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Abstract

For every integer k ≥ 0, a class of languages, called k- aperiodic lan-

guages, is defined, generalizing the class of aperiodic languages. Properties

of these classes are investigated, in particular the operations under which

they are preserved. A characterization of the syntactic monoid of a k-

aperiodic language is also obtained.

1 Introduction

Let X be a finite alphabet and let X∗ be the free monoid generated by X . Any
subset of X∗ is called a language.

A language L over X is called aperiodic or noncounting ([1]) if there exists an
integer n ≥ 0 such that for all x, y, z ∈ X∗, xynz ∈ L if and only if xyn+1z ∈ L.

The language L is called left aperiodic or left-noncounting ([4]) if there exists
an integer n ≥ 0 such that for all y, z ∈ X∗, ynz ∈ L if and only if yn+1z ∈ L.

The integer n, that is dependent on L, is called the order of the aperiodic
or left-aperiodic language L. From the definition we see that every aperiodic
language over X is a left-aperiodic language over X (see [6]).

Aperiodic and left-aperiodic languages differ by the fact that in the first case
there is no restriction on the prefix x and that in the second case x is reduced
to the empty word. It is therefore natural to consider cases that are situated
between these two extremes. This is done in the following by putting conditions
on the length of the prefix x.
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Let k be a non-negative integer. A language L is called k-aperiodic if there
exists an integer n ≥ 0 such that for all x, y, z ∈ X∗ with |x| ≤ k, xynz ∈ L, if
and only if xyn+1z ∈ L.

Section 2 contains definitions and some preliminary results. It is shown
for example that there exists an infinite hierarchy of k-aperiodic languages.
A family of right congruences is defined and used to characterize k-aperiodic
languages as unions of classes of these right congruences.

Section 3 deals with closure properties of aperiodic and k-aperiodic languages
under several operations such as catenation, boolean operations, morphism,
insertion and deletion.

The notion of right syntactic congruence of a k-aperiodic language is defined
and investigated in Section 4. Based on this notion, the syntactic monoid of
a k-aperiodic language is defined, and a complete characterization of monoids
which are syntactic monoids of k-aperiodic languages is obtained.

2 Definitions and preliminary results

Throughout this paper X will denote a finite alphabet with card(X) ≥ 2, and
X∗ will be the free monoid generated by X . The elements of X∗ will be called
words and any subset of X∗ will be called a language. For a word u ∈ X∗, |u|
will denote the length of u. The empty word will be denoted by 1.

Definition 2.1 A language L is called k-aperiodic if there exists an integer
n ≥ 0 such that for all x, y, z ∈ X∗ with |x| ≤ k, xynz ∈ L if and only if
xyn+1z ∈ L.

Left-aperiodic languages are 0-aperiodic languages and aperiodic languages are
k-aperiodic languages for all k ≥ 0.

The number n is called the order of the k-aperiodic language L. Since all
the numbers n′ ≥ n can also be considered as the order of L, the order of L is
in fact a subset of natural numbers.

Let AP and APk be respectively the family of the aperiodic and the family
of k-aperiodic languages. Clearly

AP ⊆ · · · ⊆ APk+1 ⊆ APk ⊆ · · · ⊆ AP1 ⊆ AP0

Proposition 2.1 The preceding hierarchy is strict, that is, we have:

AP ⊂ . . . ⊂ APk+1 ⊂ APk ⊂ . . . ⊂ AP1 ⊂ AP0

Proof. Let Lk = {ak+1b2n| n ≥ 1}. Then Lk ∈ APk and Lk 6∈ APk+1.
Indeed, we will show that if m > k + 1, then Lk is k-aperiodic of order m.
If xymz is a word in Lk, with |x| ≤ k, then necessarily x = ai, i ≤ k,

y = ajbp, j ≥ 1. As no word of the form ai(ajbp)mb2n−pm, m > k + 1, belongs
to Lk, it follows that Lk is k-aperiodic.
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Suppose now that Lk is (k + 1)- aperiodic of order m ≥ 0. This implies,
in particular, that if the word xymz ∈ Lk, with x = ak+1, y = b, z = b2n−m

then also the word xym+1z = ak+1b2n+1 belongs to Lk- a contradiction. Con-
sequently, Lk is not (k + 1)-aperiodic.

The k-aperiodic languages can also be defined by using binary relations.
For words u, v ∈ X∗, consider the following three conditions, where k is a

fixed non negative integer:
(i) u = v;
(ii) u = xynz and v = xyn+1z for some x, z ∈ X∗ , y ∈ X+, |x| ≤ k;
(iii) u = xyn+1z and v = xynz for some x, z ∈ X∗ , y ∈ X+, |x| ≤ k.
For u, v ∈ X∗ define the relation u ↔k,n v if and only if one of the above

three conditions hold and let ∼k,n denote the transitive closure of u ↔k,n v.
Clearly, for each k and n, ∼k,n is an equivalence relation that is right compatible
and hence a right congruence. The relation ∼n defined by u ∼n v if and only if
u∼k,n v for every k is a congruence relation (see [1]).

Proposition 2.2 A language L is k-aperiodic if and only if it is a union of
right congruence classes of ∼k,n for some n.

Proof. Let L be a k-aperiodic language. In order to prove that L is a union of
classes of ∼k,n we have to show that if L contains a word u, it contains also
all the words v belonging to the same class as u. This follows immediately as
u ∈ L and u ∼k,n v imply v ∈ L.

On the other hand, if L is a union of classes of ∼k,n then, from the definition
of ∼k,n it easily follows that L is k-aperiodic.

3 Operations with aperiodic languages

In this section we investigate closure properties of the family of aperiodic (k-
aperiodic, left aperiodic) languages under basic operations such as boolean op-
erations, catenation, right/left quotient, insertion and deletion.

The study reveals intriguing differences between these apparently similar
language families. It turns out that the family of aperiodic languages is closed
under all the above listed operations, while for example, the family of left or k-
aperiodic languages is not closed under deletion and left quotient. On the other
hand, as the conditions imposed on left and k-aperiodic languages affect only
the prefix of the words, these families are closed under right quotient.

It is still an open question whether or not the insertion of two left aperiodic
(k-aperiodic) languages remains left aperiodic (k-aperiodic).

Proposition 3.1 If A, B are k-aperiodic languages over X, then AB is k-
aperiodic.
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Proof. We may assume that the orders of A and B are respectively n1 ≥ 1 and
n2 ≥ 1. Let m = n1 + n2 + 1 and let xvmu ∈ AB with |x| ≤ k.

(1) If xvmu = (xvmu1)(u2), where u1, u2 ∈ X∗, xvmu1 ∈ A, |x| ≤ k and
u2 ∈ B then, since A is k-aperiodic of order n1 and hence also of order m, it
follows that xvm+1u1 ∈ A, that is, xvm+1u ∈ AB.

(2) If xvmu = xvn1+n2+1u = (xvn1w1)(w2u) where w1, w2 ∈ X∗, xvn1w1 ∈
A and w2u ∈ B, then, since A is k-aperiodic and |x| ≤ k, xvn1+1w1 ∈ A. It
follows that xvm+1u ∈ AB.

(3) If xvmu = (xviv1)(v2v
m−i−1u) where v1, v2 ∈ X∗, v1v2 = v, i < n1,

xviv1 ∈ A and v2v
m−i−1u ∈ B, then m− i− 1 ≥ n2 and

v2v
m−i−1u = (v2v1)(v2v1) · · · (v2v1)v2u

= (v2v1)
m−i−1v2u ∈ B

Since B is k-aperiodic, we have (v2v1)
m−iv2u ∈ B. It follows that

xvm+1u = (xviv1)(v2v
m−iu) ∈ AB

(4) If xvmu = (x1)(x2v
mu) where x1, x2 ∈ X∗, x = x1x2, x1 ∈ A, x2v

mu ∈
B. Since B is k-aperiodic and |x2| ≤ |x| ≤ k, then x2v

m+1u ∈ B and xvm+1u =
(x1)(x2v

m+1u) ∈ AB.

Proposition 3.2 The family of k-aperiodic languages is closed under catena-
tion and the boolean operations of union, intersection and complementation.

Proof. The closure under catenation has been proved in the preceding proposi-
tion and it is easy to see the closure under union and intersection (and hence
under complementation).

Recall that a nonempty language L ⊆ X+ is called a prefix (suffix) code if
L∩LX+ = ∅ (L∩X+L = ∅). This means that for any x ∈ L, xy 6∈ L ( yx 6∈ L )
for all y ∈ L+.

Proposition 3.3 Let X be an alphabet and let A, B ⊆ X∗. If AB is k-aperiodic
of order n and B is a suffix code, then A is k-aperiodic of order n.

Proof. If A is in the set {∅, {1}}, then the proposition is trivially true. Hence
we may assume A is not in {∅, {1}}.

Assume AB is k-aperiodic of order n. Let xynz ∈ A, |x| ≤ k, x, y, z ∈ X∗.
Then xynzb ∈ AB, where b ∈ B. Since AB is k-aperiodic of order n, we
have xyn+1zb ∈ AB. Now, since B is a suffix code by assumption, we have
xyn+1z ∈ A. Similarily, we can show that xyn+1z ∈ AB, |x| ≤ k, implies
xynz ∈ A. Hence A is k-aperiodic of order n.

Corollary 3.1 Let A ∈ X∗. If A is a suffix code then A2 is k-aperiodic if and
only if A is k-aperiodic.
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Proof. It follows from the preceding Proposition and Proposition 3.1.

As we will see in the following, aperiodicity is preserved even when we con-
sider an operation which generalizes the catenation operation.

Let u, v be words over an alphabet X . The insertion of v into u is defined
as (see [2], [3]):

u← v = {u1vu2| u = u1u2, u1, u2 ∈ X∗}.

The operation can be easily extended to languages,

L1 ← L2 =
⋃

u∈L1,v∈L2

(u← v).

Proposition 3.4 The family of aperiodic languages is closed under insertion.

Proof. Let L1, L2 be aperiodic languages of order n1, respectively n2. Choose
m = 2n1 + n2 + 1 and let xymz ∈ L1 ← L2. This means that xymz = uwv
where uv ∈ L1, w ∈ L2.

One of the following cases can occur:
A. ym is a subword of w.
Then w = αymβ ∈ L2 which implies αym+1β ∈ L2, that is, xym+1z ∈ L1 ←

L2.
B. w is a subword of ym and ym (possibly) overlaps with u and v. Then at

least one of the following must happen:
– the length of the overlap between ym and w is bigger than |y| × n2.
– the length of the overlap between ym and u is bigger than |y| × n1.
– the length of the overlap between ym and v is bigger than |y| × n1.
Indeed, if none of these happens then we have

|ym| = m× |y| = sum of overlaps with u, w, v ≤ |y| × (2n1 + n2)

– a contradiction.
Now, assume that the first case happens. This means that w = αyn2β which

implies that αyn2+1β ∈ L2. This, in turn, implies that xym+1z ∈ L1 ← L2.
In the other cases, one can reason in a similar way.
C. ym overlaps with w and v.
Then, one of the folowing cases must hold:
– the length of the overlap between ym and w is bigger than |y| × n2

– the length of the overlap between ym and v is bigger than |y| × n1.
(Otherwise, we would have that

|ym| = m× |y| = sum of overlaps with w, v ≤ |y| × (n2 + n1),

– a contradiction.)
Assume that the first case holds. We can reason as in case B) to see that

this leads to the desired conclusion.
D. The word ym overlaps with w and u. It is similar to the preceding case.
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The family of aperiodic languages is closed under right/left quotient. This
result will be obtained as a consequence of a more general one which states
that, by deleting any language from an aperiodic one, the result is still aperiodic.
Before that, we need to introduce the definition of deletion, which is an operation
generalizing the right/left quotient of languages.

Let u, v be two words over the alphabet X . The deletion of v from u is
defined as (see [2], [3]):

u→ v = {w ∈ X∗| w = u1u2, u = u1vu2}.

The operation can be extended to languages in the natural fashion.

Proposition 3.5 If L1 is an aperiodic language and L2 is an arbitrary lan-
guage, then the deletion of L2 from L1, L1 → L2, is an aperiodic language.

Proof. Let L1 be an aperiodic language of order n and let m = 2n + 2.
Let xymz be a word in L1 → L2. Then, xymz = uv, where there exists

w ∈ L2 such that uwv ∈ L1.
One of the following case holds:
A. x1wx2y

m ∈ L1 (w has been erased from the x-part). Then, as L1 is
aperiodic, x1wx2y

m+1z ∈ L1 which implies x1x2y
m+1z ∈ L1 → L2.

B. xymz1wz2 ∈ L1 – similar to A.
C. xyiy1wy2y

jz ∈ L1, where i + j + 1 = m, y = y1y2.
At least one of the following cases must hold:
– i is greater than n
– j is greater than n
(If none of these happens, then m = i + j + 1 ≤ n + n + 1 = 2n + 1 – a

contradiction.)
Assume, for example, that i > n. Then, xyi+1y1wy2y

jz ∈ L1, which implies
xyi+1y1y2y

jz ∈ L1 → L2, that is, xym+1z ∈ L1 → L2.

Corollary 3.2 The family of aperiodic languages is closed under right/left quo-
tient.

Proof. It follows from the preceding proposition and by noticing that, if # is a
letter which does not belong to X , the right/left quotient can be obtained as
particular cases of deletion. Indeed, we have:

L1/L2 = L1#→ L2# and L2\L1 = #L1 → #L2,

for all L1, L2 ⊆ X∗.

The following examples show that the families of left aperiodic and k-aperiodic
languages are closed under neither deletion, nor left quotient.
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Example 1 Let L1 = {ab2n| n ≥ 1} and L2 = {a}. Both languages are left
aperiodic but the deletion of L2 from L1 (which in this case coincides with the
left quotient L2\L1),

L1 → L2 = {b2n| n ≥ 1},

is not a left aperiodic language.

Example 2 Consider the k-aperiodic languages

L1 = {dk+1ambncn| n, m ≥ 1} and L2 = da∗b,

where k > 0. The deletion of L2 from L1 is

L1 → L2 = {dkbn−1cn| n ≥ 1},

which is not a k-aperiodic language.

Example 3 Let k ≥ 0 and consider the languages

L1 = {ak+1b2n| n ≥ 1}, L2 = {a}.

According to Proposition 2.1 the language L1 is k-aperiodic and L2 is k-aperiodic
being finite. However, the left quotient L2\L1 = {akb2n| n ≥ 1} is not k-
aperiodic.

The situation changes if we consider right quotient instead of left quotient.
As the conditions for left aperiodic languages and k-aperiodic languages affect
only the prefix of the words, these families are still closed under right quotient.
In fact, a more general result holds.

Proposition 3.6 If L1 is a k-aperiodic language, k ≥ 0, and L2 is an arbitrary
language, then the right quotient L1/L2 is a k-aperiodic language.

Proof. Let L1 be a k-aperiodic language of order m. We shall show that L1/L2

is k-aperiodic of the same order.
Indeed, let xymz ∈ L1/L2, |x| ≤ k. This implies there exists v ∈ L2 such that

xymzv is in L1. From the k-aperiodicity of L1 we deduce that xym+1zv ∈ L1,
which further implies xym+1z ∈ L1/L2. The other implication can be proved
analogously.

We conclude this section with the remark that the family of k-aperiodic
languages is not closed under morphisms. For example, consider the language
L = {ak+1b2n| n ≥ 1} and the morphism h defined as h(a) = 1 and h(b) = b. L
is k-aperiodic but h(L) is not.
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4 Syntactic monoids of k-aperiodic languages

This section is devoted to the study of connections between syntactic congru-
ences and k-aperiodic languages. Moreover, we introduce and investigate the
notion of right syntactic congruence of a k-aperiodic language. Based on this
notion, a complete characterization of monoids which are syntactic monoids of
k-aperiodic languages is obtained.

Let M be a monoid and let L ⊆M . If u ∈M , then:

u−1L = {x ∈M | ux ∈ L}.

The relation RL defined by

u ≡ v (RL)⇔ u−1L = v−1L

is a right congruence called the right principal congruence associated to the
subset L.

The right principal congruence can also be defined by:

u ≡ v (RL)⇔ ∀x, y ∈M, (ux ∈ L iff vx ∈ L).

The relation PL defined by:

u ≡ v (PL)⇔ ∀x, y ∈M, (xuy ∈ L iff xvy ∈ L)

is a congruence called the principal congruence of the language L. If PL is the
identity relation, then L is called a disjunctive subset.

If the monoid M is the free monoid X∗ and L is a language over X , then RL

and PL are called respectively the right syntactic congruence and the syntactic
congruence of the language L. The quotient monoid syn(L) = X∗/PL is called
the syntactic monoid of the language L.

Recall that a language L is regular iff the index of RL is finite.

Proposition 4.1 A language L over X is k-aperiodic if and only if there exists
n > 0 such that

xun ≡ xun+1 (RL) ∀u, x ∈ X∗, |x| ≤ k

Proof. This follows from the fact that, if |x| ≤ k, then z ∈ (xun)−1L if and only
if xunz ∈ L, hence if and only if xun+1z ∈ L.

Proposition 4.2 If a language L over X is k-aperiodic, then every class of RL

is a k-aperiodic language.

Proof. Let A be a class modulo RL. By Proposition 4.1, there exists n > 0
such that xun ≡ xun+1 (RL) for all u, x ∈ X∗ with |x| ≤ k. Since RL is a right
congruence, this implies xuny ≡ xun+1y (RL). It follows then that xuny ∈ A if
and only if xun+1y ∈ A. Hence A is k-aperiodic.
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Proposition 4.3 Let L be a regular language over X. Then L is k-aperiodic if
and only if every class of RL is a k-aperiodic language.

Proof. If L is k-aperiodic, the aperiodicity of every class of RL follows from
Proposition 4.1.

Suppose now that every class of RL is k-aperiodic. The language L is a
union of classes Ai of RL, and since L is regular, the number of these classes is
finite, say m. Consequently, we can write L =

⋃m

i=1
Ai. Since the union of a

finite number of k-aperiodic languages is k-aperiodic, it follows that L itself is
k-aperiodic.

A monoid M is called an aperiodic or combinatorial monoid if there exists
a positive integer n such that un = un+1 for all u ∈ M ([5], [7], [8]). A finite
monoid is aperiodic if and only if all its subgroups are trivial. A language L
over X is aperiodic if and only if its syntactic monoid is aperiodic.

A right congruence R of X∗ is called a k-aperiodic congruence iff there exists
a positive integer n such that xun ≡ xun+1 (R) for all u, x ∈ X∗ with |x| ≤ k.

Lemma 4.1 Let L be a k-aperiodic language over X. Then
(i) The syntactic right congruence RL is a k-aperiodic right congruence.
(ii) If T is a congruence of X∗ such that PL ⊆ T ⊆ RL, then PL = T .

Proof. (i) This follows immediately from Proposition 4.1.
(ii) If u ≡ v (T ), then, since T is a congruence, xuy ≡ xvy (T ) for all

x, y ∈ X∗. Since L is a union of classes of RL and T ⊆ RL, it follows that L
is also a union of classes of T . Hence xuy ∈ L implies xvy ∈ L and vice versa.
Therefore u ≡ v (PL) which means T ⊆ PL. Consequently, we have PL = T .

If M is a monoid, a right congruence R over M is called strict if, for every
congruence R′ of M , the relation R′ ⊆ R implies that R′ is the identity relation.

A monoid M is called a strict (k,n)-aperiodic monoid where k and n are
positive integers if the following conditions are satisfied:

(i) M is finitely generated;
(ii) M contains a strict right conguence R;
(iii) M contains a finite set G of generators such that

xun ≡ xun+1 (R)

for all u, x ∈M with x = g1g2 · · · gm, gi ∈ G, m ≤ k.

Proposition 4.4 Let L be a k-aperiodic language over the alphabet X and let
syn(L) be its syntactic monoid. Then syn(L) is a strict (k,n)-aperiodic monoid
for some positive integer n. Furthermore syn(L) contains a disjunctive subset
D that is a union of classes of R.
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Proof. If RL is the syntactic right congruence of L, then by Lemma 4.1, RL

is a k-aperiodic right congruence and PL ⊆ RL. Hence there exists a positive
integer n such that xun ≡ xun+1(RL) for every u, x ∈ X∗ with |x| ≤ k.

The right congruence RL induces on syn(L) = X∗/PL a right congruence R
that is strict by Lemma 4.1, (ii). If X = {x1, x2, · · · , xr} and if gi = [xi] is the
class of xi modulo PL, let G = {g1, g2, · · · , gr}. Clearly, if [x] denotes the class
of x modulo PL, we have

[x][u]n ≡ [x][u]n+1 (R)

for every [u], [x] ∈ syn(L) such that [x] = gi1gi2 · · · gim
, gij

∈ G and m ≤ k. Let
D = { [x] | x ∈ L} be the subset consisting of all the classes [x] of PL containing
words of L. Since syn(L) = X∗/PL, D is a disjunctive subset of syn(L) and a
union of classes of R.

Proposition 4.5 Let M be a strict (k,n)-aperiodic monoid with the strict right
congruence R and containing a disjunctive subset D that is a union of classes of
R. Then the monoid M is isomorphic to the syntactic monoid of a k-aperiodic
language over an alphabet X.

Proof. The monoid M , being finitely generated, contains a finite set G of gen-
erators. Let X = G, let X∗ be the free monoid generated by X and let φ
be the canonical homomorphism of X∗ onto M . If L = φ−1(D), then X∗/PL

is isomorphic to M because D is a disjunctive subset of M . Therefore M is
isomorphic to the syntactic monoid syn(L) of the language L.

Since R is a strict right congruence of M , xun ≡ xun+1 (R) for all u ∈ M ,
x = xi1xi2 · · ·xim

, xij
∈ G = X and m ≤ k. Since D is a union of classes of R,

then R ⊆ RD and xun ≡ xun+1 (RD) for all u ∈M and x satisfying the above
condition. Therefore yvn ≡ yvn+1 (RL) for all v ∈ X∗ and y ∈ X∗ with |y| ≤ k.
By Proposition 4.1, this implies that L is k-aperiodic.
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