first statement of Lemma 10 implies that there is a word w in the set ((Σ2)+ −

L)∩S2
⊗. Then the second statement of the lemma implies that L2∪{w} is (τ,H0,2)-

bond-free and, therefore, no subword of w can be in τ(S2). In particular, none of

CG, GC, and GG can be subwords of w. This leads to a contradiction as follows.

Let w = w1 · · ·wm with each subword wi being of length 2. As w is not in L there

is a prefix u = w1 · · ·wi−1 of w, for some i > 1, such that u takes the automaton A2

to a state q in {3, 4} and there is no production of the form qwi → p. In particular,

this is possible when q = 3 and wi = GA, or q = 4 and wi ∈ {CA,CC,GA}. In

the first case u must end with C and in the second one u must end with G, which

implies that one of CG, GC, and GG must be a subword of w.

For the sake of simplicity, in the next theorem we assume that θ is the DNA in-

volution. The theorem will remain valid, however, even for an arbitrary antimorphic

involution if we adjust the time complexity estimates.

Theorem 7 Let d be a fixed value in {0, 1}. The following problem is computable

in polynomial time.

Input: k-block DFA A such that L(A) is a (θ,Hd,k)-bond-free subset of (Σk)+.

Output: YES/NO, depending on whether the language L(A) is maximal with that

property. Moreover, if L(A) is not maximal, output a minimal-length word

w ∈ (Σk)+ − L(A) such that L(A) ∪ {w} is a (θ,Hd,k)-bond-free subset of

(Σk)+.

In particular, the time complexity t(|A|) is bounded as follows:

t(|A|) =





O(k|A|3), if k is odd and d = 0;

O(|A|6), if k is even and d = 0;

O(k3|A|6), if d = 1.
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The proof of the above theorem is based on several intermediate lemmata, some

of which might be of interest in their own right. In the proofs we use the following

facts and notation.

• Every NFA A can be converted to an equivalent trim NFA of size O(|A|) in

time O(|A|). Moreover, if A accepts only words of the same length, we can

convert it to an equivalent NFA of size O(|A|) with a single final state in time

O(|A|).

• Given two NFA’s A and B we can use the standard product construction to

obtain the NFA A∩B of size O(|A||B|) accepting the language L(A)∩L(B). If

A is a DFA we can construct a DFA Ac of size O(|A|) accepting the language

L(A)c.

• If A is an NFA and p and q are states of A then Ap,q denotes the NFA which

is identical to A except that p is the start state and q is the final state of

Ap,q. If A is trim with start state s and a single final state f then θ(A) is

the trim NFA of size O(|A|) accepting the language θ(L(A)) such that θ(A)

results from Af,s by replacing each production qa → r with rθ(a) → q.

• If a trim NFA A accepts only words of the same length k, for some positive

integer k, then the state set of A can be partitioned into k + 1 levels (sets of

states) such that the start state is the only state in level 0, level k consists of

the final states of A, and if qa → r is a production of A with q being at level

l < k then the state r is in level l + 1. If A is a DFA then there is a DFA

A−k of size O(|A|) accepting the language Σk −L(A). Moreover, A−k can be

constructed from A in time O(|A|).

Lemma 11 For every k-block DFA A, there is an (ordinary) DFA Â of size O(|A|)

such that L(Â) = L(A). Moreover, Â can be constructed from A in time O(|A|).

Proof. For each state q of A, let Pq be the set of productions of A of the form

qu → r. The set of productions of Â consists of all the productions computed by

the following procedure: For each state q of A compute a special type of trie Tq,

called quasi-trie here, as follows. The start state of Tq is q. For each production

qu → r in Pq, insert into Tq the word u as one would do in an ordinary trie – this

will add into Tq all necessary productions – with the following modification: if u is

of the form u1a with a in Σ, then instead of the production [u1]q a → [u]q insert

into the quasi-trie Tq the production [u1]q a → r. It is evident that this procedure

requires time linear with respect to |A|. Obviously the state set of Â consists of the

states of A plus all the states [w]q appearing in some quasi-trie Tq. The start and

final states of Â are exactly those of A. Moreover, for each pair of states (q, r) of

A, the set of words accepted by Âq,r is exactly the set of words {u | qu → r is a

production of A}. This implies that L(Â) = L(A). 2

Lemma 12 Let T be a trie accepting only words of the same length. There is a DFA

T⊗ of size O(|T |) accepting the language L(T )
⊗
. Moreover, T⊗ can be constructed

from T in time O(|T |).
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Proof. For a word w of the form aw1, with a ∈ Σ, we denote by ẇ the word w1.

The states of T⊗ are exactly those of T and the start and final states of T⊗ are

exactly those of T as well. The DFA T⊗ contains all the productions of T plus,

for each final state [w] of T – note that there are no productions in T of the form

[w]a → [u] – and for each a in Σ, the production [w]a → [ẇa] iff [ẇa] is a final state

of T . It is evident that this process can be performed in time O(|T |). We show

next that L(T )
⊗ ⊆ L(T⊗) and we leave the proof of the converse inclusion to the

reader.

First note that every word w in L(T )
⊗

is of the form ua1 · · · am with |u| = k,

m ≥ 0, and each ai is in Σ. Let u0 = u and ui = u̇i−1ai for all i = 1, . . . ,m. Then,

for each index i, the word ui is in Subk(w), which implies that ui is in L(T ). Thus,

on input w the DFA T⊗ will behave as follows: the prefix u of w will take T⊗ to

the final state [u] and, in general, if ua1 · · · ai−1 takes T⊗ to the final state [ui−1]

then, as u̇i−1a is in L(T ), the prefix ua1 · · · ai of w would take T⊗ to the final state

[ui]. Thus, w will be accepted by T⊗ and, therefore, w is also in L(T⊗). 2

Lemma 13 Let A be a k-block DFA. There is a trie Tk(A) of size O(|A|2) accepting

the language of all subwords of length k of L(A). Moreover, Tk(A) can be constructed

from A in time O(|A|2).

Proof. Let Q be the set of states and let n be the number of transitions of A.

Then n = |A|/k. For each state q in Q, let Pq be the set of transitions of the form

pu → q and let Nq be the set of transitions of the form qv → r. Clearly, Subk(L(A))

is the union of Subk(uv), for all pairs of words u and v appearing in the sets Pq

and Nq, respectively, of some state q. Using this observation, the trie Tk(A) is

constructed as follows. For each state q in Q and for every transitions pu → q in Pq

and qv → r in Nq, add all subwords of length k of uv into the trie. Note that each

pair (u, v) contributes at most k + 1 different subwords in Subk(L(A)), and there

are
∑

q∈Q |Pq||Nq| such pairs (u, v). Hence, the number of words inserted into the

trie is (k + 1)
∑

q∈Q |Pq||Nq|. As
∑

q∈Q |Nq| = n and |Pq| ≤ n, for all q, it follows

that there are at most (k + 1)n2 words of length k inserted into the trie Tk(A).

Hence, |Tk(A)| = O(|A|2). 2

Lemma 14 Consider the following problem.

Input: Integers d ≥ 0 and k ≥ 1, and NFA A accepting only words of length k.

Output: YES/NO, depending on whether there is a word w in L(A) such that

H(w, θ(w)) > d. Moreover, output a word with this property (if it exists).

There is an algorithm that computes the problem such that the time complexity

t(|A|, d) of the algorithm is bounded as follows:

t(|A|, d) =

{
O(|A|), if k is odd and d = 0;

O(|A|3 + d
2 |A|3), otherwise.

Proof. Let s be the start state of A. We can assume that A is a trim NFA with

a single final state f – if not, we can convert A to an equivalent such NFA. First

note that w 6= θ(w) for any word of odd length and, therefore, if d = 0 and k is odd
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then H(w, θ(w)) > d for all words w in L(A). In this case the algorithm consists of

picking any path from state s to state f and outputting the word corresponding to

this path. In the sequel we assume that k is even or d > 0. Let

t =

{
bd/2c, if k is even;

b(d − 1)/2c, if k is odd.

One can verify that for any word w, H(w, θ(w)) > d iff there are words u and u′ of

the same length such that w = uu′ (if |w| is even) or w ∈ uΣu′ (if |w| is odd), and

H(u, θ(u′)) > t. Now let Tt be a transducer of size O(t+2) with the property that,

for all words x and y, x ∈ Tt(y) iff H(x, y) > t. Based on the above observations

one can verify that there is a word w in L(A) with H(w, θ(w)) > d iff there is a

state q at level bk/2c and a state r at level dk/2e that is adjacent to q – in fact

r = q if k is even – such that

Tt(L(As,q)) ∩ θ(L(Ar,f )) 6= ∅.

For the sake of simplicity we describe the algorithm only for the case where k is odd

– if k is even then the loop at Step 2 iterates for each state q in Q1 and assumes

that r = q and a = λ.

1. Let Q1 be the set of states at level bk/2c and let P be the set of productions of

the form qa → r with q ∈ Q1;

2. For each production qa → r in P repeat steps (A)–(B):

(A) Construct the NFA B = (As,q)Tt
∩ θ(Ar,f );

(B) If there is a path from the start to the final state of B do the following:

B1 output YES;

B2 Let v be the word corresponding to the path and let Dv be a DFA

of size O(|v|) accepting {v};

B3 Let C be the NFA (Dv)Tt
∩ As,q;

B4 Let u be the word corresponding to any path from the start to the

final state of C;

B5 Output the word uaθ(v) and quit;

3. Output NO.

Suppose that for some production qa → r there is a path in Step 2(B), then

the word v corresponding to this path belongs to L((As,q)Tt
) ∩ θ(L(Ar,f )). In this

case, θ(v) is in L(Ar,f ) and there is a word u ∈ L(As,q) such that v ∈ Tt(u).

This implies that H(u, v) > t and u ∈ Tt(v) and, therefore, the language accepted

by the NFA C in Step B3 is nonempty. Moreover, as H(u, θ(θ(v))) > t, one has

that H(uaθ(v), θ(uaθ(v))) > d. This establishes the correctness of steps B2–B5.

Regarding the time complexity, first note that Step 1 can be performed in time

O(|A|) and that the loop in Step 2 iterates at most O(|A|) times. In each iteration,
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the algorithm computes the NFA B in time O((t + 2)|A|2). If L(B) is nonempty

the NFA C is computed in time O(k(t + 2)|A|) and then the algorithm terminates.

Hence the algorithm operates in time O(|A|3 + t|A|3) in the worst case. 2

Proof of Theorem 7.

The algorithm is as follows. We use S as a shorthand notation for Subk(L(A)).

1. If d = 0 let A1 be the trie Tk(A). If d = 1 let A1 be the trie obtained by

modifying the construction of Tk(A) as follows: For each word x in S, insert

into Tk(A) the word x as well as all words y that differ from x in exactly one

position – there are exactly k(|Σ| − 1) such words. Note that L(A1) = Hd(S)

and |A1| = O(|A|2) if d = 0, or |A1| = O(k|A|2) if d = 1.

2. Let F be the set of words in L(A) of length k. This set can be computed in

time O(|A|) and is of cardinality O(|A|/k).

3. Let B0 be the trie that results if we insert into A1 the words of θ(F ). This

process requires time O(|F |k) and the resulting trie is of size O(|F |k + |A1|),

which is simply O(|A1|). Note that L(B0) = (Hd(S) ∪ θ(L(A))) ∩ Σk.

4. Let B1 be a trim DFA of size O(|A1|), with a single final state, that is equiv-

alent to B0
−k.

5. Let A2 = θ(B1). Note that L(A2) = Σk ∩ θ(Hd(S)c) ∩ L(A)c and |A2| =

O(|A1|).

6. Run the algorithm of Lemma 14 on input (d, k,A2). If that algorithm returns

YES and a word w, then output NO and the word w, and quit.

7. Let B be a DFA of size O(k) accepting the language (Σk)+.

8. Let A3 = (B ∩ Âc) ∩ Tk(A)
⊗

. Note that L(A3) = ((Σk)+ − L(A)) ∩ S⊗ and

|A3| = O(k|A|3).

9. Find a shortest path from the start to a final state of A3. If such a path exists

then output NO and the word corresponding to that path. Else output YES.

The correctness and time complexity of the algorithm follow from the preceding

lemmata. In particular, we note that if L(A) is not maximal then any minimal-

length word that can be added into L(A) must be of length at least k. In Step 6,

the algorithm checks for candidate words of length k in the set L(A2) ∩ {w ∈ Σ∗ |

H(w, θ(w)) > d}. If none is found, it continues with steps 8 and 9 looking for the

shortest word, if any, in the set L(A3). By Lemma 10, if no word is found in steps

6 and 9 the algorithm correctly outputs that L(A) is maximal. 2

4. Construction Methods for the Hamming Case

In this section we describe methods for constructing (τ,Hd,k)-bond-free lan-

guages. We focus on languages that are subsets of (Σk)+ or ΣkΣ∗. We assume
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throughout that k and d are integers, with k ≥ 1 and 0 ≤ d < k, and τ is the DNA

involution.

4.1. Direct methods

Here we consider analytical methods that do not rely on previously constructed

languages. The first method is based on the concept of a template introduced in

[2]. The operation ‘·’ between two bits in {0,1} is defined as follows

0 · 0 = C, 0 · 1 = G, 1 · 0 = T, 1 · 1 = A.

This operation is extended to binary words of the same length in a natural manner.

For example, 0101 · 0110 = CAGT . It can be shown that b1 · b2 = b3 · b4 iff b1 = b3

and b2 = b4, for all bits b1, b2, b3, b4. A k-template is any binary word of length k.

If x is a k-template and E is subset of {0, 1}k then x · E = {x · v | v ∈ E}. The

construction method of [2] involves choosing a k-template x and a code E such that

x · E satisfies a desired property. In our case, we are interested in k-templates x

such that

H(x2x1, (x4x3)
R) > d, (12)

for all prefixes x1 and x3 of x and suffixes x2 and x4 of x.

Theorem 8 Let x be a k-template satisfying (12). Then the language (x · {0, 1}k)+

is (τ,Hd,k)-bond-free.

Proof. Let β be the binary antimorphic involution such that β(0) = 1 and

β(1) = 0. The proof is based on the facts that τ(x1 · g1) = xR
1 · β(g1) and H(x1 ·

g1, x2 · g2) ≥ H(x1, x2), for all binary words x1, g1, x2, g2 of the same length. 2

Observe that the cardinality of the code x · {0, 1}k is 2k. The advantage of the

method of templates is that properties of the template x, which is a simple object,

are passed gracefully to the code x · E, where E is any subset of {0, 1}k. This is

evident, for instance, in Theorem 8. Moreover, by choosing a template x with the

same number of 0’s and 1’s, all the words of the code x · E have a 50% GC-ratio.

We note that many of the templates listed in [2] satisfy (12).

We introduce now another direct construction method. In this method, the

bond-free language is again of the form K+, where K is a code of fixed-length.

Moreover there is a set I of positions in which the codeword symbols are always in

{A,C}. The method is described more formally in the next theorem. The notation

v[i] stands for the symbol of the word v at position i, and k % 2 stands for the

remainder of the integer division k/2 – this notation is borrowed from programming

languages.

Theorem 9 Let I be a nonempty subset of {1, . . . , k} of cardinality bk/2c + 1 +

b(d + k % 2)/2c. Then the language K+ is (τ,Hd,k)-bond-free, where

K = {v ∈ Σk | if i ∈ I then v[i] ∈ {A,C}}.

Proof. Let r be the quantity b(d + k % 2)/2c. One can verify that the condition

d < k is equivalent to bk/2c + 1 + r ≤ k. Now note that every word of length k
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of the form sp, with s being a suffix of K and p a prefix of K, contains at least

bk/2c+1+r symbols in {A,C}. Hence, τ(sp) contains at least bk/2c+1+r symbols

in {G,T}. Assume that K+ is not (τ,Hd,k)-bond-free; then H(s1p1, τ(s2p2)) ≤ d

for some words s1p1 and s2p2 of the above form. This implies that s1p1 contains at

least bk/2c + 1 + r − d symbols in {T,G}. At the same time this word contains at

least bk/2c + 1 + r symbols in {A,C}. Hence,

|s1p1| ≥ bk/2c + 1 + r − d + bk/2c + 1 + r = 2r + 2 + 2bk/2c − d.

Using the facts that k = 2bk/2c + k % 2 and 2r + 2 > d + k % 2, it follows that

|s1p1| > k; a contradiction. Hence, K+ must be (τ,Hd,k)-bond-free. 2

Let l be the quantity bk/2c + 1 + b(d + k % 2)/2c that appears in the above

theorem – recall from the proof of the theorem that l ≤ k. The size of the code

K is 2l4k−l. On the other hand the method of k-templates produces codes K of

size 2k. Obviously, 2l4k−l ≥ 2k. Moreover, one can verify that k = l iff d is in

{k − 2, k − 3}. An advantage of the method of Theorem 9 is that we can construct

(τ,Hd,k)-bond-free languages with a large ratio d/k. On the other hand, in the case

of d = 0 we have that b(d + k % 2)/2c = 0 and, therefore,

|K| = 2bk/2c+14dk/2e−1. (13)

Another advantage of some codes K defined in the previous theorem is that one

can encode and decode information in linear time. More specifically, consider the

following instance of the code K

K = Σk−l{A,C}l

such that l is even – this holds, for instance, if d and k are even and k + d + 2 is

a multiple of 4. Let n be the quantity k − l/2. Every word a1 · · · an in Σn can be

encoded with a codeword in K as follows. Each symbol ai is encoded as ai, for

i = 1, . . . , k − l, and each symbol aj is encoded as




AA, if aj = A;

AC, if aj = C;

CA, if aj = G;

CC, if aj = T ;

for j = k−l+1, . . . , n. Clearly, this process can be done in time O(n). For example,

if k = 12 and d = 6 then l = 10 and n = 7 and the word AGTTCAG will be encoded

as AGCCCCACAACA. On the other hand it is easy to see that each codeword

b1 · · · bk in K can be decoded in time O(k).

4.2. Methods based on the catenation closure

The main idea here is that the catenation closure of Qd+1, that is the language

(Qd+1)+, is (τ,Hd,k)-bond-free if Q is of length q with the property that Q+ is

(τ,H0,q)-bond-free. The correctness of the method is based on the following theo-

rem.
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Theorem 10 Let j and q be positive integers and let L be a subset of ΣjqΣ∗. If

L is (τ,Ht,q)-bond-free, for some integer t ≥ 0, then it is also (τ,Hd,k)-bond-free,

where d = j(t + 1) − 1 and k = jq.

Proof. The claim is trivial for j = 1. So assume that j ≥ 2 and consider any

subwords w and w′ of L of length k = jq. These can be written in the form v1 · · · vj

and v′
1 · · · v

′
j , respectively, where each vi and v′

i is of length q. For each index i,

the words vi and v′
j−i+1 are subwords of L, which implies that H(vi, τ(v′

j−i+1)) > t

and, therefore,

H(w, τ(w′)) =

j∑

i=1

H(vi, τ(v′
j−i+1)) ≥ j(t + 1).

Hence, L is (τ,Hd,k)-bond-free. 2

Observe that for t = 0, the above theorem says that nearly every language

that is (τ,H0,q)-bond-free is inherently (τ,Hd,k)-bond-free for any d > 0 and any

k ≥ q(d + 1). This is a connection between the properties P1 and P5 considered

in Section 1.

With the notation of the above theorem, let Q be a code of length q such that

the language Q+ is (τ,Ht,q)-bond-free. Let K = Qj and let k = jq. The code Q

could be defined by some direct method, or by brute force for small values of q and

t. In either case, the language K+ is (τ,Hd,k)-bond-free.

In the case of t = 0, we have that j = d + 1 and the cardinality of the code K is

|Q|d+1, which can be larger than the cardinality of the codes defined in Theorem 9

with the same parameters. For example, consider the code

Q = {A,C}3Σ ∪ {A,C}2{G,T}{A,C},

which consists of 23 ·4+22 ·2·2 = 48 codewords of length 4. Then the language Q+ is

(τ,H0,q)-bond-free, where q = 4.a Moreover, according to the above, for any integer

d > 0, the language (Qd+1)+ is (τ,Hd,k)-bond-free, where k = 4(d+1), and the code

K = Qd+1 consists of 48d+1 codewords. On the other hand, if the code K is defined

using Theorem 9 for k = 4(d + 1) then the cardinality of K is 2r · 4k−r = 22k−r,

where r = bk/2c+1+ b(d+k % 2)/2c which is equal to 2d+3+ bd/2c. This implies

that the cardinality of K is equal to 26d+5−bd/2c, which is less than 48d+1.

Correction in [22]: In the previous version of this example, [22], we used

Q = {A,C}2Σ∪{A,C}{G,T}{A,C}, but the claim that Q+ is (τ,H0,q)-bond-free,

where q = 3, is incorrect.

The following observation can be viewed as a converse type of Theorem 10.

Theorem 11 Let K be any set of words such that the language K+ is (τ,Hd,k)-

bond-free, for some integers d ≥ 0 and k ≥ 1. Then the language K+ is also

(τ,H0,k−d)-bond-free.

aTo see this, represent with 0 any element in {A, C}, with 1 any element in {G, T}, and with ∗
any element in Σ, and observe that (i) the representation of any subword of length 4 of Q+ either
contains three 0’s or is equal to 1001, and (ii) the representation of any subword of length 4 of
τ(Q+) either contains three 1’s or is equal to 0110.
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Proof. Let x and y be any two subwords of K+ of length k− d. We need to show

that x 6= τ(y). It is easy to see that one can always find subwords of K+ of the

form xu and vy whose length is equal to k. The assumption about K+ implies that

H(xu, τ(y)τ(v)) > d. Moreover, as H(u, τ(v) ≤ d, it follows that H(x, τ(y)) > 0 as

required. 2

We close this section with a connection between the properties P2 and P4

considered in Section 1, which is analogous to the connection between P1 and P5.

Theorem 12 Let Q be any code of fixed length q such that Q+ satisfies P2[q]. For

any positive integer j, the language (Qj)+ satisfies P4[j − 1, jq].

Proof. The proof is similar to that of Theorem 10, for t = 0, and is left to the

reader. 2

4.3. All maximal (Hamming) bond-free languages

With the results of Section 3 in mind, we understand that the languages of the

form K+ obtained by the preceding methods are not necessarily maximal. In what

follows we discuss methods of obtaining new bond-free languages, possibly maximal,

from old ones using the subword closure operation ⊗. We need the following, slightly

restricted, version of the subword closure of S, where S is any code of fixed length

k,

S⊕ def
= S⊗ ∩ (Σk)+.

We call S⊕ the block closure of S. Given a trie T accepting S, one can use a

product construction between the DFA T⊗ of Lemma 12 and a DFA accepting

(Σk)+ to construct a DFA T⊕ of size O(k|T |) accepting the block closure of S.

Using Lemma 9, one can verify that

S1 ⊆ S iff S1
⊕ ⊆ S⊕,

for all subsets S and S1 of Σk. This implies that if S1 6= S then S1
⊕ 6= S⊕.

Theorem 13 Let S be a set of words of fixed length k. Then each of the languages

S⊗ and S⊕ is (τ,Hd,k)-bond-free iff

τ(S) ∩ Hd(S) = ∅. (14)

Proof. The statement follows easily from (11) and the fact that S = Subk(S⊗) =

Subk(S⊕) – see Lemma 8. 2

Using the above observation we can extend (τ,Hd,k)-bond-free languages of the

form K+, such as those constructed earlier, as follows – we assume the words of K

are of fixed length k. Let S = Subk(K2) = Subk(K+). Then S satisfies (14) and,

therefore, the language S⊗ is a (τ,Hd,k)-bond-free language that includes K+.

Next consider any code K of length k satisfying property P3[d, k] – recall from

Section 1 that such codes have been studied in [25] and [33]. Using again the above

theorem it follows that K⊗ is a (τ,Hd,k)-bond-free language.

The question that arises now is when the bond-free languages of Theorem 13 are

maximal. The following result addresses this question. In fact we show a complete
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structural characterization of all maximal (τ,Hd,k)-bond-free subsets of (Σk)+ and

ΣkΣ∗.

Theorem 14 The class of all maximal (τ,Hd,k)-bond-free subsets of (Σk)+ is finite

and equal to

{S⊕ | S ⊆ Σk and S is maximal satisfying τ(S) ∩ Hd(S) = ∅}.

In particular, if d = 0 then this class is equal to

{S⊕ | S ∪ τ(S) = {v ∈ Σk | v 6= τ(v)}, τ(S) ∩ S = ∅}

and has cardinality {
24k/2, if k is odd;

2(4k−4k/2)/2, if k is even.

Proof. Let Dd,k be the set {v ∈ Σk | H(v, τ(v)) > d}. It is evident that if a

subset S′ of Σk satisfies (14) then S′ ⊆ Dd,k. The main tool of this proof is the

following claim.

• For any subset S of Σk that satisfies (14) we have that S is maximal with this

property iff S satisfies

Dd,k ⊆ S ∪ τ(Hd(S)). (15)

For the ‘if’ part of the claim assume that S satisfies (14) and (15), but suppose

that there is a word v in Σk − S such that the set S ∪ {v} satisfies (14) as well.

As v ∈ Dd,k and v /∈ S we have that v ∈ τ(Hd(S)), or equivalently τ(v) ∈ Hd(S)

which implies that S ∪ {v} does not satisfy (14); a contradiction. For the ‘only if’

part assume that S is maximal with the property (14), but suppose there is a word

v in Dd,k such that v is not in S ∪ τ(Hd(S)). One can verify that the set S ∪ {v}

satisfies (14) as well, contradicting the maximality of S.

We now turn to the general statement of the theorem where d ≥ 0. We need to

prove the following two claims.

1. If a subset S of Σk satisfies (14) and (15) then S⊕ is a maximal (τ,Hd,k)-

bond-free subset of (Σk)+.

2. If L is any maximal (τ,Hd,k)-bond-free subset of (Σk)+ then L = S⊕, where

S = Subk(L), such that S satisfies (14) and (15).

For the first claim we note firstly that (14) and the fact S = Subk(S⊕) imply that

S⊕ is a (τ,Hd,k)-bond-free subset of (Σk)+. Now consider the sets

X = ((Σk)+ − S⊕) ∩ Dd,k ∩ τ(Hd(S))c and Y = ((Σk)+ − S⊕) ∩ S⊗.

It is easy to see that X = Dd,k − (S ∪ τ(Hd(S))). As both of X and Y are empty

when (15) holds, Lemma 10 implies that S⊕ is a maximal (τ,Hd,k)-bond-free subset

of (Σk)+, as required.

For the second claim, let L be any maximal (τ,Hd,k)-bond-free subset of (Σk)+.

Then S satisfies (14) and, by Lemma 10, S satisfies (15) as well. Moreover, L is a
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subset of S⊕ – see Lemma 9. It remains to show that S⊕ is a subset of L. For this,

assume there is a word w in S⊕ − L; then the set ((Σk)+ − L) ∩ S⊗ is nonempty

and Lemma 10 implies that L is not maximal. Hence, S⊕ = L as required.

It is evident that the class of all maximal (τ,Hd,k)-bond-free subsets of (Σk)+

is a finite set. The statement for the case of d = 0 follows when we note that,

for any subset S of Σk, we have that Hd(S) = S and, if S satisfies (14), then

τ(S) ∪ S ⊆ D0,k. Moreover, the claim about the cardinality of the class follows

easily when we note that the partition {{v, τ(v)} | v ∈ D0,k} of D0,k contains

|D0,k|/2 different subsets and that exactly one of the two elements of each subset

can be included in a particular S. We also recall that the cardinality of D0,k is 4k

if k is odd, or 4k − 4k/2 if k is even [3]. 2

Note: The above theorem holds also for subsets of ΣkΣ∗ if we replace S⊕ with S⊗.

According to Theorem 14, if K is a maximal subset of Σk satisfying τ(K)∩Hd(K)

then the language K⊕ is a maximal (τ,Hd,k)-bond-free subset of (Σk)+. In the case

of d = 0 the characterization of the maximal bond-free languages is quite explicit:

Define any partition {S, τ(S)} of the set {v ∈ Σk | v 6= τ(v)} and then compute S⊕;

this language will be maximal. Note that the language L2 considered in Example 3.2

is a particular instance of this construction.

The above theorem implies that every k-block (τ,Hd,k)-bond-free language L is

included in a regular maximal such language. Statements of this type with L being

regular have been obtained for various code-related properties and are of particular

interest in the theory of codes [6], [15]. In our case it is also interesting to note that

the language L is not necessarily regular.

Corollary 4 Let M be one of (Σk)+ or ΣkΣ∗. Every (τ,Hd,k)-bond-free subset of

M is included in a regular maximal (τ,Hd,k)-bond-free subset of M .

5. Discussion

We have considered the problem of undesirable bonds and proposed the property

of (θ, sim)-bond-freedom for DNA languages, which addresses this problem when

bonds between imperfect complements of DNA molecules are permitted. Using

recent language theoretic tools, we were able to establish various decidability results

about (θ, sim)-bond-freedom. The case where sim is the Hamming similarity has

been considered by many authors. In this case, we have demonstrated interesting

connections between our property and those of other authors, and have identified

general construction methods. In particular, we have identified all DNA languages

that are maximal with respect to the new property. This result is also applicable

to the case of the θ-k-code property of [13].

Directions for future research include the following.

• Derive a methodology for defining properties of DNA languages that would

be able to address the uniqueness problem – called positive design problem in

[27] – as independently of the application as possible.
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• Elaborate on the proposed construction methods to obtain concrete construc-

tions of languages that, in addition to being bond-free, they satisfy additional

properties such as uniqueness and fixed GC-ratio.

• Explore further the subword closure operation from a theoretical at least point

of view.
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