
Parallel Communicating Grammar Systems

Lila Santean

Academy of Finland and Mathematics Department

University of Turku

20500 Turku, Finland

Several attempts have been made to find a suitable model for parallel pro-
cessing. Cellular automata [9], Lindenmayer systems [18], systolic trellis au-
tomata [3], Russian parallel [4] and Indian parallel [4] grammars are some ex-
amples of such models based on formal language and automata theories. In
these devices the parallelism is local. Symbols are rewritten independently of
each other. No major cooperation between the parallel processes occurs, al-
though, for instance, in L-systems with interactions some minor cooperation
appears.

However, the development of massively parallel processing systems increased
the importance of interprocessor communication in the new generation computer
design. Communication plays a major role in parallel processing architectures,
where inappropriate interconnection topologies could lengthen the paths of mes-
sages, reduce the system reliability and introduce most embarassing performance
limitations.

Cooperating /distributed grammar systems are an attempt of modelling the
process of communication [2]. They consist of a system of grammars working
together to produce words of a language. Each of the grammars rewrites the
sentential form until a certain condition is met. Then it passes it to the next
grammar, and so on, until a terminal string is obtained. The model captures the
main features of a communication process, but the individual grammars work
sequentially in the sense that, at each moment, only one grammar is allowed to
rewrite the sentential form.

Parallel Communicating Grammar Systems are aimed to combine the no-
tions of parallelism and communication into a suitable model for theoretical
investigation of the properties of parallel processing systems.

Parallel communicating grammar systems have evolved from the following
considerations:

• Knowledge processing systems are characterized by an intimate coopera-
tion between logic and functional programming, which require an adequate
communication discipline;

• Processing requirements for knowledge based problem solving are of a
different nature, making heterogeneous parallel systems more appropriate;

• Although interprocess communication could be decided at process level,
overall supervision is necessary for efficient task distribution, resource al-
location and management.

Parallel communicating grammar systems (PCGS, for short) were introduced
in [16] and their properties such as generative capacity, syntactic complexity,
closure with respect to various operations, decision problems, have been studied
in [1], [5], [11]—[17], [20].

A PCGS of degree n consists of n separated rewriting systems, say Chomsky
grammars. One of the grammars is distinguished: the language it generates, by
cooperating with the other grammars, is the language of the system. Each
grammar has its own vocabularies, axioms and rewriting rules. As sentential
forms can be transmitted between grammars, no terminal symbol from one
grammar may be nonterminal for other.

Grammars in a PCGS work in parallel, each of them starting from its own
axiom and, in well defined circumstances, communicate with each other. The
moments of communication depend on the query symbols appearing in the cur-
rent sentential forms generated by the grammars. Query symbols are special
nonterminals, indexed from 1 to n, to refer to the grammars. Such a symbol may
belong to the nonterminal vocabulary of any grammar, except the one whose
index it bears (a grammar cannot transmit strings to itself — communication
is not reflexive).

The appearance of a query symbol in any of the sentential forms imposes a
communication, as the query symbols are nonterminals that cannot be rewrit-
ten. A communication consists of the replacing of all the query symbols with the
current strings of the grammars they refer to. However, a restriction is imposed:
no replacing takes place for the sentential forms containing query symbols re-
ferring to strings containing further query symbols. Circular communications
are not admitted. The status of the grammar which has sent its current string
depends on the type of the PCGS considered. The grammar may continue work-
ing (non-returning PCGS) or may erase its string and resume working from the
axiom (returning PCGS). The language generated by a PCGS consists of all the
terminal strings generated by the distinguished grammar, regardless the status
of the others (whether their current strings are terminal or not).

We give the definition of a PCGS where:

• the components are Chomsky grammars;

• the sending grammars resume working from the axiom after each commu-
nication;

• the grammars work synchronously.

Definition 1 A PCGS of degree n, n ≥ 1 is an n-tuple

π = (G1, G2, . . . , Gn)

where each Gi is a Chomsky grammar, Gi = (VN,i, VT,i, Si, Pi), 1 ≤ i ≤ n,
such that VN,i

⋂
VT,j = ∅ for all i, j ∈ {1, 2, . . . , n}, and there is a set K ⊆

{Q1, Q2, . . . , Qn}, of query symbols, K ⊆
⋃n

i=1
VN,i.

Definition 2 A configuration in a PCGS of degree n is an n-tuple (x1, . . . , xn)
where xi ∈ V ∗

G,i (VG,i = VT,i

⋃
VN,i), for all 1 ≤ i ≤ n.

Depending on the context, we name ”component i” either the grammar Gi or
its string xi ∈ V ∗

G,i in the current configuration. If x is a string over an alphabet
V and V ′ ⊆ V , |x|V ′ denotes the number of occurrences of letters of V ′ in x.

Definition 3 For two configurations (x1, x2, . . . , xn), (y1, y2, . . . , yn) in a PCGS
π = (G1, . . . , Gn), we write

(x1, x2, . . . , xn) =⇒ (y1, y2, . . . , yn)

if one of the next two cases holds:

(i) |xi|K = 0 for all i, 1 ≤ i ≤ n, and for each i, 1 ≤ i ≤ n, we have either
xi =⇒ yi in the grammar Gi, or xi ∈ V ∗

T,i and xi = yi;

(ii) there is an i, 1 ≤ i ≤ n, such that |xi|K > 0; then for each such i we
write xi = z1Qi1z2Qi2 . . . ztQit

zt+1, t ≥ 1, with zj ∈ V ∗
G,i, |zj|K = 0,

1 ≤ j ≤ t + 1; if |xij
|K = 0, 1 ≤ j ≤ t, then yi = z1xi1z2xi2 . . . ztxit

zt+1

and yij
= Sij

, 1 ≤ j ≤ t; when, for some j, 1 ≤ j ≤ t, |xij
|K 6= 0, then

yi = xi; for all the remaining indexes r, we put yr = xr.

A derivation consists of rewriting steps (i) and communication steps (ii). If
no query symbol appears in any of the components, we perform a rewriting
step which consists of a rewriting step performed synchronously in each of the
grammars. If one of the components is a terminal string, it is left unchanged
while the others are performing the rewriting step. If in one of the components
none of the nonterminals can be rewritten any more, the derivation is blocked.

If in any of the components a query symbol is present, a communication step
is performed. It consists of the replacing of all the occurrences of query symbols
with the components they refer to, providing these components do not contain
further query symbols. More exactly, a component is modified only when all
its occurrences of query symbols refer to strings without query symbols. In a
communication operation, the communicated strings replace the corresponding
query symbols (we say that the query symbols are satisfied in this way). After
the communication, the sending grammars resume working from the axiom. If
some query symbols are not satisfied in this step, they may be satisfied in one

of the next ones. Communication steps are performed until no more query
symbols are present. No rewriting is allowed if a query symbol occurs in one of
the components of the configuration. Therefore, if circular queries emerge, the
derivation is blocked.

Definition 4 The language generated by the PCGS π = (G1, . . . , Gn) is :

L(π) = {α ∈ V ∗
T,1|(S1, S2, . . . , Sn) =⇒∗ (α, β2, β3, . . . , βn), βi ∈ V ∗

G,i, 2 ≤ i ≤ n}.

If we impose the restriction that only the first grammar may ask for strings gen-
erated by the others, that is K

⋂
(
⋃n

i=2
VN,i) = ∅, we say that π is a centralized

PCGS; in contrast, the unrestricted case is called non-centralized.
Moreover, the above definitions refer to returning PCGS’s (after commu-

nicating, each component whose string has been sent to another component
returns to axiom). A PCGS is non-returning if in the point (ii) of the defini-
tion we remove the following words: ”and yij

= Sij
, 1 ≤ i ≤ t”. That means,

after communicating, the grammar Gij
does not return to Sij

, but continues to
process the current string.

A PCGS is said to be regular, context-free, context-sensitive, λ-free etc.
when all the component grammars G1, . . . , Gn are of these types. Depending on
the context, REG ,LIN ,CF ,CS ,RE denote the classes of λ-free regular, λ-free
linear, λ-free context-free, context-sensitive, recursively enumerable grammars,
or the family of languages generated by them. If the subscript λ is added, we
are referring to such grammars which contain λ-rules. Let X be one of the
above mentioned classes of grammars. We denote by PCn(X) the family of
languages generated by non-centralized returning PCGS’s of type X , of degree
at most n, n ≥ 1; when centralized PCGS’s are used, the corresponding families
are denoted CPC n(X). When non-returning PCGS’s are considered, we denote
the families NPCn(X),NCPC n(X). Denote also

PC (X) =
⋃

n≥1

PC n(X)

and similarly for CPC ,NPC ,NCPC (the families of languages generated by
PCGS’s of given types, of arbitrary degree).

Example 1 Let π = (G1, G2, G3) where

G1 = ({S1, B, B1, Q2}, {a}, S1, {S1 −→ aB,

S1 −→ Q2, B1 −→ B, B1 −→ λ})

G2 = ({S2, B, Q1, Q3}, {a}, S2, {S2 −→ Q1, B −→ Q3})

G3 = ({S3, Q1, B, B1}, {a}, S3, {S3 −→ Q1, B −→ B1}).

A derivation according to π will have the following form:

(S1, S2, S3) =⇒ (aB, Q1, Q1) =⇒ (S1, aB, aB) =⇒ (Q2, aQ3, aB1)

=⇒ (Q2, a
2B1, S3) =⇒ (a2B1, S2, S3)

=⇒ (a2B, Q1, Q1) =⇒ (S1, a
2B, a2B)

=⇒∗ (a2
n−1

B, Q1, Q1) =⇒ (S1, a
2

n−1

B, a2
n−1

B)

=⇒ (Q2, a
2

n−1

Q3, a
2

n−1

B1) =⇒ (Q2, a
2

n

B1, S3)

=⇒ (a2
n

B1, S2, S3) =⇒ (a2
n

, Q1, Q1), for any n ≥ 1.

We notice that if S1 −→ aB is applied to a configuration (S1, a
iB, aiB) then

the derivation is blocked:

(S1, a
iB, aiB) =⇒ (aB, aiQ3, a

iB1) =⇒ (aB, a2iB1, S3),

and B1 cannot be rewritten in G2. The same thing happens if we apply the rule
S1 −→ Q2 to the configuration (S1, S2, S3). We conclude that

L(π) = {a2
n

|n ≥ 1},

where π is a non-centralized returning regular PCGS of degree 3.

Example 2 Consider following centralized non-returning regular PCGS π =
(G1, G2) where,

G1 = ({S1, S2, Q2}, {a, b, c}, S1, {S1 −→ aS1,

S1 −→ aQ2, S2 −→ cQ2, S2 −→ c})

G2 = ({S2}, {b}, S2, {S2 −→ bS2})

The derivations in π are of the following form:

(S1, S2) =⇒∗ (akS1, b
kS2) =⇒ (ak+1Q2, b

k+1S2)

=⇒ (ak+1bk+1S2, b
k+1S2) =⇒ (ak+1bk+1cQ2, b

k+2S2)

=⇒ (ak+1bk+1cbk+2S2, b
k+2S2)

=⇒∗ (ak+1bk+1cbk+2cbk+3 . . . cbk+jc, bk+jS2),

that is
L(π) = {anbncbn+1c . . . cbn+jc|n ≥ 1, j ≥ 0}

which is a non-context-free language.

As the above examples show, the generative capacity of PCGS’s is much
larger than that of the corresponding rewriting components: a PCGS with two
or three regular grammar components can generate non-context-free languages.
This indicates that an increase of the number of components adds generative
power, that is, parallelism and communication are indeed useful. It has been
proved in [20] that the hierarchy of classes of languages generated by regular
returning PCGS’s is infinite, where one class is determined by the number of
components. For the centralized case, the proof uses the following auxiliary
result:

Lemma 1 (Pumping lemma) Let L be a language in CPC n(REG). There ex-
ists a natural number N such that every word α in L satisfying |α| > N can be
decomposed as

α = α1β1α2β2 . . . αmβmαm+1

where 1 ≤ m ≤ n, βi 6= λ for 1 ≤ i ≤ m and the word

α1β
k
1 α2β

k
2 . . . αmβk

mαm+1

is in L for all k ≥ 0.

However, for the noncentralized case a direct example has to be used as, due
to example 1, a similar lemma cannot be proved. For the context-sensitive case
we have no hierarchy as it has been proved in [1] that

CS = CPC n(CS) = CPC (CS) = NCPC n(CS) = NCPC (CS), n ≥ 1.

Relations between classes of languages generated by PCGS’s and other lan-
guage families:

- CPC n(REG),NCPC n(REG) are incomparable with LIN for n ≥ 2,

- CPC n(REG),NCPC n(REG) are incomparable with CF for n ≥ 3,

- CPC 2(REG) ⊂ CF , strict inclusion,

- each language in CPC (REG),CPC (LIN) is semi-linear,

- the families NPC 2(REG),NCPC 2(REG),PC 3(REG),CPC 3(CF) contain
non-semi-linear languages,

- CPC 2(REG) contains languages which are not linear simple matrix,

- CPC 2(CF) contains languages which are not simple matrix (see [19] for defi-
nitions).

We have discussed so far only the increase in the generative power obtained
by means of parallelism, without paying attention to the degree of communi-
cation. The parameter com has been introduced and studied in [14], [17], as a
measure of communication.

Definition 5 Consider a PCGS π and a derivation in π:

D : (S1, S2, . . . , Sn) =⇒ (w1,1, w1,2, . . . , w1,n) =⇒
(w2,1, w2,2, . . . , w2,n) =⇒∗ (wk,1, wk,2, . . . , wk,n)

Denote:
com((wi,1, wi,2, . . . , wi,n)) =

∑n

j=1
|wi,j |K

com(D) =
∑k

i=1
com((wi,1, wi,2, . . . , wi,n))

For x ∈ L(π) define

com(x, π) = min{com(D)|D : (S1, S2, . . . , Sn) =⇒∗ (x, α2, . . . , αn)}.

Then,
com(π) = sup{com(x, π)|x ∈ L(π)},

and, for a language L and a class X, X ∈ {PC ,CPC ,NPC ,NCPC },

comX(L) = inf {com(π)|L = L(π), π ∈ X}.

The parameter com evaluates the total number of query symbols appearing in
a derivation. We consider only centralized returning PCGS’s, hence we do not
specify the class X of PCGS’s and write com for comCPC . The following theorem
states that the increase of communication influences the generative power:

Theorem 1 CPC n(REG) ⊂ PCn(REG), n ≥ 1, strict inclusion.

A more general result, which shows the impact of the parameter com is:

Theorem 2 If π is a regular (centralized or noncentralized) returning PCGS
such that com(π) = 1, then L(π) is context-free.

As example 1 indicates, regular PCGS’s can generate also non-context-free lan-
guages, therefore in this case only the communication has caused the increase
in generative capacity.

Another interesting characteristic which, as parallelism and communication,
can modify the power of a PCGS is the synchronization. Until now, we have
only considered synchronized derivations in a PCGS, that is, each grammar uses
exactly one rule in a derivation step, the only components which may ”wait”
being the terminal ones. What about the case when the grammars may wait
without restrictions? The problem has been raised by J.Hromkovic (Bratislava)
during IMYCS’88, Smolenice, and studied in [11]. Formally, for defining an
unsynchronized derivation in a PCGS π, we replace the condition (i) in the
definition 3 by:

(i’) |xi|K = 0, 1 ≤ i ≤ n, and for each i, 1 ≤ i ≤ n we have either xi =⇒ yi in
the grammar Gi or xi = yi (in a non-communication step, each grammar
may either use a rule or wait).

We denote by Lu(π) the languages generated in this way.

Example 3 Consider the centralized, non-returning unsynchronized context-
free PCGS π = (G1, G2) with

G1 = ({S1, Q2}, {a, b}, {S1 −→ Q2Q2Q2})}

G2 = ({S2}, {a, b}, S2, {S2 −→ aS2, S2 −→ b})

Each terminal derivation in π must contain a step where the rule S1 −→ Q2Q2Q2

is used in G1. This means a communication step must follow, which will com-
municate to G1 a terminal string in G2 (G1 cannot rewrite the symbol S2).
Therefore,

Lu(π) = {anbanbanb|n ≥ 0}

which is not a context-free language.

As to be expected, the synchronization is useful, the unsynchronized PCGS’s
are strictly weaker than the synchronized ones of the same type. An extreme
situation is that unsynchronized regular and linear centralized returning PCGS’s
can be simulated by usual regular and linear grammars, respectively.

We end the considerations about the generative capacity of PCGS’s con-
sidering such systems which have L systems as components. They combine
the local parallelism at string-rewriting level with the parallelism at component
level. The definition of an L system PCGS is obvious (similar to the definitions
of grammar PCGS’s, with the derivation in the L-sense [18]).

As in the case of grammar PCGS’s, the generative power of PCGS’s with L-
components is larger than that of the corresponding type of components. This
has been proved in [15] for OL, DOL, EOL, EDOL, TOL, DTOL, EDTOL,
ETOL systems. For instance, a PCGS with two DTOL components can generate
languages which are not ETOL, the largest family of interactionless L languages.

Example 4 Consider the returning PCGS π = (G1, G2) where

G1 = ({a, b, c, d, e, Q2}, ec, {{e −→ ec, c −→ c}

{e −→ d, c −→ Q2}})

G2 = ({a, b}, a, {{a −→ ab, b −→ b}})

The derivations in π are of the following form:

(ec, a) =⇒∗ (eck+1, abk) =⇒ (dQk+1

2
, abk+1) =⇒

(d(abk+1)k+1, a), k ≥ 0.

Therefore,

L(π) = {ecn|n ≥ 1}
⋃

{d(abn)n|n ≥ 1},

which is not an ETOL language.

However, the EDOL PCGS’s cannot generate languages not in EDTOL. This
result says that, in the deterministic case, the parallel work of EOL systems can
be simulated by tables, also deterministic.

In general it seems to be hard to say something about closure properties of
languages generated by PCGS’s because, on the one hand, it is not easy to prove
positive results and, on the other hand, no languages not in CPC (CF),PC (CF)
and other such families are known. In [1], [17] it has been proved that the family

PC (CF) is closed under union, concatenation, Kleene closure, substitution by
λ-free context-free languages, and intersection by regular sets. The families
PC(LIN),NPC (LIN) are closed under union. The family PC (CFλ) is a full
AFL.

As concerning the decidability results, it is shown in [1] that:

• it is undecidable if an arbitrarily given context-free PCGS generates a
context-free (or right-linear simple matrix or simple matrix) language;

• the emptiness and the finiteness problems are decidable for linear central-
ized returning PCGS’s.

The syntactic complexity measures var (number of nonterminals), prod (num-
ber of productions), symb (the sum of the lengths of the right-sides of the
productions) defined in [6], [7] for context-free grammars were generalized for
context-free PCGS’s in [14]. Concerning the measure com, it has been proved
that it is a connected measure (for each n ≥ n0, n0 a given constant, there ex-
ists an Ln such that com(Ln) = n) over CPC(CF). Obviously, the parameters
var , prod , symb can be computed for an arbitrary PCGS by a simple counting.
The situation is different for the measure com due to its dynamical charac-
ter (it is evaluated on an infinite set, namely, that of all possible derivations).
Therefore, it has been shown that:

Theorem 3 For an arbitrarily given context-free centralized returning PCGS
π, com(π) and com(L(π)) cannot be algorithmicaly computed.

Theorem 4 It is not decidable whether com(π) = com(L(π)), for an arbitrarily
given context-free, centralized, returning PCGS π.

Theorem 5 Let us assume that π is a regular (linear) returning, non-centralized
PCGS. If com(π) < ∞ then Lu(π) ∈ REG (LIN, respectively).

The measure com is incompatible with each of the measures var , prod , symb
(they cannot be simultaneously minimized).

Another complexity parameter is time:

Definition 6 Given a grammar G = (VN , VT , S, P) and a derivation D : S =⇒
w1 =⇒ . . . =⇒ wn we put time(D) = n and, for x ∈ L(G),

timeG(x) = min{time(D)|D : S =⇒∗ x in G}.

A mapping timeG : L(G) −→ N is obtained in this way. A similar definition
holds for any type of generative devices, including PCGS’s (both the rewriting
and the communication steps are counted).

The following result [17] shows that in generating a linear language using a
PCGS instead of a grammar, any linear speed-up can be obtained. Moreover
the syntactic complexity of the obtained PCGS is not too big.

Theorem 6 Let L be an infinite linear language and G a linear grammar such
that L = L(G), var(G) = p. For each given natural number t there is a central-
ized (returning or non-returning) linear PCGS such that L = L(π) and

var(π) = var(G) + pt

prod(π) = prod(G) + p(t + 1)

symb(π) = symb(G) + 3p(t + 1)

and, for each x ∈ L(G) we have

timeπ(x) < (1/t)timeG(x) + 3t.

Recently, in [21], a new type of PCGS’s has been investigated. The compo-
nents of such PCGS’s are placed in the vertices of a given communication graph,
and only the communications on the edges of this graph are possible.

Denote by x−PCGSn the class of PCGS’s of degree n whose communication
graph is of type x, where x ∈ {C(entralized), directed acyclic graph (dag), tree,
two-way array, one-way array, two-way ring, one-way ring}. Moreover, denote
by L(x − PCGSn) the family of languages generated by x− PCGS’s of degree
n whose communication graph is of type x, where x is as before.

If x denotes one of the above communication graphs, x−PCGSn(f(m)) will
denote the class of PCGS’s with communication graph of shape x and using at
most f(m) communication steps to generate any word of length m. (Note that
0 ≤ f(m) ≤ m). As above, L(x − PCGSn(f(m))) will denote the family of
languages generated by PCGS’s of this type.

In [21], the descriptional complexity (communication structure) and the com-
putational complexity (number of communications) of such PCGS’s are inves-
tigated. Several hierarchies resulting from these complexity measures and some
relations between the measures are established. Namely, the following hierar-
chies are proved to be infinite:

{L(one-way ring − PCGSn)}n≥1,
{L(two-way ring − PCGSn)}n≥1,
{L(two-way array− PCGSn)}n≥1,
{L(dag − PCGSn)}n≥1,
{L(tree − PCGSn)}n≥1,

Moreover, for any function f : N −→ N, f(n) 6∈ Ω(n), and any m ∈ N,
m ≥ 2, we have:

L(one-way array− PCGSm(f(n)) ⊂ L(one-way array-PCGSm(n)),
L(C − PCGSm(f(n)) ⊂ L(C-PCGSm(n)),
L(tree − PCGSm(f(n)) ⊂ L(tree-PCGSm(n)),

and for any positive integer k and any x ∈ {C, tree, one-way array} we have:

L(x − PCGSk+1(k − 1)) ⊂ L(x − PCGSk+1(k)),
∪m∈NL(x − PCGSm(k − 1)) ⊂ ∪m∈NL(x − PCGSm(k)).

The results are obtained due to the development of two lower-bound proof
techniques for PCGS. The first one is a generalization of pumping lemmas from
classical formal language theory and the second one reduces the lower bound
problem for some PCGS’s to the proof of lower bounds on the number of rever-
sals of certain sequential computing models.

As the study of PCGS’s is just starting, a wealth of questions remain to
be investigated. Many specific problems have remained open as regards the
generative capacity, the closure properties, complexity, etc. We list here some
of them:

• Are the hierarchies induced by the degree of context-free PCGS’s infinite?

• What is the relation between CS and CPC (CFλ)?

• Are the inclusions CPC n(CF) ⊆ CPC n(CFλ), n ≥ 1, proper?

• Are the inclusions CPC n(X) ⊆ PC n(X) proper for X ∈ {CF ,CFλ}?

• Is it decidable whether, for an arbitrary regular PCGS π we have com(π) =
com(L(π)) ?

The following extentions of PCGS’s suggest themselves rather naturally:

• the communication is not only by request but also by command. That is,
under certain circumstances, a grammar could impose the sending of its
string to another grammar;

• further restrictions are imposed on the strings that may be communicated
or on the strings of a final configuration (for example, we can impose that
all are terminal strings);

• the parallelism is partial. According to a time dependent control structure,
only some of the components work in parallel, the others being in a waiting
status;

• the PCGS has any type of rewriting systems as components. In fact, in [1]
the study of pure grammar ([19]) and contextual grammar ([10]) PCGS’s
has already been initiated;

• the components of the PCGS are dynamic. That is, they change their set
of rules in a dynamic way during a derivation, commanded by a control
structure;

• the PCGS is not homogeneous, but consists of rewriting systems of differ-
ent types, clustered upon the functions they have to perform.

References

[1] E.Csuhaj-Varju,J.Dassow,J.Kelemen,Gh.Păun. Grammar Systems. (to ap-
pear).

[2] E.Csuhaj-Varju, J.Kelemen. Cooperating grammar systems: a syntactical
framework for blackboard model of problem solving. AI Control Syst. of
Robots (Ed.I.Plander), Elsevier Sci.Publ. (1989).

[3] K.Culik, J.Gruska, A.Salomaa. Systolic trellis automata. International Jour-
nal of Computer Mathematics 15, 16 (1984).

[4] J.Dassow,Gh.Păun. Regulated Rewriting in Formal Language Theory.
Akademie-Verlag, Berlin (1989), Springer-Verlag, Berlin (1990).

[5] I.Georgescu, Gh.Păun, L.Santean. Parallel communicating grammar
systems—a grammatical approach to parallel processing. Res. Rep. 14-
89,Institute for Informatics, Bucharest (1989).

[6] J.Gruska. On a classification of context-free languages, Kybernetica 1,3
(1967).

[7] J.Gruska. Descriptional complexity of context-free languages, Proc.
MFCS’73, High Tatras (1973).

[8] C.A.R.Hoare. Communicating sequential processes. Comm.ACM 1,8(1978).

[9] J.Kari. Games played on the plane: solitaire & cellular automata (The formal
language theory column). EATCS Bulletin 40 (1990).

[10] S.Marcus. Contextual grammars. Rev.Roumaine Math.Pures Appl. 14,
10(1969).

[11] Gh.Păun. On the power of synchronization in parallel communicating gram-
mar systems. Stud.Cerc.Matem.41, 3(1989).

[12] Gh.Păun. Parallel communicating grammar systems: the context-free case.
Found. Control Engineering 14 vol.1 (1989).

[13] Gh.Păun. Non-centralized parallel communicating grammar systems.
EATCS Bulletin 40(1990).

[14] Gh.Păun. On the syntactic complexity of parallel communicating grammar
systems. RAIRO/Th. Informatics (to appear).

[15] Gh.Păun. Parallel communicating systems of L-systems. (to appear).

[16] Gh.Păun, L.Santean. Parallel communicating grammar systems: the regu-
lar case. Ann. Univ. Buc. Ser. Mat.-Inform. 37, 2(1989).

[17] Gh.Păun, L.Santean. Further remarks on parallel communicating grammar
systems. International Journal of Computer Mathematics 35 (1990).

[18] G.Rozenberg, A.Salomaa. The Mathematical Theory of L Systems, Aca-
demic Press, New York (1980).

[19] A.Salomaa. Formal Languages. Academic Press, New York, London (1973).

[20] L.Santean, J.Kari. The impact of the number of cooperating grammars on
the generative power. Theoretical Computer Science 98, 2(1992), 249-263.

[21] J.Hromkovic, J.Kari, L.Kari. Some hierarchies for the communication com-
plexity measures of cooperating grammar systems, Theoretical Computer
Science, (to appear).

