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Abstract. Watson-Crick automata are finite state automata working on
double-stranded tapes, introduced to investigate the potential of DNA
molecules for computing. In this paper, we continue the investigation of de-
scriptional complexity of Watson-Crick automata initiated in [9]. In particular,
we show that any finite language as well as any unary regular language can be
recognized by a Watson-Crick automaton with only two and respectively three
states. Also, we formally define the notion of determinism for these systems.
Contrary to the case of non-deterministic Watson-Crick automata, we show
that for deterministic ones, the complementarity relation plays a major role in
the acceptance power of these systems.
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1 Introduction

One of the current trends in nanoengineering is to develop nanomachines which can
parse molecules of DNA and perform a finite number of tasks, e.g., the development
of artificial enzymes [12], or smart drug design [13]. One of the first theoretical ab-
stractions for such nanomachines are Watson-Crick automata [2], which are based on
the idea of finite automata running on complete DNA-molecules. Formally, these ma-
chines are finite automata, with two independent reading heads, working on double
stranded sequences. The two strands of the input are separately scanned from left
to right by read-only heads controlled by a common state. One of the main features
of these automata is that characters on corresponding positions from the two strands
of the input are related by a complementarity relation similar with the Watson-Crick
complementarity of the DNA nucleotides. Several variants of these systems were inves-
tigated, e.g., in [8] and [11]; for a comprehensive presentation we refer to both Chapter
5 from [10] as well as to [1] for a recent survey.

In this paper, we continue the study of the descriptional complexity of Watson-Crick
automata initiated in [9]. Since, at each step, Watson-Crick automata can read blocks
of more than one letter, a special feature of these systems is that for a given num-
ber of states, even two or three, one can already define an infinite number of distinct
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automata. This is different from most of the usually considered models, such as or-
dinary finite automata or Turing machines. Thus, Watson-Crick automata allow, in
some sense, to encode state information in the finite but unbounded number of transi-
tions and this makes it essentially more difficult to prove lower bounds for the number
of states. In particular, we prove that several intricate families of languages can be
accepted by Watson-Crick automata with a small, constant, number of states. For
instance, we show that any finite language and any unary regular language can be rec-
ognized by a Watson-Crick automaton with two and respectively three states. Also, we
provide a family of languages which generates an infinite hierarchy from the point of
view of the state complexity of the block automata recognizing them. Then, we show
that this hierarchy collapses when we consider the case of Watson-Crick automata,
that is, we prove that three states are enough when recognizing any language from this
family. Recall that block automata, or block-NFA, are finite automata which, similarly
to the case of Watson-Crick automata, can read an arbitrarily long finite sequence of
characters at a time.

Also, we formally define the notion of deterministic Watson-Crick automata and
investigate their properties. Although determinism is a well established notion in
automata theory, it has never been considered yet in relation with Watson-Crick au-
tomata. In this paper, we define the notion of determinism using a syntactic property
of the rewriting rules of the automaton. We also consider a weaker operational def-
inition of determinism, namely weak determinism, and show that it is undecidable
whether a given non-deterministic Watson-Crick automaton is weakly deterministic.
For non-deterministic Watson-Crick automata it was proved in [7] that we can always
suppose the complementarity relation to be the identity. Hence, a natural question is
whether the structure of the complementarity relation plays an active role in the deter-
ministic case. Thus, we define the notion of strong determinism, embedding both the
deterministic feature and the fact that the complementarity relation is the identity. We
prove that these three levels of abstraction, i.e., weak determinism, determinism, and
strong determinism, are all distinct from each other. Moreover, we also show that non-
deterministic Watson-Crick automata are strictly stronger than strongly deterministic
ones.

The paper is organized as follows. In the next section, we fix our terminology and
recall some known results. In Section 3, we investigate some properties of deterministic
Watson-Crick automata, on the three levels of abstraction mentioned above. Also, we
look at the relation between the acceptance power of these three variants of determin-
istic Watson-Crick automata. In Section 4, we investigate the state complexity of both
deterministic and non-deterministic Watson-Crick automata.

2 Preliminaries

Let V be a finite alphabet. We denote by V ∗ the set of all finite words over V , by λ
the empty word, and V + = V ∗\{λ}. For a word u ∈ V ∗, we denote by |u| its length,
i.e., the number of letters occurring in it; in particular, |λ| = 0. We say that u ∈ V ∗

is a prefix of a word v, and denote it by u ≤ v, if there exists some t ∈ V ∗ such that
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v = ut. Two words u and v are prefix comparable, denoted by u ∼p v, if one of them
is a prefix of the other. For a word u = u1 . . . un, with u1, . . . , un ∈ V , we denote by
uR = un . . . u1 its reverse. Then, we say that u is palindrome if u = uR.

Let now ρ ⊆ V × V be a symmetric relation, called the Watson-Crick complemen-
tarity relation on V . As suggested by the name, this relation is biologically inspired
by the Watson-Crick complementarity of nucleotides in the double stranded DNA
molecule. In accordance with the representation of DNA molecules, viewed as two

strings written one on top of the other, we write
(

V ∗

V ∗

)
instead of V ∗ × V ∗ and an

element (w1, w2) ∈ V ∗ × V ∗ as
(

w1

w2

)
.

We denote
[
V

V

]

ρ

= {
[a

b

]
| a, b ∈ V, (a, b) ∈ ρ} and WKρ(V ) =

[
V

V

]∗

ρ

. The

set WKρ(V ) is called the Watson-Crick domain associated to V and ρ. An element[
a1

b1

] [
a2

b2

]
. . .

[
an

bn

]
∈ WKρ(V ) can be also written in a more compact form as

[
w1

w2

]
,

where w1 = a1a2 . . . an and w2 = b1b2 . . . bn.

The essential difference between
(

w1

w2

)
and

[
w1

w2

]
is that

(
w1

w2

)
is just an alterna-

tive notation for the pair (w1, w2), whereas
[
w1

w2

]
implies that the strings w1 and w2

have the same length and the corresponding letters are connected by the complemen-
tarity relation.

A (non-deterministic) Watson-Crick finite automaton is a 6-tuple M =
(V, ρ,Q, q0, F, P ), where: V is the (input) alphabet, ρ ⊆ V × V is the complemen-
tarity relation, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of

final states, and P is a finite set of transition rules of the form q

(
w1

w2

)
→ q′, denoting

the fact that if the automaton is in a state q and parses w1 ∈ V ∗ on the upper strand
and w2 ∈ V ∗ on the lower strand, then it enters the state q′.

A configuration of a Watson-Crick automaton is a pair (s,
(u

v

)
) where s is the

current state of the automaton and
(u

v

)
is the part of the input word which has not

been read yet. Now, a transition between two configurations is defined as follows.

For
(

u1v1

u2v2

)
∈

(
V ∗

V ∗

)
and q, q′ ∈ Q we write q

(
u1v1

u2v2

)
⇒ q′

(
v1

v2

)
if and only if

q

(
u1

u2

)
→ q′. If we denote by ⇒∗ the reflexive and transitive closure of the relation

⇒, then the language accepted by a Watson-Crick automaton is:

L(M) = {w1 ∈ V ∗ | q0

[
w1

w2

]
⇒∗ s, with s ∈ F, w2 ∈ V ∗, and

[
w1

w2

]
∈ WKρ(V )}.

Hence, a word w1 is accepted by M if there exists a complementary word w2 such

that starting from the initial state, after parsing the whole input
[
w1

w2

]
the automaton
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is in a final state. By convention, as suggested also in [9], we consider two languages
differing only by the empty word as identical.

Although the notion of determinism is well established in automata theory, it has
never been considered in relation with Watson-Crick automata. Intuitively, this notion
suggests that during a computation, in each state we have only one option to continue.
Here, we propose three variants for this concept, each on a different level of abstraction.
The first definition that we suggest illustrates the intuitive idea we presented above.

Definition 1. We say that a Watson-Crick automaton is weakly deterministic if in
every configuration that can occur in some computation of the automaton there is at
most one possibility to continue the computation.

Note that the previous definition does not provide a clear description of the struc-
ture of the transition rules of a deterministic automaton. Thus, we introduce our
second definition.

Definition 2. We call a Watson-Crick automaton deterministic if whenever we have

two rewriting rules of the form q
(u

v

)
→ q′ and q

(
u′

v′

)
→ q′′, then u �p u′ or v �p v′.

Clearly, the deterministic constraint is stronger than the weakly one. However,
unexpectedly, Example 9 shows that a weakly deterministic automaton need not be
deterministic. With the previous two definitions, for a given pair of words from the

domain,
[
w1

w2

]
∈ WKρ(V ), the computation is unique. However, depending on the

complementary relation ρ, the automaton can chose various words w2 on the lower
strand. Thus, in order to eliminate this selection, we introduce our third definition.

Definition 3. We call a Watson-Crick automaton strongly deterministic if it is de-
terministic and the Watson-Crick complementarity relation is the identity.

Note that the notion of strong determinism does not change if ρ is allowed to be a
non-identity one-to-one function. As shown later by Theorem 8, strongly deterministic
Watson-Crick automata are less powerful than deterministic ones.

Depending on the type of the states and of the rewriting rules, there are four
subclasses of Watson-Crick automata. We say that a Watson-Crick automaton M is

• stateless if it has only one state, i.e., Q = F = {q0};
• all-final if all the states are final, i.e., Q = F ;

• simple if for any rewriting rule s

(
w1

w2

)
→ s′, either w1 = λ or w2 = λ;

• 1-limited if for any rewriting rule s

(
w1

w2

)
→ s′ we have |w1w2| = 1.

Recently, in [7], it was proved that for non-deterministic Watson-Crick automata
we can always suppose the complementarity relation ρ to be the identity, denoted,
from now on, by ι ⊆ V × V . However, this is not true anymore for the deterministic
case, as shown later by Theorem 8.
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3 Properties of deterministic Watson-Crick automata

One of the basic properties of non-deterministic Watson-Crick automata is that they
are equivalent with simple and 1-limited ones, respectively, see [10]. The following two
results show that this property still holds when we look at their deterministic variants.

Theorem 4. Deterministic Watson-Crick automata are equivalent with deterministic
simple Watson-Crick automata.

Proof : (Sketch) Let M = (V, ρ,Q, q0, F, P ) be a deterministic Watson-Crick au-
tomaton. We construct an equivalent deterministic Watson-Crick automaton M′ =

(V, ρ,Q′, q0, F, P ′), where for any state q ∈ Q′ all rewriting rules from q, q

(
ui

vi

)
→ qi

with 1 ≤ i ≤ n, satisfy exactly one of the following conditions:

either ui = λ for all 1 ≤ i ≤ n and vj �p vk for any 1 ≤ j 6= k ≤ n, (1)

or vi = λ for all 1 ≤ i ≤ n and uj �p uk for any 1 ≤ j 6= k ≤ n. (2)

Thus, we introduce some new intermediate states and transform the rewriting rules to
achieve the above constraint. Since this construction is long and quite technical, we
present here only one illustrative case, the others being similar.

If for some q ∈ Q we have a rule q
(u

v

)
→ q′, where either ui = λ or vi = λ, then

the rule remains unchanged in M′. Now, suppose that there exists a state q ∈ Q such

that we have some rules of the form q

(
ui

vi

)
→ qi with 1 ≤ i ≤ n and all ui, vi 6= λ, and,

moreover, u1 ≤ ui for all i ≥ 2. We introduce a new state s and we transform all the

rules as follows. First, we introduce the rule q
(u1

λ

)
→ s. Then, each rule q

(
ui

vi

)
→ qi

is replaced by s

(
u′i
vi

)
→ qi, where ui = u1u

′
i with u′i ∈ V ∗ and |u′i| < |ui|. Moreover,

for this newly introduced state s, the words on the upper strands of the rules initiating
in s are strictly shorter than before. By König’s lemma it follows that the process of
adding new rules terminates with a finite number of rules.

Since each newly introduced state acts just as an intermediate, the language ac-
cepted by M′ is exactly L(M).

Using a similar technique, we can transform a deterministic simple Watson-Crick
automaton into a deterministic 1-limited one. Thus we can state the following result.

Corollary 5. Deterministic Watson-Crick automata are equivalent with determinis-
tic 1-limited Watson-Crick automata.

As stated in [10], a 1-limited Watson-Crick automaton can be interpreted as a one
way two headed automaton where the two strands are interrelated through the comple-
mentarity relation. Furthermore, as arbitrary Watson-Crick automata are equivalent
with 1-limited ones, see [10], we can also state that they are equivalent with one way
two headed automata. Moreover, by Corollary 5, deterministic Watson-Crick automata



6 Elena Czeizler, Eugen Czeizler, Lila Kari, Kai Salomaa

using the identity complementarity relation are equivalent with deterministic one way
two headed automata. Thus, we can prove the following result.

Theorem 6. Non-deterministic Watson-Crick automata are more powerful than
strongly deterministic ones.

Proof : Let L = {w ∈ V ∗ | w = wR} be the set of palindrome words and L′ = V ∗ \ L
be its complement. It is known, see [5] and [14], that L′ can be recognized by a non-
deterministic one way two headed automaton but not by a deterministic one. Thus,
L′ can be recognized by a nondeterministic Watson-Crick automaton but not by a
strongly deterministic one.

The next example shows that if we use a non-injective complementarity relation ρ,
then we can construct a deterministic Watson-Crick automaton accepting the language
L′ from the previous result.

Example 7. Let M = (V, ρ, Q, q0, F, P ) be a Watson-Crick automaton, where V =
{a, b, va, vb, c}, ρ = {(a, a), (a, va), (va, a), (b, b), (b, vb), (vb, b), (c, a), (a, c)(c, b), (b, c)},
Q = {q0, q1, qa, qb}, F = {q1}, and we have the following transition rules:

• q0

(
λ

x

)
→ q0, q0

(
λ

vx

)
→ qx, with x ∈ {a, b},

• qx

(y

z

)
→ qx, with x, y, z ∈ {a, b},

• qx

(zy

c

)
→ q1, with x, y, z ∈ {a, b}, x 6= y,

• q1

(x

λ

)
→ q1, with x ∈ {a, b}.

It is easy to see that M is deterministic. Let w ∈ {a, b}∗, w = w1w2 . . . wn with
wi ∈ {a, b}. If w 6= wR, then there exists a position k on the first half of w such
that wk 6= wn−k. The automaton M accepts the word w only when we chose as its
complement the word w1 . . . wk−1 vwk

wk+1 . . . wn−1c. On the other hand, if w is a
palindrome word, then it will not be accepted, regardless of what complement we use;
thus, L(M) = {w ∈ {a, b}+ | w 6= wR}.

Thus, we can formulate the following result showing that the complementarity
relation plays an active role for deterministic Watson-Crick automata, contrary to the
non-deterministic case, see [7].

Theorem 8. Strongly deterministic Watson-Crick automata are strictly weaker than
deterministic ones.

Now, a natural and interesting question, which remains still open, is whether non-
deterministic Watson-Crick automata are equivalent with deterministic ones, clearly,
using a non-injective complementarity relation.

As we already stated in the previous section, the deterministic constraint is stronger
than the weakly deterministic one. Moreover, the following example presents a weakly
deterministic Watson-Crick automaton which is not deterministic.
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Example 9. Let us consider the non-regular language L = {anbn | n ≥ 1} ∪ {bnan |
n ≥ 1}. Then, let M = (V, ι, Q, q0, F, P ), where V = {a, b}, Q = {q0, q1, q2, q3, q4},
F = {q3, q4}, and P contains the following productions:

• q0

(a

λ

)
→ q1 and q0

(
λ

b

)
→ q2,

• q1

(a

λ

)
→ q1, q1

(
b

a

)
→ q3, q3

(
b

a

)
→ q3, q3

(
λ

b

)
→ q3,

• q2

(
λ

b

)
→ q2, q2

(
b

a

)
→ q4, q4

(
b

a

)
→ q4, q4

(a

λ

)
→ q4.

Clearly, the language recognized by this automaton is L. The only non-deterministic
choice can be made in q0 at the beginning of a computation. However, given an
input, this choice becomes uniquely determined. Thus, M is a weakly deterministic
Watson-Crick automaton which is not deterministic, due to the first two rules in q0.

It is not yet known whether weakly deterministic Watson-Crick automata recognize
more languages than deterministic ones.

Although strongly deterministic Watson-Crick automata are weaker than non-
deterministic ones, they still prove to be more powerful than finite automata, even
if we look at their stateless versions. In [10] it was proved that if L is the language
accepted by a stateless Watson-Crick automaton M, then L = L+. For the case of
strongly deterministic automata, we refine this result using prefix codes.

We say that a language L is a prefix code if no two (distinct) words of the language
are prefix comparable. That is, for any two words w1, w2 ∈ L such that w1 6= w2, we
have w1 �p w2. For more detailed information on prefix codes we refer to [6].

Theorem 10. For any strongly deterministic stateless Watson-Crick automaton M
there exists a prefix code L such that L(M) = L∗.

Proof : Let L ⊆ L(M) be the language obtained from L(M) by taking all those
non-empty words whose proper prefixes are not accepted by the automaton M, i.e.,

L = {w ∈ L(M) | w 6= λ and for all v ∈ L(M) \ {λ} if v ≤ w then v = w}.

Clearly, L is a prefix code and L∗ ⊆ L(M). We show that if v ∈ L(M), then v ∈ L∗.
Let q0 be the state of the automaton M. Then, all the rewriting rules from M

are of the form q0

(
ui

vi

)
→ q0 for 1 ≤ i ≤ n, where moreover, for all 1 ≤ i 6= j ≤ n

either ui �p uj or vi �p vj (or both). Let us consider now a non-empty word v
recognized by the automaton M, i.e., v ∈ L(M), such that v /∈ L. Then, there must

exist a word w ∈ L, such that w ≤ v; let v = ww′ for some w′. Let q0

(
ui1

vi1

)
→ q0

and q0

(
uj1

vj1

)
→ q0 be the first rewriting rules applied when recognizing w and v,

respectively. Since w ≤ v we conclude that ui1 ∼p uj1 and also vi1 ∼p vj1 . Thus,
since M is deterministic, it implies that the two rules must coincide, i.e., ui1 = uj1
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and vi1 = vj1 . Similarly, we can conclude that all the rewriting rules applied when
recognizing w and v = ww′ are exactly the same, till we start parsing w′. So, at some
moment in the recognition process of v, after parsing w, both heads of the Watson-Crick
automaton are at the beginning of w′. Since q0 is the only state of M we conclude
that w′ is also accepted by the automaton, i.e., w′ ∈ L(M).

To conclude, for any non-empty word v ∈ L(M) \ L, there exists w ∈ L such that
v = ww′ and w′ ∈ L(M). By applying this process inductively, we obtain v ∈ L+.

Now, it seems natural to ask whether strongly deterministic stateless Watson-Crick
automata can recognize the Kleene star of any prefix code.

Theorem 11. Let L ⊆ V ∗ be a finite prefix code. Then, there exists a strongly
deterministic stateless Watson-Crick automaton recognizing the language L∗.

Proof : Let L = {w1, . . . , wn} ⊆ V ∗, with n ≥ 1, be a finite prefix code. We construct
a stateless Watson-Crick automaton M = (V, ι, {q0}, q0, {q0}, P ) where P contains all

the rewriting rules of the form q0

(
wi

wi

)
→ q0 with 1 ≤ i ≤ n. It is easy to see that

the automaton M accepts the language L∗. Moreover, since L is a prefix code, the
constructed Watson-Crick automaton is deterministic.

Moreover, if we take for example L = {a2nb2n | n ≥ 1} ∪ {b2na2n | n ≥ 1}, then we
can construct a strongly deterministic stateless Watson-Crick automaton recognizing
L∗; due to page limitations we do not include this construction here. However, it is
not known yet whether this is true for the Kleene closure of any infinite prefix code.

The next result gives a rather unexpected undecidability property.

Theorem 12. Given a non-deterministic Watson-Crick automaton, it is undecidable
whether any of its non-deterministic rules can be used in some computation.

Proof : In order to prove this, we use the fact that it is undecidable whether a Turing
machine accepts the empty word, see [3]. Given a deterministic Turing machine T ,
we construct a Watson-Crick automaton M which verifies whether the input is a
valid sequence of consecutive configurations of the Turing machine starting from the
empty tape. Since the Turing machine is deterministic, we can simulate each of its
transitions with deterministic rewriting rules of the Watson-Crick automaton. The
only non-deterministic rules of M occur at the moment when the Turing machine
halts. The detailed description the Watson-Crick automaton is very technical and we
do not include it here due to page limitations.

Intuitively, the Watson-Crick automaton M receives an input of the form[
] q0 ] u1qi1v1 ] . . . ] unqinvn ]

] q0 ] u1qi1v1 ] . . . ] unqinvn ]

]
, where q0 is the initial state of the Turing machine,

qi1 , . . . , qin are states of T and uivi is the tape content at step i, where the reading
head is on the first character of vi. Then, the Watson-Crick automaton verifies in a
deterministic way that for any 1 ≤ j ≤ n − 1, uj+1qij+1vj+1 is a valid configuration
obtained from ujqijvj , by applying one of the deterministic rules of T . As soon as the
Turing machine enters a final state, we let the Watson-Crick automaton finish reading
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the rest of the input in a non-deterministic way. Thus, the Watson-Crick automaton
uses any of its non-deterministic rules if and only if the Turing machine enters a final
state and halts when started with the empty word as input. Since it is undecidable
whether a given Turing machine accepts the empty word, it becomes also undecidable
whether any of the non-deterministic rules of the Watson-Crick automaton is used.

The previous result can be also reformulated as follows.

Theorem 13. It is undecidable whether a given non-deterministic Watson-Crick au-
tomaton is weakly deterministic.

As a consequence of the proof of Theorem 12, we get also an alternative proof
for the known undecidability result of the emptiness problem for (non-)deterministic
multihead automata. Indeed, in the proof of Theorem 12 we construct a Watson-Crick
automaton which accepts an input if and only if it represents a valid sequence of
consecutive configurations of a Turing machine starting from the empty tape. However,
since it is undecidable whether a Turing machine accepts the empty word, we obtain
in turn that it is undecidable whether the language recognized by the Watson-Crick
automaton is empty or not. Moreover, the construction from the previous theorem
can be easily made fully deterministic.

Corollary 14. Given a (deterministic) Watson-Crick automaton M, it is undecid-
able whether the recognized language L(M) is empty.

4 State complexity of Watson-Crick automata

It is well-known that Watson-Crick automata are more powerful than classical finite
automata, see e.g., [10]. Moreover, it was shown in [9] that Watson-Crick automata
recognize some regular languages in a more efficient manner. We devote this section
to the study of state complexity of languages accepted by deterministic and non-
deterministic Watson-Crick automata. For more details on state complexity, we refer
the reader to [4] and [15]. Note that the transformation from [7] preserves the number
of states so, when working with non-deterministic Watson-Crick automata we can
suppose, without loss of generality, that the complementarity relation ρ is actually the
identity ι ⊆ V × V .

It is well-known that the state complexity of some families of finite languages
is unbounded when we consider the finite automata recognizing them. However, as
illustrated by our next result, this is not the case anymore when we consider the
non-deterministic Watson-Crick automata recognizing them.

Theorem 15. Any finite language can be recognized by a non-deterministic
Watson-Crick automaton with two states.

Proof : Let L = {w1, . . . , wn} ⊂ V ∗ be a finite language. We construct the
Watson-Crick automaton M = (V, ι, {q0, q1}, q0, F, P ), where F = {q1} and P con-
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tains rewriting rules of the form q0

(
wi

wi

)
→ q1, for all 1 ≤ i ≤ n. Clearly, the

language recognized by M is L.

On the other hand, if we restrict to strongly deterministic Watson-Crick automata,
then there exists a family of finite languages with unbounded state complexity.

Theorem 16. For any k ≥ 2 there exists a finite language Lk ⊆ V ∗ such that any
strongly deterministic Watson-Crick automaton recognizing Lk needs at least k states.

Proof : Let Lk = {ai | 1 ≤ i ≤ k − 1}, with k ≥ 2, and M be a strongly deterministic
Watson-Crick automaton recognizing it. Since Lk ⊂ {a}∗, any rule of M is of the form

q1

(
ai

aj

)
→ q2 for some i, j ≥ 0. Moreover, since M is deterministic, for every state q1

we can have at most one rewriting rule of the form mentioned above.
We claim now that in each final state qf we accept only one word. Otherwise, we

have one of the following two cases: either qf occurs twice in some computation, or
there exist two different rewriting sequences starting in the initial state q0 and ending
in qf . The first case implies the existence of a cycle and thus the accepted language
would not be finite. In the second case, we obtain that there exists a state q from which
we can continue in two different ways using two different rewriting rules, contradicting
the determinism. Moreover, in the initial state we cannot accept any of the words from
Lk since otherwise we would again have a cycle.

Thus, a strongly deterministic Watson-Crick automaton accepting Lk needs at
least k states: one initial and k − 1 final ones. Moreover, clearly, such a deterministic
Watson-Crick automaton can be easily constructed.

On the other hand, if we look at Watson-Crick automata with non-injective com-
plementarity relations, then the infinite hierarchy from the previous theorem collapses.

Theorem 17. For any k ≥ 2, the language Lk = {ai | 1 ≤ i ≤ k−1} can be recognized
by a deterministic Watson-Crick automaton with two states and having a non-injective
complementarity relation.

Proof : Let Lk = {ai | 1 ≤ i ≤ k − 1}, for a given k ≥ 2. We construct a de-
terministic Watson-Crick automaton M = (V, ρ, Q, q0, F, P ), where V = {a, b, c, d},
ρ = {(a, b), (b, a), (a, c), (c, a), (a, d), (d, a)}, Q = {q0, q1}, F = {q1}, and the set P of
rewriting rules is

P =
{

q0

(
a2i

bici

)
→ q1, q0

(
a2j−1

bj−1dcj−1

)
→ q1 | 1 ≤ i ≤

⌊
k − 1

2

⌋
, 1 ≤ j ≤

⌈
k − 1

2

⌉}
.

Then, it is easy to see that L(M) = Lk and, moreover, M is deterministic.

It is only natural now to ask whether also for the case of non-deterministic
Watson-Crick automata there exists a family of languages with unbounded state com-
plexity; this question was first stated in [9].
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We show next that any unary regular language can be recognized by a (non-
deterministic) Watson-Crick automaton with only three states. Actually, we prove
this property for block non-deterministic finite automata, which can be considered a
special case of Watson-Crick automata.

A block non-deterministic finite automaton (for short, block-NFA) is a finite au-
tomaton A = (Q,Σ, δ, q0, QF ) where δ consists of a finite number of rules (q1, w, q2),
with q1, q2 ∈ Q and w ∈ Σ∗. Clearly, a block-NFA is a special case of a Watson-Crick
automaton where the two reading heads are required to always move together.

An arbitrary unary regular language is denoted by a regular expression of the form

aj1 + . . . + ajr−1 + ajr(ai1 + . . . + ais−1)(am)∗, (3)

0 ≤ j1 < . . . < jr−1 < jr, 0 ≤ i1 < . . . < is1 < m, r, s ≥ 0. Here the words aj1 , . . . ,
ajr−1 are usually called the “tail” of the language and the remaining words belong to
the cycle of length m.

Theorem 18. Any unary regular language L can be recognized by a block-NFA A
having three states. Furthermore, A can be restricted to be unambiguous.

Proof : Let L be a unary regular language described by a regular expression of the
form (3). We construct a block-NFA A = (Q,Σ, δ, q0, QF ) where Q = {q0, q1, q2},
QF = {q1, q2}, and δ contains the rules

• (q0, a
x, q1), where x ∈ {j1, . . . jr−1},

• (q0, a
x, q2) where x ∈ {jr + i1, . . . , jr + is−1},

• (q2, a
m, q2).

It is easy to see that each word of L is accepted by a unique computation of A.

The following result is an immediate consequence of Theorem 18.

Corollary 19. Any regular unary language can be recognized by a non-deterministic
Watson-Crick automaton with only three states.

Note that the construction from the previous theorem can be slightly modified such
that any unary regular language can be accepted by a deterministic Watson-Crick
automaton with non-injective complementarity relation. However, it remains open
whether we can still improve this state complexity, i.e., whether Watson-Crick au-
tomata with only two states can recognize all unary regular languages.

As illustrated by Theorem 15 and Corollary 19, some infinite hierarchies collapse
when switching from the finite automata to the Watson-Crick automata recognizing
them. However, in both cases, this is mainly due to the fact that Watson-Crick au-
tomata can read blocks of letters at each step. Thus, we investigate next what happens
with infinite hierarchies of languages accepted by block-NFA’s when we consider the
Watson-Crick automata recognizing them.

Theorem 20. For any k ≥ 1, there exists a regular language Lk such that any block-
NFA recognizing Lk needs more than k states.
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Proof : Let Lk = (10∗)k+11 and assume that Lk is recognized by a block-NFAA having
k states. Let N be the length of the longest word appearing in rules of A and take
wN = (10N )k+11. Since wN ∈ Lk, A has an accepting computation C on wN . By the
choice of N , the computation C stops between the ith and (i+1)st occurrence of 1, for
each i = 1, . . . , k+1. Let qi be a state occurring in computation C between the ith and
(i + 1)st occurrence of 1, 1 ≤ i ≤ k + 1. By the pigeon-hole-principle there exist 1 ≤
j1 < j2 ≤ k+1 such that qj1 = qj2 . Thus A accepts also words having k+2+ l(j2− j1)
occurrences of 1 for any l ≥ −1; clearly, some of them are not in Lk.

Considering the state complexity of languages, the previous result shows the
existence of an infinite hierarchy. Although block-NFA’s are a particular type of
Watson-Crick automata, we show next that this hierarchy collapses when we look
at the Watson-Crick automata accepting them.

Theorem 21. For any k ≥ 1, the language Lk = (10∗)k+11 can be recognized by a
Watson-Crick automaton with three states.

Proof : Let Mk = (V, ι, {q0, q1, q2}, q0, F, P ) be a Watson-Crick automaton, where
V = {0, 1}, F = {q2}, and P contains the following productions:

• q0

(
λ

1u

)
→ q1, for any word u ∈ {0, 1}k,

• q1

(
0
x

)
→ q1, where x ∈ {0, 1},

• q1

(
1
λ

)
→ q1, and q1

(
1
1

)
→ q2.

With the first production, we advance the lower head k + 1 characters, independently
of what we have on the tape. Then, the upper head will catch up this advance only
after reading k + 1 times the character 1. Then, the automaton enters the final state
after reading the last character 1. Since a word is accepted only when both reading
heads have completely parsed the input word, the language recognized by M is Lk.

The results of this section illustrate the fact that there are many complex languages
which can be accepted by Watson-Crick automata with a bounded number of states.
Although we do not include a formal proof in this paper, another such complex family
of languages accepted by Watson-Crick automata with only a small number of states is
Lk = 10+120+ . . . 0+12k

, for any k ≥ 2. However, it remains open whether for all k > 1
there exists a language Lk such that any non-deterministic Watson-Crick automaton
accepting Lk needs at least k states [9].
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[8] C. Mart́ın-Vide, Gh. Păun, Normal Forms for Watson-Crick Finite Automata, in F.
Cavoto, ed., The Complete Linguist: A Collection of Papers in Honour of Alexis Manaster
Ramer: 281-296. Lincom Europa, Munich, 2000.
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