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Abstract. The paper examines the concept of hairpin-free words mo-
tivated from the biocomputing and bioinformatics fields. Hairpin (-free)
DNA structures have numerous applications to DNA computing and
molecular genetics in general. A word is called hairpin-free if it cannot
be written in the form xvyθ(v)z, with certain additional conditions, for
an involution θ (a function θ with the property that θ2 equals the identity
function).
We consider three involutions relevant to DNA computing: a) the mirror
image function, b) the DNA complementarity function over the DNA
alphabet {A, C, G, T} which associates A with T and C with G, and c)
the Watson-Crick involution which is the composition of the previous
two. We study elementary properties and finiteness of hairpin (-free)
languages w.r.t. the involutions a) and c). Maximal length of hairpin-
free words is also examined. Finally, descriptional complexity of maximal
hairpin-free languages is determined.
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1 Introduction

The primary motivation for study of hairpin-free structures in this paper arises
from the areas of DNA computing and bioinformatics, where such structures
are important for the design of information-encoding DNA molecules. A sin-
gle strand DNA molecule can be formally described as a string over the DNA
alphabet ∆ = {A,C, T,G}. These four symbols correspond to nucleotides at-
tached to a sugar-phosphate backbone. Two single strands can bind (anneal) to
each other if they have opposite polarity (the strand’s orientation in space) and
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are pairwise Watson-Crick complementary: A is complementary to T, and C to
G. The ability of DNA strands to anneal to each other allows for creation of
various secondary structures. A DNA hairpin is a particular type of secondary
structure important in many applications. An example of a hairpin structure is
shown in Figure 1. The figure characterizes the case when θ is the Watson-Crick
antimorphic involution (see the next section for exact definition).
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Fig. 1. A single-stranded DNA molecule forming a hairpin loop

Hairpin-like secondary structures play an important role in insertion/deletion
operations with DNA. Hairpin-freedom is crucial in the design of primers for
the PCR reaction [4]. Hairpins are the main tool used in the Whiplash PCR
computing techniques [17]. In [19] hairpins serve as a binary information medium
for DNA RAM. Last, but not least, hairpins are basic components of recently
investigated “smart drugs” [1]. Therefore, in the above mentioned applications,
one needs to construct (sets of) hairpin(-free) DNA molecules, or to test existing
sets of DNA molecules for hairpin-freedom and study their properties. We refer
e.g. to [16] for an overview of design of DNA languages without hairpins and other
undesired bonds. Coding properties of hairpin-free languages have been studied
in [11, 12]. Hairpins have also been studied in the context of bio-operations
occurring in single-celled organisms (see the hairpin inversion operation defined
as one of the three molecular operations that accomplish gene assembly in ciliates
[6, 8]).

In addition, the presented results also contribute to mathematical character-
ization of regularities in formal words and languages. In this sense the definition
of hairpin-free words can be understood as a generalization of repetition-freedom.
A word u is called hairpin-k-free if u = xvyθ(v)z implies |v| < k, for a chosen
involution θ. Considering the special case when k = 1, θ is the identity involution
and y is the empty word, we obtain the square-freedom (see below).

For a general overview and fundamental results in combinatorics on words,
the reader is referred to [5, 13]. If w is an nonempty word, then ww is called a
square and www is called a cube. Important questions about avoiding squares
and cubes in infinite words have been answered in [7]. See [14] for combinatorics
on finite words. Words of the form uvyvz with a bounded length of y have
been studied e.g. in [3]. Unfortunately, many techniques and results known in
combinatorics on words are non-applicable in the case of hairpin-free words. One
of the main reasons is that in the case of an antimorphic involution, analogies
of the famous defect theorem and its consequences are no longer valid.

The paper is organized as follows. Section 2 introduces basic formal concepts
and definitions. In Section 3 we present the concept of hairpin-free words and
languages and study their elementary properties. Problems related to the finite-
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ness of hairpin-free languages are addressed in Section 4. Finally, in Section 5
we study descriptional complexity of hairpin (-free) languages with regards to
possible applications.

2 Formal Language Prerequisites

We will use X to denote a finite alphabet and X∗ its corresponding free monoid.
The cardinality of the alphabet X is denoted by |X |. The empty word is denoted
by 1, and X+ = X∗ − {1}. A language is an arbitrary subset of X∗. For a word
w ∈ X∗ and k ≥ 0, we denote by wk the word obtained as catenation of k copies
of w. Similarly, Xk is the set of all words from X∗ of length k. By convention,
w0 = 1 and X0 = {1}.We also denote X≤k = X0∪X1∪. . .∪Xk. By convention,
X≤k = ∅ for k < 0.

A mapping ψ : X∗ → X∗ is called a morphism (anti-morphism) of X∗

if ψ(uv) = ψ(u)ψ(v) (respectively ψ(uv) = ψ(v)ψ(u)) for all u, v ∈ X∗, and
φ(1) = 1. See [9] for a general overview of morphisms. An involution θ : X −→ X
is defined as a map such that θ2 is the identity function. An involution θ can be
extended to a morphism or an antimorphism over X∗. In both cases θ2 is the
identity over X∗ and θ−1 = θ. If not stated otherwise, θ refers to an arbitrary
morphic or antimorphic involution in this paper.

In our examples we shall refer to the DNA alphabet ∆ = {A,C, T,G}. By
convention, DNA strands are described by strings over this alphabet in orien-
tation from 5’ to 3’ end. On this alphabet several involutions of interest are
defined. The simplest involution is the identity function ε. An antimorphic in-
volution which maps each letter of the alphabet to itself is called a mirror in-
volution and it is denoted by µ. The DNA complementarity involution γ is a
morphism given by γ(A) = T , γ(T ) = A, γ(C) = G, γ(G) = C. For example,
ε(ACGCTG) = ACGCTG = µ(GTCGCA) = γ(TGCGAC).

Finally, the antimorphic involution τ = µγ (the composite function of µ and
γ, which is also equal to γµ), called the Watson-Crick involution, corresponds
to the DNA bond formation of two single strands. If for two strings u, v ∈ ∆∗ it
is the case that τ(u)v, then the two DNA strands represented by u, v anneal as
Watson-Crick complementary sequences.

A nondeterministic finite automaton (NFA) is a quintuple A = (S,X, s0, F, P ),
where S is the finite and nonempty set of states, s0 is the start state, F is the set
of final states, and P is the set of productions of the form sx → t, for s, t ∈ S,
x ∈ X. If for every two productions sx1 → t1 and sx2 → t2 of an NFA we have
that x1 �= x2 then the automaton is called a DFA (deterministic finite automa-
ton). The language accepted by the automaton A is denoted by L(A). The size
|A| of the automaton A is the number |S| + |P |. We refer to [18] for further
definitions and elements of formal language theory.

3 Involutions and Hairpins

Definition 1. If θ is a morphic or antimorphic involution of X∗ and k is a
positive integer, then a word u ∈ X∗ is said to be θ-k-hairpin-free or simply
hp(θ,k)-free if u = xvyθ(v)z for some x, v, y, z ∈ X∗ implies |v| < k.
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Notice that the words 1 and a ∈ X are hp(θ,1)-free. More generally, words of
length less than 2k are hp(θ,k)-free. If we interpret this definition for the DNA
alphabet ∆ and the Watson-Crick involution τ , then a hairpin structure with
the length of bond greater than or equal to k is a word that is not hp(τ ,k)-free.

Definition 2. Denote by hpf (θ, k) the set of all hp(θ,k)-free words in X∗. The
complement of hpf (θ, k) is hp(θ, k) = X∗ − hpf (θ, k).

Notice that hp(θ, k) is the set of words in X∗ which are hairpins of the form
xvyθ(v)z where the length of v is at least k. It is also the case that hp(θ, k+1) ⊆
hp(θ, k) for all k > 0.

Definition 3. A language L is called θ-k-hairpin-free or simply hp(θ, k)-free if
L ⊆ hpf (θ, k).

It is easy to see from the definition that a language L is hp(θ, k)-free if and
only if X∗vX∗θ(v)X∗ ∩ L = ∅ for all |v| ≥ k. An analogous definition was
given in [11] where a θ-k-hairpin-free language is called θ-subword-k-code. The
authors focused on their coding properties and relations to other types of codes.
Restrictions on the length of a hairpin were also considered, namely that 1 ≤
|y| ≤ m for some m ≥ 1. The reader can verify that our Proposition 3 remains
valid and the results in Section 5 change only slightly if we apply this additional
restriction.

Example.

1. Let X = {a, b} with θ(a) = b, θ(b) = a. Then hpf (θ, 1) = a∗ ∪ b∗.
This example shows that in general the product of hp(θ, 1)-free words is not
an hp(θ, 1)-free word. Indeed, a and b are hp(θ, 1)-free, but the product ab
is not.

2. If θ = γ is the DNA complementary involution over ∆∗, then:

hpf (θ, 1) = {A,C}∗ ∪ {A,G}∗ ∪ {T,C}∗ ∪ {T,G}∗

3. Let θ = µ be the mirror involution and let u ∈ hpf (θ, 1). Since θ(a) = a
for all a ∈ X , u cannot contain two occurrences of the same letter a. This
implies that hpf (θ, 1) is finite. For example, if X = {a, b}, then:

hpf (θ, 1) = {1, a, b, ab, ba}
We focus first on the important special case when k = 1. Observe that

hp(θ, 1) =
⋃

a∈X X∗aX∗θ(a)X∗. Recall also the definition of an embedding or-
der: u ≤e w if and only if

u = u1u2 · · ·un, w = v1u1v2u2 · · · vnunvn+1

for some integer n with ui, vj ∈ X∗.
A language L is called right ≤e-convex [20] if u ≤e w, u ∈ L implies w ∈ L.

The following result is well known: All languages (over a finite alphabet) that
are right ≤e-convex are regular.
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Proposition 1. The language hp(θ, 1) is right ≤e-convex.

Proof. If u = u1u2 ∈ hp(θ, 1) and v1, v2, v3 ∈ X∗, then w = v1u1v2u2v3 ∈
hp(θ, 1). Therefore, if u ∈ hp(θ, 1) and u ≤e w, then w can be constructed from
u by a sequence of insertions, and hence w ∈ hp(θ, 1). 
�

Let L ⊆ X∗ be a nonempty language and let:

S(L) = {w ∈ X∗|u ≤e w, u ∈ L}.
Hence S(L) is the set of all the words w ∈ X∗ that can be expressed in the form
w = x1u1x2u2 · · ·xnunxn+1 with u = u1u2 · · ·un ∈ L and xi ∈ X∗.

Recall further that a set H with ∅ �= H ⊆ X+ is called a hypercode over X∗

iff x ≤e y and x, y ∈ H imply x = y. That is, a hypercode is an independent set
with respect to the embedding order.

Proposition 2. Let θ be a morphic or antimorphic involution. Then there exists
a unique hypercode H such that hp(θ, 1) = S(H).

Proof. Let H =
⋃

a∈X aθ(a), then S(H) =
⋃

a∈X X∗aX∗θ(a)X∗ = hp(θ, 1). The
uniqueness of H is immediate. 
�
Example. Consider the hypercodes for the earlier three examples.

1. For X = {a, b} and the involution (morphic or antimorphic) θ(a) = b, θ(b) =
a, the hypercode is H = {ab, ba}.

2. For the DNA complementarity involution γ we haveH = {AT, TA,CG,GC}.
3. The mirror involution over {a, b}∗ gives the hypercode H = {aa, bb}.

Proposition 1, true for the case k = 1, cannot in general be extended to
the case k > 1 as the language hp(θ, 2) is not ≤e-convex. However, the weaker
regularity property remains valid. Note that hp(θ, k) =

⋃
|w|≥kX

∗wX∗θ(w)X∗.

Proposition 3. The languages hp(θ, k) and hpf (θ, k), k ≥ 1, are regular.

Proof. One can easily derive hp(θ, k)
⋃

|w|=k X
∗wX∗θ(w)X∗. Every language

X∗wX∗θ(w)X∗with |w| = k is regular, hence hp(θ, k) is a union of a finite num-
ber of regular languages. Therefore both hp(θ, k) and its complement hpf (θ, k)
are regular. 
�

4 Finiteness of Hairpin-Free Languages

In this section we give the necessary and sufficient conditions under which the
language hpf (θ, k) is finite, for a chosen k ≥ 1. We study first the interesting
special case of µ, the mirror involution, over a binary alphabet X.

Recall that hp(µ, k) is the set of all words containing two non-overlapping
mirror parts of length at least k. In the next proposition we show that the longest
hp(µ, 4)-free word is of length 31. This also implies that the language hpf (µ, 4)
is finite. The proof requires several technical lemmata whose proofs are omitted
due to page limitations and can be found in [15]. In these lemmata we assume
that |X | = 2.
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Definition 4. A run in a word w is a subword of w of the form ck, with c ∈ X
and k ≥ 1, such that w = uckv for some word u that does not end with c, and
some word v that does not start with c.

Lemma 1. Suppose that w is a word in hpf (µ, 4). The following statements hold
true.

1. If ai is any run in w then i ≤ 7. If the run is internal then i ≤ 5.
2. The word w cannot contain three different runs ai1 , ai2 , ai3 with i1, i2, i3 ≥ 3.

If w contains two runs aj and ai with i, j ≥ 3 then w starts with ajbai, or
w ends with aibaj. Moreover not both i and j can be greater than 3.

3. The word w cannot contain three different internal runs a2. If w contains
two internal runs a2 then they occur as in · · · ba2ba2b · · ·.

4. The above statements also hold if we replace a with b and vice-versa.

Lemma 2. Suppose that a word in hpf (µ, 4) contains a subword w of the form

abx1ay1 · · · bxnaynb,

with n ≥ 3 and xi, yi ≥ 1 for each i. Then there are at most three indices i such
that xi = yi = 1.

Lemma 3. Suppose that a word w is in hpf (µ, 4) and contains two runs cj and
ci with i, j ≥ 3 and c ∈ X. Then |w| ≤ 31.

Lemma 4. Suppose that a word w is in hpf (µ, 4) and contains no two runs cj

and ci with i, j ≥ 3 and contains two internal runs b2 and one internal run by

with y ≥ 3 and w is of the following form

ay0bx1ay1 · · · bxnayn(bxn+1ayn+1),

where all yi’s and xj ’s are positive except possibly for yn+1. Then |w| ≤ 31.

Lemma 5. If a word w is in hpf (µ, 4) and of the form

ay0bx1ay1 · · · bxnayn(bxn+1ayn+1),

such that y0, xn+1 ≥ 3, and 2 ≥ yn+1 ≥ 0, and 2 ≥ xi, yi > 0 for all i = 1, . . . , n,
then |w| ≤ 30. Moreover, the following word of length 30 satisfies the above
premises:

a7b2ab2abababa2ba2b7.

Proposition 4. Let X be a binary alphabet. For every word w ∈ X∗ in hpf (µ, 4)
we have that |w| ≤ 31. Moreover the following word of length 31 is in hpf (µ, 4)

a7ba3bababab2ab2a2b7.

Proof. Without loss of generality we can assume that w starts with a. Then w
would be of the form

ay0bx1ay1 · · · bxnayn(bxn+1ayn+1),
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where all yi’s and xj ’s are positive except possibly for yn+1. We distinguish the
following cases.

Case 1: There are two runs ci and cj in w with i, j ≥ 3. By Lemma 3, |w| ≤ 31
as required.

In the next 7 cases, we assume that the first case does not hold and that
there is exactly one run aδ in w with δ ≥ 3.

Case 2: The run aδ is ay0 and there is a run bi with i ≥ 3. If xn+1 ≥ 3 then
Lemma 5 implies that |w| ≤ 30. So assume that xn+1 ≤ 2. If there are two
internal runs b2 in w then Lemma 4 implies that |w| ≤ 31. So assume further
that there is at most one internal run b2. Note that if xn+1 = 2 and yn+1 > 0
then bxn+1 is the run b2. Let g be the quantity e|b2a|+xn+1 + yn+1, where e = 0
if xn+1 = 2 and yn+1 > 0, and e = 1 if xn+1 = 1 or yn+1 = 0. Hence, g ≤ 6.
Moreover, |w| ≤ 7 + 3|ba|+ 2|ba2| + |b5a| + g ≤ 31.

Case 3: The run aδ is ay0 and there is no run bi with i ≥ 3. Using again the
quantity g of Case 2, we have that |w| ≤ 7 + 3|ba| + 2|ba2| + |b2a| + g ≤ 28.

Case 2’: The run aδ is ayn+1 and there is a run bi with i ≥ 3. Then the word
µ(w) is of the same form as the word w is and the run bi occurs in µ(w). Hence,
Case 2 applies to µ(w) and, therefore, both µ(w) and w are of length at most
31.

Case 3’: The run aδ is ayn+1 and there is no run bi with i ≥ 3. Then the word
µ(w) is of the same form as the word w is and no run bi, with i ≥ 3, occurs
in µ(w). Hence, Case 3 applies to µ(w) and, therefore, both µ(w) and w are of
length at most 28.

Case 4: The run aδ is internal and there is one internal run bj with j ≥ 3.
Then j, δ ≤ 5. If w contains two internal runs b2 then Lemma 4 implies that
|w| ≤ 31. Next assume that w contains at most one internal run b2 and consider
the quantity g = e|b2a| + xn+1 + yn+1 as in Case 2. If w contains at most one
internal run a2 then

|w| ≤ y0 + 3|ba| + |ba2| + |ba5| + |b5a| + g ≤ 2 + 6 + 3 + 6 + 6 + 6 = 29.

Next assume further that w contains two internal runs a2. Then Lemma 1 implies
that w contains ba2ba2b. Also,

|w| ≤ 2 + 6 + 2|ba2| + 6 + 6 + g ≤ 26 + g.

If xn+1 = 2 and yn+1 > 0 then e = 0 and |w| ≤ 30. If yn+1 = 0 then e = 1
and |w| ≤ 31. If xn+1 = 1 and yn+1 = 1 then |w| ≤ 31. Finally, if xn+1 = 1
and yn+1 = 2 then w ends with aba2, which contradicts the fact that w contains
ba2ba2b.

Case 4’: The run aδ is internal and there is one external run bj with j ≥ 3. Then
yn+1 = 0 and the run bj is bxn+1, as y0 > 0. Let w′ be the word resulting by
exchanging the letters a and b in w. Then the word µ(w′) satisfies the premises
of Case 2, which implies that w is of length at most 31.
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Case 5: The run aδ is internal and there is no run bj with j ≥ 3. Using again the
quantity g of Case 2, we have that |w| ≤ y0+3|ba|+ |ba5|+2|ba2|+ |b2a|+g ≤ 29.
Case 6: Here the first case does not hold and there is no run aδ with δ ≥ 3. If there
is an internal run bj with j ≥ 3 then |w| ≤ y0+3|ba|+|b5a|+2|ba2|+|b2a|+g ≤ 29.
If there is an external run bj with j ≥ 3 then bj = bxn+1 and yn+1 = 0, and one
can verify that |w| ≤ 27. If there is no run bj with j ≥ 3 then one can verify
that |w| ≤ 23.

Finally, by inspection one verifies that a7ba3bababab2ab2a2b7 is indeed in
hpf (µ, 4). 
�
Corollary 1. Consider a binary alphabet X. Then hpf (µ, k) is finite if and only
if k ≤ 4.

Proof. Denote X = {a, b}. By Proposition 4, the set hpf (µ, 4) is finite. Now
consider the language L5 = (aabbab)+. The set of its subwords of length 5 is
Sub5(L5) = {aabba, abbab, bbaba, babaa, abaab, baabb}.For its mirror image µ(L5)
we obtain Sub5(µ(L5)) = {abbaa, babba, ababb, aabab, baaba, bbaab}.As these two
sets are mutually disjoint, L5 ⊆ hpf (µ, 5).

Finally, notice that for k > 1, finiteness of hpf (µ, k) implies also finiteness
of hpf (µ, k − 1). Hence the facts that hpf (µ, 4) is finite and hpf (µ, 5) is infinite
conclude the proof. 
�
Proposition 5. Let θ be a morphic or antimorphic involution. The language
hpf (θ, k) over a non-singleton alphabet X is finite if and only if one of the
following holds:
(a) θ = ε, the identity involution;
(b) θ = µ, the mirror involution, and either k = 1 or |X | = 2 and k ≤ 4.

Proof. (a) Let θ be a morphism. Assume first that θ �= ε. Then there are a, b ∈ X,
a �= b, such that θ(a) = b. Then a+ ⊆ hpf (θ, k) for any k ≥ 1, hence hpf (θ, k)
is infinite.
Assume now that θ = ε and let w be any word of length ≥ k|X |k + k.
Since there exist |X |k distinct words of length k, there are at least two non-
overlapping subwords of length k in w which are identical. Hence w = xvyvz
for some v ∈ Xk and x, y, z ∈ X∗. Therefore hpf (ε, k) is finite since it cannot
contain any word longer than k|X |k + k.

(b) Let θ be an anti-morphism. Assuming that θ �= µ, the same arguments as
above show that hpf (θ, k) is infinite.
Assume now that θ = µ. Apparently hpf (µ, 1) is finite as shown in the
examples above. For |X | = 2 we know that hpf (µ, k) is finite iff k ≤ 4 by
Corollary 1. Finally, for |X | > 2 and k > 1 the language hpf (µ, k) is infinite
as it always contains the hp(µ, 2)-free set (abc)+ (regardless to renaming the
symbols). 
�

5 Descriptional Complexity of Hairpin(-Free) Languages

The regularity of the languages hp(θ, k) and hpf (θ, k) shown in Section 3 in-
dicates an existence of fast algorithms deciding problems related to hairpin-
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freedom. For such algorithms, a construction of automata (NFA or DFA) ac-
cepting the languages hp(θ, k) and hpf (θ, k) would be important. Therefore we
investigate minimal size of these automata. We recall the following technical
tools from [2], see also [10].

Definition 5. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is called a fool-
ing set for a language L if for any i, j in {1, 2, . . . , n},
(1) xiyi ∈ L, and
(2) if i �= j then xiyj �∈ L or xjyi �∈ L.

Lemma 6. Let F be a fooling set of a cardinality n for a regular language L.
Then any NFA accepting L needs at least n states.

Now we can characterize the minimal size of automata accepting languages
hp(θ, k) and hpf (θ, k). We use the operator

∏
for catenation.

aa

ba

a,b

a,b

a,b

a,b

a,b

a
a

b

a b
q

1

S

S

q

b

a

a

b

b

ab

a,b

qbb

b a

ba
ab

q

S 1
p

p

p

Fig. 2. An example of an NFA accepting the language hp(θ, 2)

Proposition 6. The number of states of a minimal NFA accepting the language
hp(θ, k), k ≥ 1, over an alphabet X of the cardinality 	 > 1, is between 	k and
3	k, its size is at most 3(	k + 	k+1).

Proof. Let Mk = (S,X, s1, F, P ) be an NFA accepting hp(θ, k).

(i) The reader can easily verify that the set F = {(w, θ(w))|w ∈ Xk} is a fooling
set for hp(θ, k). Therefore |S| ≥ 	k.

(ii) Let
S = {sw, pw |w ∈ X≤k−1} ∪ {qw |w ∈ Xk}.
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Let further F = {p1}. The set of productions P is defined as follows:

sva→ sw if and only if va = w, for each v ∈ X≤k−2, a ∈ X ;
sva→ qw if and only if va = w, for each v ∈ Xk−1, a ∈ X ;
qwa→ qw for all w ∈ Xk, a ∈ X ;
qwa→ pv if and only if θ(av) = w, for each v ∈ Xk−1, a ∈ X ;
pwa→ pv if and only if av = w, for each v ∈ X≤k−2, a ∈ X.

Finally, let s1a → s1 and p1a → p1 for all a ∈ X. An example of the
automaton Mk for the case X = {a, b}, k = 2 and θ being an antimorphism,
θ(a) = b, θ(b) = a, is at Fig. 2. The reader can verify that L(Mk) = hp(θ, k),
and that |S| ≤ 3	k, |P | ≤ 3	k+1, therefore |Mk| ≤ 3(	k + 	k+1). 
�

Note that for 	 = 1 we have hp(θ, k) = X2kX∗, therefore the size of the minimal
automaton accepting hp(θ, k) is |Mk| = 4k + 2.

Proposition 7. Assume that there are distinct letters a, b ∈ X such that a =
θ(b). Then the number of states of a minimal NFA accepting hpf (θ, k), k ≥ 1,
over an alphabet X with the cardinality 	, is at least 2(�−2)k/2.

Proof. We take into the account only the cases 	 ≥ 3, the case 	 = 2 is trivial.
Denote X1 = X \ {a, b}. We can factorize the set Xk

1 = C1 ∪ C2 ∪ C3, where
C1, C2, C3 are mutually disjoint sets such that θ(C1) = C2 and θ(x) = x for all
x ∈ C3. Obviously |C1| = |C2|.

Denote m = |C1 ∪ C3|, then m ≥ (	 − 2)k/2. Consider the set of pairs of
strings

F =
{( ∏

w∈D

aw,
∏

w∈(C2∪C3)\θ(D)

aw

) ∣
∣
∣
∣ D ⊆ (C1 ∪ C3)

}

. (1)

We show that F is a fooling set for hpf (θ, k).

(i) Consider an arbitrary pair (x, y) ∈ F . Let z ∈ Xk be a substring of xy. If z
contains a, then θ(z) cannot be in xy as θ(a) = b and b is not in xy. If z does
not contain a, then z ∈ Xk

1 and z is a subword of either x or y. Assume that
z is a part of x. Then, by definition of C1 and C3, there is no occurrence
of θ(z) in x which would not overlap z. Also, θ(z) is not a subword of y as
z ∈ D and hence θ(z) �∈ (C2∪C3)\θ(D). If z is a subword of y, the situation
is analogous. Therefore, xy ∈ hpf (θ, k).

(ii) Let (x, y), (x′, y′) be two distinct elements of F , associated with the sets
D,D′ ⊆ (C1∪C3) in the sense of (1). Let us assume without loss of generality
that there is a z ∈ D \ D′. Then θ(z) ∈ (C2 ∪ C3) and θ(z) �∈ θ(D′),
hence θ(z) is a subword of y′. Simultaneously z is a subword of x, therefore
xy′ �∈ hpf (θ, k).

We can conclude that |F| = 2m ≥ 2(�−2)k/2, and hence the statement follows by
Lemma 6. 
�
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Corollary 2. Let X be an alphabet such that |X | = 	, 	 ≥ 2. Let there be distinct
letters a, b ∈ X such that a = θ(b). Then the number of states of a minimal DFA
over the alphabet X, accepting either hp(θ, k) or hpf (θ, k), k ≥ 1, is between
2(�−2)k/2 and 23�k

.

Proof. Observe that the numbers of states of minimal DFA’s accepting hp(θ, k)
and hpf (θ, k) are the same since these languages are mutual complements. Then
the lower bound follows by Proposition 7. The upper bound follows by Propo-
sition 6 and by the subset construction of a DFA equivalent to the NFA Mk

mentioned there. 
�
Corollary 3. Consider the DNA alphabet ∆ = {A,C, T,G} and the Watson-
Crick involution τ.

(i) The size of a minimal NFA accepting hp(τ, k) is at most 15 ·4k. The number
of its states is between 4k and 3 · 4k.

(ii) The number of states of either a minimal DFA or an NFA accepting hpf (τ, k)
is between 22k−1

and 23·22k

.

Note: after careful inspection of the automaton in the proof of Proposition 6,
one can derive that the actual size is at most 25

3 · 4k + 14
3 and the number of

states do not exceed 5
3 · 4k − 2

3 .

The above results indicate that the size of a minimal NFA for hp(τ, k) grows
exponentially with k. However, one should recall that k is the minimal length
of bond allowing for a stable hairpin. Therefore k is rather low in practical
applications and the construction of the mentioned automaton can remain com-
putationally tractable.
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