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“Come forth into the light of things
Let nature be your teacher.” [47]

1 Biological mathematics: the tables turned

The field usually referred to as mathematical biology is a highly interdisciplinary
area that lies at the intersection of mathematics and biology. Classical illustra-
tions include the development of stochastic processes and statistical methods
to solve problems in genetics and epidemiology. As the name used to describe
work in this field indicates, with “biology” the noun, and “mathematical” the
modifying adjective, the relationship between mathematics and biology has so
far been one–way. Typically, mathematical results have emerged from or have
been used to solve biological problems (see [24] for a comprehensive survey). In
contrast, Leonard Adleman, [1], succeeded in solving an instance of the directed
Hamiltonian path problem solely by manipulating DNA strings. This marks
the first instance of the connection being reversed: a mathematical problem is
the end toward which the tools of biology are used. To be semantically cor-
rect, instead of categorizing the research in DNA computing as belonging to
mathematical biology, we should be employing the mirror–image term biological
mathematics for the field born in November 1994.

Despite the complexity of the technology involved, the idea behind biological
mathematics is the simple observation that the following two processes, one
biological and one mathematical, are analogous:

(a) the very complex structure of a living being is the result of applying
simple operations (copying, splicing, etc.) to initial information encoded in a
DNA sequence,

(b) the result f(w) of applying a computable function to an argument w

can be obtained by applying a combination of basic simple functions to w (see
Section ?? or [42] for details).
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If noticing this analogy were the only ingredient necessary to cook a com-
puting DNA soup, we would have been playing computer games on our DNA
laptops a long time ago! It took in fact the ripening of several factors and a
renaissance mind like Adleman’s, a mathematician knowledgeable in biology, to
bring together these apparently independent phenomena. Adleman realized that
not only are the two processes similar but, thanks to the advances in molecular
biology technology, one can use the biological to simulate the mathematical.
More precisely, DNA strings can be used to encode information while enzymes
can be employed to simulate simple computations, in a way described below.

DNA (deoxyribonucleic acid) is found in every living creature as the storage
medium for genetic information. It is composed of units called nucleotides,
distinguished by the chemical group, or base, attached to them. The four bases
are adenine, guanine, cytosine and thymine, abbreviated as A, G, C, and T .
Single nucleotides are linked together end–to–end to form DNA strands. The
DNA sequence has a polarity: a sequence of DNA is distinct from its reverse.
Taken as pairs, the nucleotides A and T and the nucleotides C and G are said to
be complementary. Two complementary single–stranded DNA sequences with
opposite polarity will join together to form a double helix in a process called
annealing. The reverse process – a double helix coming apart to yield its two
constituent single strands – is called melting.

A single strand of DNA can be likened to a string consisting of a combination
of four different symbols, A, G, C, T . Mathematically, this means we have at
our disposal a 4 letter alphabet Σ = {A, G, C, T} to encode information, which
is more than enough, considering that an electronic computer needs only two
digits, 0 and 1, for the same purpose.

The simple operations that can be performed on DNA sequences are ac-
complished by a number of commercially available enzymes that execute some
basic tasks. One class of enzymes, called restriction endonucleases, will recog-
nize a specific short sequence in a strand and then “cut” the strand at that
location. Another enzyme, called the DNA ligase, will hook together, or “lig-
ate”, the sticky end of a freshly cut DNA strand to another strand. There are
many other enzymes that could potentially be useful, but for our models of
computation these are sufficient.

The practical possibilities of encoding information in a DNA sequence and of
performing simple bio–operations were used in [1] to solve a 7 node instance of
the Directed Hamiltonian Path Problem. A directed graph G with designated
vertices vin and vout is said to have a Hamiltonian path if and only if there
exists a sequence of compatible “one–way” edges e1, e2, . . . , ez (that is, a path)
that begins at vin, ends at vout and enters every other vertex exactly once.

The following (nondeterministic) algorithm solves the problem:
Step 1. Generate random paths through the graph.

Step 2. Keep only those paths that begin with vin and end with v
end

.

Step 3. If the graph has n vertices, then keep only those paths that enter exactly

n vertices.
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Step 4. Keep only those paths that enter all of the vertices of the graph at least

once.

Step 5. If any paths remain, say “YES”; otherwise say “NO”.

To implement Step 1, each vertex of the graph was encoded into a random
20–nucleotide strand (20–letter sequence) of DNA. Then, for each (oriented)
edge of the graph, a DNA sequence was created consisting of the second half of
the sequence encoding the source vertex and the first half of the sequence en-
coding the target vertex. By using complements of the vertices as splints, DNA
sequences corresponding to compatible edges were ligated, that is, linked to-
gether. Hence, the ligation reaction resulted in the formation of DNA molecules
encoding random paths through the graph.

To implement Step 2, the product of Step 1 was amplified by polymerase
chain reaction (PCR). Thus, only those molecules encoding paths that begin
with vin and end with vend were amplified.

For implementing Step 3, a technique called gel–electrophoresis was used,
that makes possible the separation of DNA strands by length. (The molecules
are placed at the top of a wet gel, to which an electric field is applied, drawing
them to the bottom. Larger molecules travel more slowly through the gel. After
a period, the molecules spread out into distinct bands according to size.)

Step 4 was accomplished by iteratively using a process called affinity purifi-
cation. This process permits single strands containing a given subsequence v

(encoding a vertex of the graph) to be filtered out from a heterogeneous pool of
other strands. (After synthesizing strands complementary to v and attaching
them to magnetic beads, the heterogeneous solution is passed over the beads.
Those strands containing v anneal to the complementary sequence and are re-
tained. Strands not containing v pass through without being retained.)

To implement Step 5, the presence of a molecule encoding a Hamiltonian
path was checked. (This was done by amplifying the result of Step 4 by poly-
merase chain reaction and then determining the DNA sequence of the amplified
molecules).

A remarkable fact about Adleman’s result is that not only does it give a
solution to a mathematical problem, but that the problem solved is a hard
computational problem in the sense explained below (see [20], [17]).

Problems can be ranked in difficulty according to how long the best algorithm
to solve the problem will take to execute on a single computer. Algorithms whose
running time is bounded by a polynomial (respectively exponential) function,
in terms of the size of the input describing the problem, are in the “polynomial
time” class P (respectively the “exponential time” class EXP). A problem is
called intractable if it is so hard that no polynomial time algorithm can possibly
solve it.

A special class of problems, apparently intractable, including P and included
in EXP is the “non–deterministic polynomial time” class, or NP. The following
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inclusions between classes of problems hold:

P ⊆ NP ⊆ EXP ⊆ Universal.

NP contains the problems for which no polynomial time algorithm solving them
is known, but that can be solved in polynomial time by using a non–deterministic
computer (a computer that has the ability to pursue an unbounded number
of independent computational searches in parallel). The directed Hamiltonian
path problem is a special kind of problem in NP known as “NP–complete”. An
NP–complete problem has the property that every other problem in NP can be
reduced to it in polynomial time. Thus, in a sense, NP–complete problems are
the “hardest” problems in NP.

The question of whether or not the NP–complete problems are intractable,
mathematically formulated as “Does P equal NP?”, is now considered to be
one of the foremost open problems of contemporary mathematics and computer
science. Because the directed Hamiltonian path problem has been shown to
be NP–complete, it seems likely that no efficient (that is, polynomial time)
algorithm exists for solving it with an electronic computer.

Following [1], in [25] a potential DNA experiment was described for finding a
solution to another NP–complete problem, the Satisfiability Problem. The Sat-
isfiability Problem consists of a Boolean expression, the question being whether
or not there is an assignment of truth values – true or false – to its variables,
that makes the value of the whole expression true. Later on, the method from
[25] was used in [28], [27] and [26], to show how other NP–complete problems
can be solved.

In [7], a “molecular program” was given for breaking the U.S. government’s
Data Encryption Standard (DES). DES encrypts 64 bit messages and uses a
56–bit key. Breaking DES means that given one (plain–text, cipher–text) pair,
we can find a key which maps the plain–text to the cipher–text. A conventional
attack on DES would need to perform an exhaustive search through all of the
256 DES keys, which, at a rate of 100,000 operations per second, would take
10,000 years. In contrast, it was estimated that DES could be broken by using
molecular computation in about 4 months of laboratory work.

The problems mentioned above show that molecular computation has the
potential to outperform existing computers. One of the reasons is that the op-
erations molecular biology currently provides can be used to organize massively
parallel searches. It is estimated that DNA computing could yield tremendous
advantages from the point of view of speed, energy efficiency and economic infor-
mation storing. For example, in Adleman’s model, [2], the number of operations
per second could be up to approximately 1.2 × 1018. This is approximately
1,200,000 times faster than the fastest supercomputer. While existing super-
computers execute 109 operations per Joule, the energy efficiency of a DNA
computer could be 2 × 1019 operations per Joule, that is, a DNA computer
could be about 1010 times more energy efficient (see [1]). Finally, according
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to [1], storing information in molecules of DNA could allow for an information
density of approximately 1 bit per cubic nanometer, while existing storage me-
dia store information at a density of approximately 1 bit per 1012 nm3. As
estimated in [3], a single DNA memory could hold more words than all the
computer memories ever made.

2 Can DNA compute everything?

The potential advantages of DNA computing versus electronic computing are
clear in the case of problems like the Directed Hamiltonian Path Problem, the
Satisfiability Problem, and breaking DES. On the other hand, these are only
particular problems solved by means of molecular biology. They are one–time
experiments to derive a combinatorial solution to a particular sort of problem.
This immediately leads to two fundamental questions, posed in Adleman’s ar-
ticle and in [20] and [28]:

(1) What kind of problems can be solved by DNA computing?
(2) Is it possible, at least in principle, to design a programmable DNA com-

puter?
More precisely, one can reformulate the problems above as:

(1) Is the DNA model of computation computationally complete in the sense
that the action of any computable function (or, equivalently, the computation
of any Turing machine) can be carried out by DNA manipulation?

(2) Does there exist a universal DNA system, i.e., a system that, given the
encoding of a computable function as an input, can simulate the action of that
function for any argument? (Here, the notion of function corresponds to the
notion of a program in which an argument w is the input of the program and
the value f(w) is the output of the program. The existence of a universal DNA
system amounts thus to the existence of a DNA computer capable of running
programs.)

Opinions differ as to whether the answer to these questions has practical
relevance. One can argue as in [8] that from a practical point of view it maybe
not be that important to simulate a Turing machine by a DNA computing
device. Indeed, one should not aim to fit the DNA model into the Procrustean
bed of classical models of computation, but try to completely rethink the notion
of computation. On the other hand, finding out whether the class of DNA
algorithms is computationally complete has many important implications. If the
answer to it were unknown, then the practical efforts for solving a particular
problem might be proven futile at any time: a Gödel minded person could
suddenly announce that it belongs to a class of problems that are impossible
to solve by DNA manipulation. The same holds for the theoretical proof of the
existence of a DNA computer. As long as it is not proved that such a thing
theoretically exists, the danger that the practical efforts will be in vane is always
lurking in the shadow.
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One more indication of the relevance of the questions concerning computa-
tional completeness and universality of DNA–based devices is that they have
been addressed for most models of DNA computation that have so far been
proposed.

The existing models of DNA computation are based on various combinations
of a few primitive biological operations:
– Synthesis of a desired polynomial–length strand ([1], [2], [6], [5]);
– Separation of the strands by length ([1], [2], [8], [5], [6]);
– Merging: pour two test tubes into one to do union ([1], [2], [28]);
– Extraction: extract those strands containing a given pattern as a substring
([1], [2], [28], [8], [6]);
– Melting/Annealing: break apart/bond together two single DNA strands with
complementary sequences ([8], [40], [46]);
– Amplifying: make copies of DNA strands by using the Polymerase Chain
Reaction ([1], [2], [28], [8], [5], [6], [40]);
– Cutting: cut DNA strands by using restriction enzymes ([8], [5], [6], [21], [37],
[40]);
– Ligation: paste DNA strands with complementary sticky ends by using ligases
([5], [6], [46], [21], [37], [40]);
– Detection: given a tube, say “yes” if it contains at least one DNA strand, and
“no” otherwise ([1], [2], [28], [8]).

These operations are then used to write “programs” which receive a tube
containing DNA strands as input and return as output either “yes” or “no” or
a set of tubes. A computation consists of a sequence of tubes containing DNA
strands.

There are pro’s and con’s for each model (combination of operations). The
ones using operations similar to Adleman’s have the obvious advantage that they
could already be successfully implemented in the lab. The obstacle preventing
the large scale automatization of the process is that most bio–operations rely
on mainly manual handling of tubes. In contrast, the model introduced by Tom
Head in [21] aims to be an “one–pot” tube with all the operations carried out
in principle by enzymes. Moreover, it has the theoretical advantage of being a
mathematical model with all the claims backed up by mathematical proofs. Its
disadvantage is that the current state of art in molecular biology has not allowed
yet practical implementation. Overall, the existence of different models with
complementing features shows the versatility of DNA computing and increases
the likelihood of practically constructing a DNA–computing–based device.

It can be proved, [9], [16], that in the case of the splicing system model of
DNA recombination, one can affirmatively answer both questions posed at the
beginning of this section. Constructions showing how to simulate the work of
a Turing machine by a DNA model of computation have also been proposed in
[40], [37], [2], [8], [6], [46], [36]. In an optimistic way, one may think of an analogy
between these results and the work on finding models of computation carried
out in the 30’s, which has laid the foundation for the design of the electronic
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computers. In a similar fashion, the results obtained about the models of DNA
computation show that programmable DNA computers are not science fiction
material, but the reality of the near future.

3 Meta–thoughts on biomathematics

We have seen in Section 2 that the bio–operations are quite different from the
usual arithmetical operations. Indeed, even more striking than the quantitative
differences between a virtual DNA computer and an electronic computer (the
DNA computer winning the comparison on most fronts) are the qualitative
differences between the two.

DNA computing is a new way of thinking about computation altogether.
Maybe this is how nature does mathematics: not by adding and subtracting,
but by cutting and pasting, by insertions and deletions. Perhaps the primitive
functions we currently use for computation are just as dependent on the history
of humankind, as the fact that we use base 10 for counting is dependent on
our having ten fingers. In the same way humans moved on to counting in other
bases, maybe it is time we realized that there are other ways to compute besides
the ones we are familiar with.

The fact that phenomena happening inside living organisms (copying, cut-
ting and pasting of DNA strands) could be computations in disguise suggests
that life itself may consist of a series of complex computations. As life is one of
the most complex natural phenomena, we could generalize by conjecturing the
whole cosmos to consist of computations. The differences between the diverse
forms of matter would then only reflect various degrees of computational com-
plexity, with the qualitative differences pointing to huge computational speed–
ups. From chaos to inorganic matter, from inorganic to organic, and from that
to consciousness and mind, perhaps the entire evolution of the universe is a
history of the ever–increasing complexity of computations.

Of course, the above is only a hypothesis, and the enigma whether modern
man is “homo sapiens” or “homo computans” still awaits solving. But this is
what makes DNA computing so captivating. Not only may it help compute
faster and more efficiently, but it stirs the imagination and opens deeper philo-
sophical issues. What can be more mesmerizing than something that makes you
dream?

To a mathematician, DNA computing tells that perhaps mathematics is the
foundation of all there is. Indeed, mathematics has already proven to be an
intrinsic part of sciences like physics and chemistry, of music, visual arts (see
[23]) and linguistics, to name just a few. The discovery of DNA computing,
indicating that mathematics also lies at the root of biology, makes one wonder
whether mathematics isn’t in fact the core of all known and (with noneuclidean
geometry in mind) possible reality.

Maybe indeed, Plato [35], was right: the material things are mere instances
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of “ideas” that are everlasting, never being born nor perishing. By intimating
that – besides everything else – mathematics lies at the very heart of life, DNA
computing suggests we take Plato’s philosophy one step further: the eternal
“ideas” reflected in the ephemeral material world could be mathematical ones.
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