
Hypergraph Automata: A Theoretical Model for
Patterned Self-assembly

Lila Kari, Steffen Kopecki, and Amirhossein Simjour

Department of Computer Science,
University of Western Ontario, London, ON, N6A 5B7, Canada

Abstract. Patterned self-assembly is a process whereby coloured tiles
self-assemble to build a rectangular coloured pattern. We propose self-
assembly (SA) hypergraph automata as an automata-theoretic model for
patterned self-assembly. We investigate the computational power of SA-
hypergraph automata and show that for every recognizable picture lan-
guage, there exists an SA-hypergraph automaton that accepts this lan-
guage. Conversely, we prove that for any restricted SA-hypergraph au-
tomaton, there exists a Wang Tile System, a model for recognizable
picture languages, that accepts the same language. The advantage of
SA-hypergraph automata over Wang automata, acceptors for the class
of recognizable picture languages, is that they do not rely on an a priori
defined scanning strategy.

1 Introduction

DNA-based self-assembly is an autonomous process whereby a disordered system
of DNA sequences forms an organized structure or pattern as a consequence of
Watson-Crick complementarity of DNA sequences, without external direction. A
DNA-tile-based self-assembly system starts from DNA “tiles”, each of which is
formed beforehand from carefully designed single-stranded DNA sequences which
bind via Watson-Crick complementarity and ensure the tiles’ shape (square) and
structure. In particular, the sides and interior of the square are double-stranded
DNA sequence, while the corners have protruding DNA single strands that act
as “sticky ends”. Subsequently, the individual tiles are mixed together and inter-
act locally via their sticky-ends to form DNA-based supertiles whose structure
is dictated by the base-composition of the individual tiles’ sticky ends. Winfree
[15] introduced the abstract Tile Assembly Model (aTAM) as a mathematical
model for tile-based self-assembly systems. Ma [13] introduced the patterned
self-assembly of single patterns, whereby coloured tiles self-assemble to build a
particular rectangular coloured pattern. Patterned self-assembly models a par-
ticular type of application in which tiles may differ from each other by some
distinguishable properties, modelled as colours [14, 2]. Orponen [7, 10] designed
several algorithms to find the minimum tile set required to construct one given
coloured pattern. Czeizler [4] proved that this minimization problem is NP-hard.

In this paper, we propose self-assembly (SA) hypergraph automata as a gen-
eral model for patterned self-assembly and investigate its connections to other

2

models for two-dimensional information and computation, such as 2D (picture)
languages and Wang Tile Systems. A 2D (picture) language consists of 2D words
(pictures), defined as mappings p : [m] × [n] → [k] from the points in the two-
dimensional space to a finite alphabet of cardinality k. Here, [k] denotes the set
[k] = {1, 2, . . . , k}. Note that, if we take the alphabet [k] to be a set of colours,
the definition of a picture is analogous to that of a coloured pattern [13].

Early generating/accepting systems for 2D languages comprise 2 × 2 tiles
[6], 2D automata [3], two-dimensional on-line tessellation acceptors [8], and 2D
grammars. More recently a generating system was introduced by Varricchio [5]
that used Wang tiles. A Wang tile system [5] is a specialized tile-based model
that generates the class of recognizable picture languages, a subclass of the family
of 2D languages. The class of recognizable picture languages is also accepted
by Wang automata, a model introduced in [11]. Like other automata for 2D
languages [1], Wang tile automata use an explicit pre-defined scanning strategy
[12] when reading the input picture and the accepted language depends on the
scanning strategy that is used. Due to this, Wang automata are a suboptimal
model for self-assembly. Indeed, if we consider the final supertile as given, the
order in which tiles are read is irrelevant. On the other hand, if we consider the
self-assembly process which results in the final supertile, an “order of assembly”
cannot be pre-imposed. In contrast to Wang automata, SA-hypergraph automata
are scanning-strategy-independent.

SA-hypergraph automata are a modification of the hypergraph automata
introduced by Rozenberg [9] in 1982. An SA-hypergraph automaton (Section 3)
accepts a language of labelled “rectangular grid graphs”, wherein the labels are
meant to capture the notion of colours used in patterned self-assembly. An SA-
hypergraph automaton consists of an underlying labelled graph (labelled nodes
and edges) and a set of hyperedges, each of which is a subset of the set of nodes
of the underlying graph. Intuitively, the hyperedges are meant to model tiles or
supertiles while the underlying graph describes how these can attach to each
other, similar to a self-assembly process.

We investigate the computational power of SA-hypergraph automata and
prove that for every recognizable picture language L there is an SA-hypergraph
automaton that accepts L (Thm. 1). Moreover, we prove that for any restricted
SA-hypergraph automaton, there exists a Wang tile system that accepts the
same language of coloured patterns (Thm. 2). Here, restricted SA-hypergraph
automaton means an SA-hypergraph automaton in which certain situations that
cannot occur during self-assembly are explicitly excluded.

2 Preliminaries

A picture (2D word) p over the alphabet Σ is a matrix of letters from Σ. Each
element of this matrix is called a pixel. p(i,j) denotes the pixel in the ith row and
jth column of this matrix. Two pixels p(i,j) and p(i′,j′) are adjacent if |i− i′|+
|j − j′| = 1. The function w(p) denotes the width and h(p) denotes the height
of the picture p. Σ∗∗ is the set of all pictures over the alphabet Σ. A picture

3

language (2D language) is a set of pictures over an alphabet Σ. For example,
L = {p ∈ Σ∗∗| for all 1 ≤ i ≤ h(p), p(i,1) = p(i,w(p))} is the language of all
rectangles that have the same first and last column.

A subpicture over Σ is a matrix of letters from Σ ∪ {empty}. A subpicture q
is connected if for every pair of pixels q(i′,j′), q(i,j) ∈ Σ there exists a sequence of
pixels s = ⟨s0, s1, . . . , sn⟩ from q such that s0 = q(i,j), sn = q(i′,j′), and sk ∈ Σ
for 0 ≤ k < n; moreover, sk and sk+1 must be adjacent. If p is a picture, then
q is a subpicture of p if there exists a translation δ : N2 → N2 such that for
all (i, j) ∈ [h(q)] × [w(q)] we have either q(i,j) = empty or q(i,j) = pδ(i,j). The
function δ is a translation if δ(i, j) = (i+ k, i+ l) for some k, l ∈ Z.

A definition of recognizability was proposed using labelled Wang tiles [12]. A
labelled Wang tile, shortly LWT, is a labelled unit square whose edges may be
coloured. Formally, a LWT is a 5-tuple (cN , cE , cS , cW , l) where l belongs to a
finite set of labels Σ and cN , cE , cS , and cW belong to C ∪ {#} where C is a
finite set of colours and # represents an uncoloured edge. Intuitively, cN , cE , cS ,
and cW represent the colour of the north, east, south, and west edge of the tile,
respectively. Labelled Wang tiles cannot rotate. The colours on the north, south,
east, and west edges of an LWT t are denoted by σN (t), σS(t), σE(t), and σW (t),
respectively; λ(t) denotes the label of t.

A Wang Tile System (WTS) [5] is a triple W = (Σ,C,Θ) where Σ and C
are two finite alphabets (the alphabet of tile labels and the alphabet of colours,
respectively) with # /∈ C, and Θ is a finite a set of labelled Wang tiles with
labels from Σ and colours from C. The WTS W recognizes the picture language
L(W) where the picture p ∈ Σ∗∗ belongs to L(W) if and only if there exists a
mapping m : [h(p)] × [w(p)] → Θ from the pixels of p to tiles from Θ such that
the label of the tile m(i, j) is equal to p(i,j); moreover, this mapping must be
mismatch free. The mapping m is mismatch free if for two adjacent pixels p(i,j)
and p(i+1,j) in p the south edge of m(i, j) and the north edge of m(i+ 1, j) are
coloured by the same colour from C; for two adjacent pixels p(i,j) and p(i,j+1) in
p the east edge of m(i, j) and the west edge of m(i, j + 1) are coloured by the
same colour from C; and for every border pixel p(i,j) with i = 1, j = 1, i = h(p),
or j = w(p) we require that the north, west, south, or east edge, respectively, of
m(i, j) is uncoloured. For a pixel in a corner, e. g. p(1,1), this implies that two
edges are uncoloured. Let p̄ be a matrix of labelled Wang tiles from Θ. We call p̄
a Wang tiled version of the picture p if the width and the height of p and p̄ are
equal, and there exists a mismatch free mapping m such that for any i and j we
have p̄(i,j) = m(i, j). Two tiles p̄(i,j) and p̄(i′,j′) are adjacent if the pixels p(i,j)
and p(i′,j′) are adjacent. A language L is recognizable if there exists a Wang tile
system W such that W recognizes L. Fig. 1 shows an example.

A coloured pattern, as defined in [13], is the end result of a self-assembly
process that starts with a fixed-size L-shaped seed supertile and proceeds as in
Fig. 2 i) until one coloured rectangle is formed. Note that Wang Tile Systems
can be seen as generators for (potentially infinite) languages of such coloured
patterns where the L-shaped seed-structure of an arbitrary size is generated

4

a a a a

aaaa

a a a a

aaaa

#

#

#

#

#

#

#

#

#

#

1 1

1
1

1 1

1
1

1 1

1
1

0 0 00

0

0

0
0

0
0

0

0

0 0

0

0 0

0

0
0

0
0

0

0

0
0

0
0 0

0

0
0

0 0

00

#

#a a a a

aaaa

a a a a

aaaa

a a a a

aa a

a

#

#

#

#

#1 1

1

1

1 1

1

0 0 00

0

0

0

0 0 0

0

0

0

0

0 0

aa

#

#

1

0 0

0

0

aa a# ##1

1

0

0

0

0

0

0

0

0

1

0

i) ii) iii)

Fig. 1. Let W = (Σ,C,Θ) be the Wang Tile System where Σ = {a}, C = {0, 1}
and Θ consists of the 13 LWTs shown in i). This Wang tile system recognizes
the picture language containing all square pictures p with h(p) = w(p) ≥ 3 and
where every pixel is labelled by a. Part ii) is an example picture and iii) shows
the Wang tiled version of the picture in part ii).

starting from a single-tiled seed with uncoloured north and west edges and is
extended by tiles with uncoloured north or west edges, as shown in Fig. 2 ii).

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Fig. 2. i) The self-assembly of a single coloured pattern, starting with a fixed-size
L-shaped seed. ii) The process of generating a picture in the language of a Wang
Tile System.

3 Hypergraph Automata

Let f : A → B be a function and let A′ ⊆ A. The restriction of f to A′ is
f |A′ : A′ → B such that f |A′(x) = f(x) for all x ∈ A′. For any set A we let
id : A→ A denote the identity.

Let Σ be an alphabet. A pseudo-picture graph is a directed labelled graph
G = (N,Ev ∪ Eh, π) where N is a finite set of nodes, Ev, Eh ⊆ N × N are
two sets of edges such that Ev ∩ Eh = ∅, and π : N → Σ is the label func-

tion. Edges from Ev and Eh will frequently be denoted by
v−→ and

h−→, re-
spectively. The node-induced subgraph of G by a subset N ′ ⊆ N is defined
as the graph (N ′, E′

v ∪ E′
h, π|N ′) where E′

v = {(x, y) ∈ Ev | x, y ∈ N ′} and
E′
h = {(x, y) ∈ Eh | x, y ∈ N ′}. A graph G′ is called a full subgraph of G if

for some N ′ ⊆ N it is the node-induced subgraph of G by N ′.
A pseudo-picture graph G = (N,Ev ∪Eh, π) is an (n×m-)picture graph (for

n,m ∈ N) if there is a bijection fG : N → [N] × [M] such that for x, y ∈ N ,
we have (x, y) ∈ Ev if and only if fG(x) + (1, 0) = fG(y), and (x, y) ∈ Eh
if and only if fG(x) + (0, 1) = fG(y). We want to stress that we do not use

5

Cartesian coordinates: our pictures are defined as matrices; incrementing the
first coordinate corresponds to a step downwards, and incrementing the second
coordinate corresponds to a step rightwards. In other words, the nodes of a
picture graph G can be embedded in N2 such that every edge in Ev has length 1
and points downwards, every edge in Eh has length 1 and points rightwards, and
two nodes with Euclidean distance 1 are connected by an edge. N.B. if a pseudo-
picture graph is an n×m-picture graph, it cannot be an n′ ×m′-picture graph
with n ̸= n′ or m ̸= m′, and the function fG is unique. If G is a picture graph,
we call e ∈ Ev a vertical edge and e ∈ Eh a horizontal edge. The set of all picture
graphs is denoted by G. Every n×m-picture graph G = (N,Ev∪Eh, π) represents
a picture p(G) ∈ Σ∗∗ with h(p(G)) = n and w(p(G)) = m. More precisely, for
all (i, j) ∈ [n] × [m] we let p(G)(i,j) = π(f−1

G (i, j)). Hence, p : G → Σ∗∗ can be
seen as a function. A connected pseudo-picture graph G′ is called a subgrid if it
is a full subgraph of a picture graph G. We also say G′ is a subgrid of G.

A hypergraph [9] is a triple H = (N,E, f) where N is the finite set of nodes,
E is the finite set of hyperedges, and f : E → P(N) is a function assigning to
each hyperedge a set of nodes; the same set of nodes may be assigned to two
distinct hyperedges. For every hyperedge e ∈ E, we let

IH(e) = {x ∈ N | ∃e′ ∈ E \ {e} : x ∈ f(e) ∩ f(e′)}

be the set of intersecting nodes in f(e). Rozenberg [9] introduced hypergraph au-
tomata to describe graph languages. Here, we modified Rozenberg’s definition in
order to study pseudo-picture graphs. Fig. 3 shows an one dimensional example
of an automaton based on a hypergraph.

h h h
e2

h h h h h
e3

h h h h h h h
e1

h

hh

e1

e2e3

i) ii)

Fig. 3. The hypergraph in part i) consists of three hyperedges. Intuitively, a
derivation of the hypergraph automaton starts from the initial hyperedge e1 and
in each step adds the underlying graph of another hyperedge to the current con-
figuration. In part ii) we start with the hyperedge e1, afterwards, the underlying
graph of the hyperedge e2 is added to the current configuration. In the next step,
the underlying graph of hyperedge e3 is added. In the last step, the hyperedge
e1 is reused. Repeating this process, an arbitrary long chain of nodes, forming a
white-grey-black pattern, can be constructed using only the three hyperedges.

Definition 1. A self-assembly (SA) hypergraph automaton is a tuple A =
(N,E, f, d,G,E0) where H = (N,E, f) is a hypergraph, called the underlying
hypergraph, d : E → IH(e)× IH(e) is the transition function assigning to each
hyperedge e ∈ E a transition Q1 → Q2 with Q1, Q2 ⊆ IH(e), G is a pseudo-
picture graph with node set N called the underlying graph, and E0 ⊆ E is the
set of initial hyperedges.

6

Every hyperedge e ∈ E defines a graphGe which is the subgraph ofG induced
by f(e). For d(e) = Q1 → Q2 we call Q1 and Q2 the incoming active nodes and
outgoing active nodes of Ge, respectively. In order for the hypergraph automaton
to be well-defined, we require that Ge is connected and that the subgraph of Ge
induced by its incoming active nodes is connected, too, for all e ∈ E. If e ∈ E0,
then Ge is also called an initial graph.

A configuration of the hypergraph automaton A is a triple (M,O, g) where
M = (NM , EM,v ∪ EM,h, πM) is a subgrid, O ⊆ NM is the set of active nodes,
and g : NM → N is a function such that πM (x) = π(g(x)) for all x ∈ NM . The
set NM consists of (possibly multiple) copies of nodes from N and the function
g assigns to each node in NM its original node in N . An edge (x, y) ∈ EM,h is
a copy of the edge (g(x), g(y)) ∈ Eh and (x, y) ∈ EM,v is a copy of the edge
(g(x), g(y)) ∈ Ev. However, for two nodes x and y in M , if their originals g(x)
and g(y) are connected by a horizontal (or vertical) edge, this does not imply
that x and y are connected by a horizontal (or vertical) edge.

Let (M1, O1, g1) be a configuration withM1 = (N1, E1,v∪E1,h, π1) and let e ∈
E be a hyperedge with d(e) = Q1 → Q2. If there exists a non-empty subset P ⊆
O1 such that g1|P forms a graph-isomorphism from the subgraph of M1 induced
by P to the subgraph of Ge induced by the incoming active nodes Q1, then the
hyperedge e defines a transition or derivation step (M1, O1, g1) →

A
(M2, O2, g2)

where, informally speaking, the resulting graph M2 consists of joining together
the graphs M1 and Ge by identifying every node x ∈ P with the corresponding
node g1(x) ∈ Q1. The active nodes O2 in M2 are the active nodes O1 \ P
in M1 plus the outgoing active nodes Q2 in Ge, see Fig. 4. We also say that
(M2, O2, g2) is the result of gluing the hyperedge e to (M1, O1, g1). Formally,
the configuration (M2, O2, g2) where M2 = (N2, E2,v ∪ E2,h, π2) is constructed
as follows. Let N ′ = {x′ | x ∈ f(e) \Q1} be a set containing a copy of each
node from Ge except for the incoming active nodes such that N ′ ∩ N1 = ∅.
Let N2 = N1 ∪ N ′ and let g2 : N2 → N such that g2(x) = g1(x) for x ∈ N1

and g2(x
′) = x for x′ ∈ N ′. An edge (x, y) belongs to E2,v if (x, y) ∈ E1,v or

x, y ∈ P ∪N ′ and (g(x), g(y)) ∈ Ev; an edge (x, y) belongs to E2,h if (x, y) ∈ E1,h

or x, y ∈ P∪N ′ and (g(x), g(y)) ∈ Eh. Naturally, π2(x) = π(g2(x)) for all x ∈ N2

and O2 = (O1 \ P) ∪ {x′ ∈ N ′ | x ∈ Q2}. The reflexive and transitive closure of

→
A

is denoted by
∗→
A

and called a derivation.

For e ∈ E0 we let Oe such that d(e) = Q1 → Oe and we call the con-
figuration (Ge, Oe, id) an initial configuration of A. A final configuration is a
configuration (M, ∅, g) without active nodes. The graph language accepted by
the SA-hypergraph automaton A is

L(A) =
{
M ∈ G

∣∣∣ ∃e ∈ E0 : (Ge, Oe, id)
∗→
A

(M, ∅, g)
}
.

Note that L(A) contains picture graphs only. The picture language associated to
the graph language L(A) is the language p(L(A)).

Remark 1. Since we only investigate picture graphs, we assume that for every
hyperedge e ∈ E the underlying graph Ge is a subgrid.

7

h

h

v v

h

h

v v

v

h

h

v v

v

h

h

v

M1 Ge M2

g1

P Q1

Q2
+ =

|P

Fig. 4. A transition (M1, O1, q1) →A (M2, O2, q2) joins together the graphs M1

and Ge by identifying every node x ∈ P with the corresponding node g1(x) ∈ Q1.
The set O2 of the active nodes of the new configurationM2 consists of the nodes
of the union of the active nodes in O1 \ P with the outgoing active nodes Q2 of
Ge. The active nodes of M1 and M2 are represented as circled nodes.

Example 1. Fig. 5 shows an example of an SA-hypergraph automaton A which
is defined as follows. The SA-hypergraph automaton is A = (N,E, f, d,G,E0),
where N = {x1, x2, . . . , x9, z1, z2, . . . , z7}, E = {e1, e2, . . . , e16}, and E0 = {e10}.
The function f is defined such that each hyperedge consists of four nodes which
build a 2×2-subgrid of the grid graph in Fig. 5. For example, f(e1) = {x1, x2, x4, x5},
f(e2) = {x2, x3, x5, x6}, . . . , f(e9) = {x9, x7, x3, x1}, f(e10) = {z1, z5, z2, x1},
and f(e11) = {z5, z6, x1, x2}. For each hyperedge in ii), the function d, which
describes the active areas where we can glue new hyperedges, is defined to
build a horizontal (vertical) chain of nodes that models the top row (left col-
umn) of tiles. For example, d(e11) = {z5, x1} → {z6, x1, x2}. The “backward
edges”, e.g., (x3, x1), (x4, x6), (x7, x9), and (z7, z5), enable the reuse of hy-
peredges to build a periodic pattern. For each hyperedge in iii), the function
d changes the active input nodes (top-left, bottom-left, and top-right) to the
new set of active nodes (top-right, bottom-left, and bottom-right), signifying
the change of the places where the new hyperedges can be glued. For example,
d(e1) = {x1, x2, x4} → {x2, x4, x5}, d(e2) = {x2, x3, x5} → {x3, x5, x6}, and
d(e3) = {x3, x1, x4} → {x1, x6, x4}.

x7 x8 x9

x6x5x4

x1 x2 x3h h hh

h h h h

hhhh

v v v

vvvv

vvvv

vvvv

x1 x2 x3

x7 x8 x9

x

x

x1

x9

x6

x3z5

z1 h

v

h

z6

h

z3

z2

z4

v

v

h

z7

x1 x2 x3

x

x

x1

v

i) ii) iii)

Fig. 5. Part i) shows an example of coloured self-assembled pattern. Parts ii)
and iii) together depict the underlying graph of the SA-hypergraph automaton
that constructs the same pattern. Part ii) constructs the white top row and white
left column, and part iii) constructs the coloured pattern.

The SA-hypergraph automaton A starts from the top-left white tile, corre-
sponding to E0 = {e10}. Afterwards, the automaton continues the construction

8

with the hyperedges in the top row or the left column. The construction of the
white-grey-black part starts after the construction of the white top row and left
column. Fig. 6 shows an example of possible transitions of the SA-hypergraph
automaton A. See Appendix for further details.

z5z1 h

v

z2

v

h x1

z5

z1 h

v

h

z6

z2

v

x2

v

h x1 h

e11 e12
z5

z1 h

v

h

z6

h

z2

z7

v v

x2

v

h x1 x3h h

*

e1

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

h

h

v

x2

v

h x1 x3

z5

h

z6

v

x2h h h

e14,e15,e16

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

h

h

v

x2

v

h x1 x3

z5

h

z6

v

x2

x7

x4h

v

z2

v

h

h

z3

x1

z4

v

v

h h h

v

v

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

h

h

v

x2

v

h x1 x3

z5

h

z6

v

x2

x7

x4h

v

z2

v

h

h

z3

x1

z4

v

v v

x5

h h h

h

v

v

x6

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

v

h

h

v

x2

v

h x1

v

x3

z5

h

z6

v

x2

x7

x4h

v

z2 h

v

h

h

z3

x1

z4

v

v

h

v

x5 h

v

v

h

h
x9

v

v

v

x8

v

h

h

h

h

h

h

h

h

v

v

hh

x7

x4 x5

x8

vv v

x1x2 x3 x2

*

Fig. 6. In this example, the construction of a picture graph from Fig. 5 is ex-
plained. At each step, one hyperedge or a sequence of hyperedges is glued.

Additional examples can be found in the Appendix.

The concept of hypergraph automata has been introduced by Rozenberg [9]
in 1982. Our definition of SA-hypergraph automata is a variant of the original
definition with the following modifications: Firstly, we start from a set of initial
graphs whereas the original definition used a single initial graph. For unlabelled
graphs both models are capable of accepting the same class of graph languages,
as long as one makes an exception for the empty graph. However, for labelled
graphs a single initial graph is not sufficient; e. g., if a language L of labelled
graphs contains one graph A where every node is labelled by a and one graph
B where every node is labelled by b, then A and B cannot be generated from
the same initial graph as A and B do not have a common non-empty isomorphic
subgraph. Secondly, we use final configurations in order to accept only some
of the graphs that can be generated by rules from the initial graph. In the
original definition, for simplicity, final configurations were omitted and every
graph which can be generated from the initial graph belonged to the accepted
language. Thirdly, it seemed more convenient to us to use the notion of active
nodes rather than active intersections.

4 Hypergraph Automata for Picture Languages

In this section, we establish a strong connection between recognizable picture
languages and picture graph languages that can be accepted by SA-hypergraph
automata. We prove that the self-assembly of a Wang Tile System can be simu-
lated by an SA-hypergraph automaton, see Thm. 1. The main idea is to start the
tiling in the top left corner of a tiled picture and then extend the tiled picture
downwards and rightwards, just as in Fig. 2 ii). Our converse result is slightly
weaker: the picture language L = p(L(A)), associated to the graph language ac-
cepted by an SA-hypergraph automaton A, is recognizable if A does not contain

9

a strong loop, see Thm. 2. The restriction for A not to contain a strong loop
is a natural assumption as strong loops cannot be used in any derivation that
accepts a picture graph.

Theorem 1. For any recognizable picture language L there is a SA-hypergraph
automaton A such that the picture language associated to the graph language
L(A) is L.

Proof. Let V = (Σ,C ′, Θ′) be a Wang Tile System that recognizes the picture
language L, that is L = L(V). We will slightly modify the WTS V such that
it fulfils a certain property as described in the following. We define a WTS
W = (Σ,C,Θ) which recognizes L and such that any two copies of a tile t ∈ Θ
in a tiling of W must have a row- and a column-distance which is a multiple of
3. The modification of V will become of importance later in the proof: We need
to ensure that for a 2× 2 square of matching tiles t1, t2, t3, t4, it is not possible
to directly attach another copy of any of t1, t2, t3, t4 to this square.

We will define a SA-hypergraph automaton A = (N,E, f, d,G,E0) which
simulates the assembly of a tiled picture from L = L(W) as described in Fig. 2 ii).
Let N be a set of nodes such that |N | = |Θ | and let ϑ : N → Θ be a bijection.
For each node x ∈ N there is a corresponding tile ϑ(x) and vice versa. Let NT ,
NR, NB, NL be the set of nodes which correspond to tiles on the top, right,
bottom, left border of a tiled picture, respectively:

NT = {x ∈ N | σN (ϑ(x)) = #} , NR = {x ∈ N | σE(ϑ(x)) = #} ,
NB = {x ∈ N | σS(ϑ(x)) = #} , NL = {x ∈ N | σW (ϑ(x)) = #} .

Let G = (N,Ev ∪ Eh, π) be the underlying graph of A. The label function π is
naturally defined as π(x) = λ(ϑ(x)) for x ∈ N . For all nodes x, y ∈ N there
is an edge (x, y) ∈ Eh if and only if σE(ϑ(x)) = σW (ϑ(y)) ̸= # and either
x, y ∈ N \ (NT ∪ NB) or x, y ∈ NT or x, y ∈ NB ; there is an edge (x, y) ∈ Ev
if and only if σS(ϑ(x)) = σN (ϑ(y)) ̸= # and either x, y ∈ N \ (NL ∪ NR) or
x, y ∈ NL or x, y ∈ NR. This means if the east edge of a tile t can attach to the
west edge of tile s, then their corresponding nodes x = ϑ−1(t) and y = ϑ−1(s)
are connected by an h-edge (x, y) ∈ Eh. Analogously, if the south edge of a tile t
can attach to the north edge of tile s, then their corresponding nodes x = ϑ−1(t)
and y = ϑ−1(s) are connected by an v-edge (x, y) ∈ Ev.

If NT ∩ NB ̸= ∅ or NR ∩ NL ̸= ∅, the language L(W) possibly contains
pictures p with h(p) = 1 or w(p) = 1, respectively, which can be seen as one-
dimensional pictures. These pictures have to be treated separately. For now we
assume that NT ∩NB = NR ∩NL = ∅.

The hyperedges E and the transition function d define the possible tran-
sitions of A. In every transition we add exactly one node to the graph of a
configuration of A. Our naming convention is that x is the node which is at-
tached in the derivation step and y, y1, y2, y3 are incoming active nodes of the
hyperedge. Every graph containing only one node which corresponds to a tile in
the top left corner is an initial graph. In order to construct a picture graph which
represents a picture in L(W) we introduce three types of transitions, see Fig. 7.

10

The transitions of type I generate the top row of the graph and transitions of
type II generate the left column of the graph; both transition types keep every
generated node active. Transitions of type III generate the rest of the graph:
A node is attached if it has a matching east neighbour (y1), a matching north
neighbour (y3), and these two nodes are connected by another node (y2); unless
we reach the right or bottom border of the graph the nodes x, y1, and y3 are
active after using the transition. See Appendix for details. ⊓⊔

I II IIIType

Hyperedges

h

h

v v

x

y3y2

y1

v

x

y

h xy

Fig. 7. The hyperedges in the SA-hypergraph automaton A induce three differ-
ent types of graphs. White nodes represent incoming active nodes of the hyper-
edges.

Next, we prove that a picture language L = p(L(A)), associated to the graph
language L(A), is recognizable if A does not contain a strong loop. Let A be an
SA-hypergrph automaton. A series of hyperedges s = ⟨e0, e1, . . . , en⟩ from A is
a (derivation) loop if e0 = en and Q2,i ∩ Q1,i+1 ̸= ∅ where d(ei) = Q1,i → Q2,i

for 0 ≤ i < n. Loops in an SA-hypergraph automaton are a prerequisite for
using a hyperedge several times in one derivation. Therefore, an SA-hypergraph
automaton without any loops can only accept a finite graph language. Let Gi =
Gei be the graph induced by ei, let x be a node in G0 = Gn, and let Oi =
Q2,i∩Q1,i+1 be set overlapping incoming/outgoing active nodes of Gi and Gi+1.
There is a path in the underlying graph of A from x to x which only visits the
subgraphs G0, . . . , Gn, in the given order, and passes through at least one node
of each Oi (the path may use incoming and outgoing edges). The loop s is a
strong loop if, on this path, the number of incoming horizontal edges equals the
number of outgoing horizontal edges and the number of incoming vertical edges
equals the number of outgoing vertical edges. In other words, when starting from
a configuration M and successively gluing the hyperedges from s to M , then the
subgraph added by the hyperedge e0 and the subgraph added by the hyperedge
en fully overlap when naturally embedded in Z2. Note that, by Remark 1, all
graphs Gi are subgrids which implies that the choice of the path from x to x
does not matter in this definition.

Theorem 2. Let A be a SA-hypergraph automaton without any strong loops.
The picture language L = p(L(A)), associated to the graph language L(A), is
recognizable (by a Wang Tile System).

Proof. Let A = (N,E, f, d,G,E0) and let G = (N,Ev ∪Eh, π). We may assume
that e ∈ E0 if and only if d(e) = ∅ → Oe. Therefore, none of the initial hy-
peredges can be used in a transition. This assumption is justified by the fact

11

that we can duplicate all hyperedges in E0 such that one copy can be used in
a transition but does not belong to E0 and the other copy which belongs to E0

cannot be used in a transition. Furthermore, any hyperedge without incoming
active nodes which does not belong to E0 is useless and can be removed from E.

For a node x ∈ N we define the list of related hyperedges to x, Hx =
{e ∈ E | x ∈ f(e)}. Let x be a node and ψ ⊆ Hx. We call a hyperedge g ∈ ψ a
generator of (x, ψ) if x /∈ Q1 with d(g) = Q1 → Q2. Note that if g ∈ E0, then g
must be a generator. We call a hyperedge c ∈ ψ a consumer of (x, ψ) if x /∈ Q2

with d(c) = Q1 → Q2. The pair (x, ψ) is a tile candidate if ψ contains exactly one
generator g(x,ψ) and exactly one consumer c(x,ψ); furthermore, if g(x,ψ) = c(x,ψ),
we require that ψ = {g(x,ψ)}. Note that if g(x,ψ) ≠ c(x,ψ), then for all e ∈ ψ with
d(e) = Q1 → Q2, we have that x ∈ Q1 unless e is the generator and x ∈ Q2

unless e is the consumer. The tile candidate (x, ψ) describes the attachment of
a copy of the node x to the output graph by the generator; afterwards, x is used
as active node by all hyperedges in ψ \ {g(x,ψ), c(x,ψ)}; finally, x is deactivated
by the consumer. Let Gψ be the node-induced subgraph of G by

∪
e∈ψ f(e). If

Gψ is not a subgrid (a subgraph of some picture graph), we remove (x, ψ) from
the set of tile candidates. Let Ψ denote the set of all remaining tile candidates.

The Wang tile system W = (Σ,C,Θ) which recognizes L is constructed
based on the list Ψ . In order to recognize the picture language associated to
L(A), we have to define the attachments of tile candidates. We use unordered
pairs {(x, ψ), (y, φ)} ∈ Ψ2 = C of tile candidates for the colours on the edges.
For a tile candidate (x, ψ) ∈ Ψ we define the set of labelled Wang tiles

Θ(x,ψ) = SN,(x,ψ) × SE,(x,ψ) × SS,(x,ψ) × SW,(x,ψ) × {lx}
where lx is the label π(x) and SN,(x,ψ), SE,(x,ψ), SS,(x,ψ), SW,(x,ψ) are sets of
colours which are defined below. The tile set is the union Θ =

∪
(x,ψ)∈Ψ Θ(x,ψ).

Fig. 8 shows an example of this construction.

h h

h h

h h

v

v

v

v

v

v

e1
e2

e3

x1

x2

x3

x4
x5

x6

x7
x8

x9

{e1, e2,

 e3}, x2

{e1}

, x1

{e2}

,x3

{e1, e2,

 e3},x5

{e3}

,x8

{e3}

,x9

{e3}

,x7

{e1, e3}

,x4

{e2, e3}

,x6

i) iii)ii)
(x1,

{e1})

(x3,

{e3})

(x7,

{e7})

(x8,

{e8})

(x9,

{e9})

(x4,

{e1,e3)

(x6,

{e2,e3})

(x2,

{e1,e2})

(x2,

{e1,e2,

 e3})

(x5,

{e1,e2})

(x5,

{e1,e2,

 e3})

Fig. 8. Let A = (N,E, f, d,G,E0) be a SA-hypergraph automaton where N , E,
f , and G are defined in part i). Function d is defined such that d(e1) = {x1} →
{x2, x4, x5}, d(e2) = {x2, x5} → {x2, x5, x6} and d(e3) = {x2, x4, x5, x6} → {}.
SA-hypergraph automaton starts from e1. Part ii) shows the set of all the possible
tile candidates. On each tile related node and the set of ψ are written. The tiling
on part iii) is the result of overlapping of three hyperedges e1, e2, and e3.

For (x, ψ), (y, φ) ∈ Ψ , we let {(x, ψ), (y, φ)} ∈ SE,(x,ψ) and {(x, ψ), (y, φ)} ∈
SW,(y,φ) if and only if 1.) (x, y) ∈ Eh; 2.) Hx ∩ φ ⊆ ψ; 3.) ψ ∩ Hy ⊆ φ;

12

and 4.) g(x,ψ) = g(y,φ) or y ∈ Q1 for d(g(x,ψ)) = Q1 → Q2 or x ∈ Q′
1 for

d(g(y,φ)) = Q′
1 → Q′

2. For (x, ψ), (y, φ) ∈ Ψ , we let {(x, ψ), (y, φ)} ∈ SS,(x,ψ) and
{(x, ψ), (y, φ)} ∈ SN,(y,φ) if and only if (x, y) ∈ Ev and conditions 2 to 4 are
satisfied. For (x, ψ) ∈ Ψ , we let SE,(x,ψ) = {#} if x does not have an incoming
vertical edges in the graph Gψ. By symmetric condition we let SN,(x,ψ) = {#},
SS,(x,ψ) = {#}, or SW,(x,ψ) = {#}.

Every picture p ∈ L(W), generated by the suggested tiling system, is in
p(L(A)) and vice versa. See Appendix for the complete proof. ⊓⊔

5 Conclusion

We introduced SA hypergraph automata, a language/automata theoretic model
for patterned self-assembly systems. SA hypergraph automata accept all recog-
nizable picture languages but, unlike other models, (e.g., Wang Tile Automata)
SA-hypergraph automata do not rely on an a priori given scanning strategy of
a picture. This property makes the SA hypergraph automata better suited to
model DNA-tile-based self-assembly systems.

SA-hypergraph automata provide a natural automata-theoretic model for
patterned self-assemblies that will enable us to analyse self-assembly in an auto-
mata-theoretic framework. This framework lends itself easily to, e.g., descrip-
tional and computational complexity analysis, and such studies may ultimately
lead to classifications and hierarchies of patterned self-assembly systems based
on the properties of their corresponding SA-hypergraph automata. An addi-
tional feature is that each SA-hypergraph automaton accepts an entire class of
“supertiles” as opposed to a singleton set, which may also be of interest for some
applications or analyses.

References

1. M. Anselmo, D. Giammarresi, and M. Madonia. Tiling automaton: A computa-
tional model for recognizable two-dimensional languages. In CIAA, pages 290–302.
2007.

2. R. D. Barish, R. Schulman, P. W. K. Rothemund, and E. Winfree. An information-
bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences, 2009.

3. M. Blum and C. Hewitt. Automata on a 2-dimensional tape. In SWAT (FOCS),
pages 155–160, 1967.

4. E. Czeizler and A. Popa. Synthesizing minimal tile sets for complex patterns in
the framework of patterned DNA self-assembly. In DNA Computing and Molecular
Programming, volume 7433 of Lecture Notes in Computer Science, pages 58–72.
Springer Berlin / Heidelberg, 2012.

5. L. de Prophetis and S. Varricchio. Recognizability of rectangular pictures by Wang
systems. Journal of Automata, Languages and Combinatorics, 2(4):269, 1997.

6. D. Giammarresi and A. Restivo. Two-dimensional languages, pages 215–267.
Springer-Verlag, 1997.

13

7. M. Göös and P. Orponen. Synthesizing minimal tile sets for patterned DNA self-
assembly. In DNA, pages 71–82, 2010.

8. K. Inoue and A. Nakamura. Some properties of two-dimensional on-line tessellation
acceptors. Inf. Sci., 13(2):95–121, 1977.

9. D. Janssens and G. Rozenberg. Hypergraph systems generating graph languages.
In Graph-Grammars and Their Application to Computer Science, pages 172–185,
1982.

10. T. Lempiäinen, E. Czeizler, and P. Orponen. Synthesizing small and reliable tile
sets for patterned DNA self-assembly. In DNA, pages 145–159, 2011.

11. V. Lonati and M. Pradella. Picture recognizability with automata based on Wang
tiles. In SOFSEM, pages 576–587, 2010.

12. V. Lonati and M. Pradella. Strategies to scan pictures with automata based on
Wang tiles. RAIRO - Theor. Inf. and Applic., 45(1):163–180, 2011.

13. X. Ma and F. Lombardi. Synthesis of tile sets for DNA self-assembly. IEEE Trans.
on CAD of Integrated Circuits and Systems, 27(5):963–967, 2008.

14. P. W. K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology, page 2004.

15. E. Winfree. Algorithmic self-assembly of DNA. PhD thesis, 1998.

14

A Example 1

Figure 5 shows an example of a self-assembled coloured pattern and an SA-
hypergraph automaton that accepts that pattern. Part i) depicts a coloured
self-assembled pattern. Parts ii) and iii) together depict the underlying graph of
the SA-hypergraph automaton that constructs the same pattern.

The SA-hypergraph automaton for the example in Figure 5 is defined as
follows. The SA-hypergraph automaton is A = (N,E, f, d,G,E0), where

• N = {x1, x2, . . . , x9, z1, z2, . . . , z7},
• E = {e1, e2, . . . , e16},
• function f is defined such that

f(e1) = {x1, x2, x4, x5}, f(e2) = {x2, x3, x5, x6}, f(e3) = {x3, x1, x6, x4},
f(e4) = {x4, x5, x7, x8}, f(e5) = {x5, x6, x8, x9}, f(e6) = {x6, x4, x9, x7},
f(e7) = {x7, x8, x1, x2}, f(e8) = {x8, x9, x2, x3}, f(e9) = {x9, x7, x3, x1},
f(e10) = {z1, z5, z2, x1}, f(e11) = {z5, z6, x1, x2}, f(e12) = {z6, z7, x2, x3},
f(e13) = {z7, z5, x3, x1}, f(e14) = {z2, x1, z3, x4}, f(e15) = {z3, x4, z4, x7},
f(e16) = {z4, x7, z2, x1}.

• For each hyperedge in ii), the function d describing the active areas where we
can glue new hyperedges is defined as to build a horizontal (vertical) chain
of nodes that models the top row (left column) of tiles.

d(e11) = {z5, x1} → {z6, x1, x2}, d(e12) = {z6, x2} → {z7, x2, x3},
d(e13) = {z7, x3} → {z5, x1, x3}, d(e14) = {z2, x1} → {z3, x1, x4},
d(e15) = {z3, x4} → {z4, x4, x7}, d(e16) = {x7, z4} → {z2, x1, x2}.

The “backward edges”, e.g., (x3, x1), (x4, x6), (x7, x9), and (z7, z5), make it
possible to reuse the hyperedges to build a periodic pattern.
For each hyperedge in iii), the function d changes the active input nodes
(top-left, bottom-left, and top-right) to the new set of active nodes (top-
right, bottom-left, and bottom-right), signifying the change of the places
where the new hyperedges can be glued.

d(e1) = {x1, x2, x4} → {x2, x4, x5}, d(e2) = {x2, x3, x5} → {x3, x5, x6},
d(e3) = {x3, x1, x4} → {x1, x6, x4}, d(e4) = {x4, x5, x7} → {x5, x7, x8},
d(e5) = {x5, x6, x8} → {x6, x8, x9}, d(e6) = {x6, x4, x9} → {x4, x9, x7},
d(e7) = {x7, x8, x1} → {x8, x1, x2}, d(e8) = {x8, x9, x2} → {x9, x2, x3},
d(e9) = {x9, x7, x3} → {x7, x3, x1}, d(e10) = {z1, z5, z2} → {z5, x1, z2}.

• Parts ii) and iii) depict the underlying graphs of the white L-shaped top
and left border of the pattern, and the white-grey-black part of the pattern
respectively.

15

x6

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

v

h

h

v

x2

v

h x1

v

x3

z5

h

z6

v

x2

x7

x4h

v

z2 h

v

h

h

z3

x1

z4

v

v

h

v

x5 h

v

v

h

h
x9

v

v

v

x8

v

h

h

h

h

h

h

h

h

v

v

hh

x7

x4 x5

x8

vv v

x1x2 x3 x2

z5

z1 h

v

z2

v

h x1

z5

z1 h

v

h

z6

z2

v

x2

v

h x1 h

e11 e12
z5

z1 h

v

h

z6

h

z2

z7

v v

x2

v

h x1 x3h h

e13

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

h

h

v

x2

v

h x1 x3

z5

h h

e11

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

h

h

v

x2

v

h x1 x3

z5

h

z6

v

x2

x7

x4h

v

z2

v

h

h

z3

x1

z4

v

v

h h h

v

v

e1

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

h

h

v

x2

v

h x1 x3

z5

h

z6

v

x2

x7

x4h

v

z2

v

h

h

z3

x1

z4

v

v v

x5

h h h

h

v

v

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

h

h

v

x2

v

h x1 x3

z5

h

z6

v

x2h h h

e14,e15,e16

x6

v

z5

z1 h

v

h

z6

h

z2

z7

v v

x1

h

h

v

x2

v

h x1 x3

z5

h

z6

v

x2

x7

x4h

v

z2

v

h

h

z3

x1

z4

v

v v

x5

h h h

h

v

v

e3,e4,...h

e2

Fig. 9. In this example, the construction of a picture graph from Figure 5 is
explained. At each step, one hyperedge or a sequence of hyperedges is glued.

• E0 = {e10}

The SA-hypergraph automaton A starts from the top-left white tile, corre-
sponding to E0 = {e10}. Afterwards, the automaton continues the construction
with the hyperedges in the top row or the left column. The construction of the
white-grey-black part starts after the construction of the white top row and left
column. Figure 9 shows an example of possible transitions of the SA-hypergraph
automaton A.

B More Examples

In this section, we provide three example SA-hypergraph automata and illustrate
their relation to self-assembly systems. Our findings, presented in Section 4, do
not build upon this section. In all examples, every node in the underlying graph

16

has a distinct colour which, for simplicity, is the same as the identifier of the
node.

The following examples shows a SA-hypergraph automaton to accept the
pictures in Figure 10 part a). This example shows that SA-hypergraph automata
can accept a picture language with a simple description. The SA-hypergraph
automaton in this example has 8 nodes and 3 hyperedges; the equivalent tile
system needs 8 tile types.

Example 2. The SA-hypergraph automaton for the example in Figure 10 is
defined as follows. The SA-hypergraph automaton is A = (N,E, f, d,G,E0),
where

• N = {x1, x2, x3, x4, x5, x6, x7, x8},
• E = {e1, e2, e3},
• function f is defined such that

f(e1) = {x1, x2, x3, x4},
f(e2) = {x3, x4, x5, x6},
f(e3) = {x3, x4, x7, x8}

• function d is defined such that

d(e1) = {x1, x2} → {x3, x4},
d(e2) = {x3, x4} → {},
d(e3) = {x3, x4} → {}

• underlying graph is shown in Figure 10 part b.
• E0 = {e1}

c1

c2 c4

c3

c5

c6

c7

c8

c1

c2 c4

c3 c5

c6

c1

c2 c4

c3 c7

c8

a) b)
h

h

vv

h

h

h

h

v

v

Fig. 10. Part a) shows an example of language of coloured self-assembled pat-
terns. Parts b) depicts the underlying graph of the SA-hypergraph automaton
that constructs the same pattern.

Example 3 shows a simple picture language containing two 2D-words. The
SA-hypergraph automaton uses two overlapping hyperedges with different ac-
tive inputs and outputs. Therefore, the number of nodes in this SA-hypergraph

17

automaton will be less than the number tiles in a tile assembly system which
recognizes the same language. The SA-hypergraph automaton in this example
has 4 nodes and 3 hyperedges. An equivalent tile assembly system needs at least
6 tile types.

Example 3. The SA-hypergraph automaton for the example in Figure 11 is de-
fined as follows. The SA-hypergraph automaton is A = (N,E, f, d,G,E0), where

• N = {x1, x2, x3, x4},
• E = {e1, e2, e3},
• function f is defined such that

f(e1) = {x1, x2},
f(e2) = {x1, x2},
f(e3) = {x1, x2, x3, x4}

• function d is defined such that

d(e1) = {x1} → {},
d(e2) = {x1} → {x1, x2},
d(e3) = {x1, x2} → {}

• underlying graph is shown in Figure 11 part b).
• E0 = {e1, e2}

c1

c2 c4

c3c1

c2 c4

c3 c1

c2

a) b)

h

h

vv

Fig. 11. Part a) shows an example of language of coloured self-assembled pat-
terns. Parts b) depicts the underlying graph of the SA-hypergraph automaton
that constructs the same pattern.

Example 4 shows a language with an infinite number of one dimensional pic-
tures. The SA-hypergraph automaton uses three hyperedges to build the chain,
moreover, one more heyperedge is used to make the final configurations. There-
fore, the number of nodes in this SA-hypergraph automaton will be less than
the number tiles in a tile assembly system which recognizes the same language.
The SA-hypergraph automaton in this example has 3 nodes and 4 hyperedges.
Whereas an equivalent tile assembly system needs at least 5 tile types (one tile
type to start, 3 tile type to build the chain, and one tile type to stop).

18

c1 c2

c3

c1 c2 c3

c1 c2 c3 c1 c2 c3

c1 c2 c3 c1 c2 c3 c1 c2 c3

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

a) b)

h

hh

Fig. 12. Part a) shows an example of language of coloured self-assembled pat-
terns. Parts b) depicts the underlying graph of the SA-hypergraph automaton
that constructs the same pattern.

Example 4. The SA-hypergraph automaton for the example in Figure 12 is
defined as follows. The SA-hypergraph automaton is A = (N,E, f, d,G,E0),
where

• N = {x1, x2, x3},
• E = {e1, e2, e3, e4},
• function f is defined such that

f(e1) = {x1, x2},
f(e2) = {x2, x3},
f(e3) = {x3, x1} f(e4) = {x2, x3},

• function d is defined such that

d(e1) = {x1} → {x2},
d(e2) = {x2} → {x3},
d(e3) = {x3} → {x1} d(e4) = {x2} → {},

• underlying graph is shown in Figure 12 part b).
• E0 = {e1}

C Theorem 1

Theorem 3. For any recognizable picture language L there is a SA-hypergraph
automaton A such that the picture language associated to the graph language
L(A) is L.

19

Proof. Let V = (Σ,C ′, Θ′) be a Wang Tile System that recognizes the picture
language L, that is L = L(V). We will slightly modify the WTS V such that
it fulfils a certain property as described in the following. We define a WTS
W = (Σ,C,Θ) which recognizes L and such that any two copies of a tile t ∈ Θ
in a tiling of W must have a row- and a column-distance which is a multiple of
3. More precisely, for a Wang tiled version p̄ of a picture p ∈ L(W) where a tile
t ∈ Θ appears at two positions t = p̄(i,j) = p̄(i′,j′), we have that 3 divides |i− i′|
as well as |j − j′|. This is achieved by using 9 copies of every tile from V in W ;
we let Θ = Θ′ × {0, 1, 2} × {0, 1, 2}. We will ensure that a tile (t, i, j) ∈ Θ can
only appear at position (i′, j′) if i = i′ mod 3 and j = j′ mod 3. This property
is achieved by defining the glues as C = C ′ × {0, 1, 2}, and for t = (s, i, j) ∈
Θ′ × {0, 1, 2} × {0, 1, 2} we let

λ(t) = λ(s), σS(t) = (σS(s), i), σN (t) = (σN (s), (i− 1) mod 3),

σE(t) = (σE(s), j), σW (t) = (σW (s), (j − 1) mod 3).

Note that a tiled picture p̄ of W can be converted into a tiled picture q̄ of V
such that the corresponding pictures p and q coincide by applying the mapping
(t, i, j) 7→ t to every tile in p̄. Vice versa, a tiled picture q̄ in V can be converted
into a tiled picture p̄ in W such that the corresponding pictures p and q coincide
by applying the mapping p̄(i,j) 7→ (p(i,j), i mod 3, j mod 3) to every position in
p̄.

The modification of V will become of importance later in the proof: We need
to ensure that for a 2× 2 square of matching tiles t1, t2, t3, t4, it is not possible
to directly attach another copy of any of t1, t2, t3, t4 to this square.

We will define a SA-hypergraph automaton A = (N,E, f, d,G,E0) which
simulates the assembly of a tiled picture from L = L(W) as described in Figure 2.

Let N be a set of nodes such that |N | = |Θ | and let ϑ : N → Θ be a
bijection. For each node x ∈ N there is a corresponding tile ϑ(x) and vice versa.
Let NT , NR, NB , NL be the set of nodes which correspond to tiles on the top,
right, bottom, left border of a tiled picture, respectively:

NT = {x ∈ N | σN (ϑ(x)) = #} , NR = {x ∈ N | σE(ϑ(x)) = #} ,
NB = {x ∈ N | σS(ϑ(x)) = #} , NL = {x ∈ N | σW (ϑ(x)) = #} .

Let G = (N,Ev ∪ Eh, π) be the underlying graph of A. The label function
π is naturally defined as π(x) = λ(ϑ(x)) for x ∈ N . For all nodes x, y ∈ N
there is an edge (x, y) ∈ Eh if and only if σE(ϑ(x)) = σW (ϑ(y)) ̸= # and either
x, y ∈ N \ (NT ∪ NB) or x, y ∈ NT or x, y ∈ NB ; there is an edge (x, y) ∈ Ev
if and only if σS(ϑ(x)) = σN (ϑ(y)) ̸= # and either x, y ∈ N \ (NL ∪ NR) or
x, y ∈ NL or x, y ∈ NR. This means if the east edge of a tile t can attach to the
west edge of tile s, then their corresponding nodes x = ϑ−1(t) and y = ϑ−1(s)
are connected by an h-edge (x, y) ∈ Eh. Analogously, if the south edge of a tile t
can attach to the north edge of tile s, then their corresponding nodes x = ϑ−1(t)
and y = ϑ−1(s) are connected by an v-edge (x, y) ∈ Ev.

If NT ∩ NB ̸= ∅ or NR ∩ NL ̸= ∅, the language L(W) possibly contains
pictures p with h(p) = 1 or w(p) = 1, respectively, which can be seen as one-

20

dimensional pictures. These pictures have to be treated separately. For now we
assume that NT ∩NB = NR ∩NL = ∅.

The hyperedges E and the transition function d define the possible transitions
of A. In every transition we add exactly one node to the graph of a configura-
tion of A. Our naming convention is that x is the node which is attached in
the derivation step and y, y1, y2, y3 are incoming active nodes of the hyperedge.
Every graph containing only one node which corresponds to a tile in the top left
corner is an initial graph. In order to construct a picture graph which represents
a picture in L(W) we introduce three types of transitions, see Figure 7. The
transitions of type I generate the top row of the graph and transitions of type II
generate the left column of the graph; both transition types keep every gener-
ated node active. Transitions of type III generate the rest of the graph: A node
is attached if it has a matching east neighbour (y1), a matching north neighbour
(y3), and these two nodes are connected by another node (y2); unless we reach
the right or bottom border of the graph the nodes x, y1, and y3 are active after
using the transition.

Formally, we define the set of hyperedges E, the set of initial edges E0, the
function f , and the transition function d as following:

Initial graphs: For each x ∈ NT ∩NL, corresponding to a tile in the top left
corner, we define a hyperedge ex ∈ E0 ⊆ E with associated nodes f(ex) = {x}
and the transition function d(ex) = ∅ → {x}.

Type I: For all nodes x, y ∈ NT , in the top row, such that (x, y) ∈ Eh,
we define a hyperedge ex,y ∈ E with associated nodes f(ex,y) = {x, y} and the
derivation function d(ex,y) = {y} → {x, y}.

Type II: For all nodes x, y ∈ NL, in the left column, such that (x, y) ∈ Ev,
we define a hyperedge ex,y ∈ E with associated nodes f(ex,y) = {x, y} and the
derivation function d(ex,y) = {y} → {x, y}.

Type III: For all nodes x ∈ N \ (NT ∪ NL) and y1, y2, y3 ∈ N such
that (y2, y1), (y3, x) ∈ Ev and (y2, y3), (y1, x) ∈ Eh, we define a hyperedge
ex,y1,y2,y3 ∈ E with associated nodes f(ex,y1,y2,y3) = {x, y1, y2, y3} and the
derivation function

1. d(ex,y1,y2,y3) = {y1, y2, y3} → ∅ if x ∈ NB ∩NR, (bottom right corner)
2. d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y3} if x ∈ NB \NR, (bottom row)
3. d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y2} if x ∈ NR \NB , (right column)
4. d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y2, y3} otherwise.

Consider the graph Ge which is induced by the hyperedge e ∈ E. Depending
on the type of the hyperedge e, the graph Ge contains at least the edges shown
in Figure 7. However, by the modification of the Wang tile system V above,
we ensured that the graph Ge contains exactly those edges shown in Figure 7.
Suppose one of the graphs Ge would contain an edge (x′, y′) which is not shown
in Figure 7, then the tile corresponding to y′ could occur in two positions which
are less than three rows and columns apart — a property that was excluded by
the modification.

We will show that p(L(A)) = L. Firstly, consider an array p̄ of tiles from Θ
which is the Wang-tiled version of the picture p ∈ L(W). We will show that the

21

SA-hypergraph automaton A accepts a picture graph M such that p(M) = p.
We assume M to be embedded in Z2 such that the nodes cover the axis-parallel
rectangle spanned by the points (1, 1) and (h(p), w(p)), every v-edge points down-
wards, and every h-edge points rightwards; recall that our coordinates represent
the rows and columns of a matrix. The derivation leading to the final configura-
tion (M, ∅, g) simulates the assembly of tiles which form p̄ as shown in Figure 2.
The north and west edges of the tile tTL = p̄(1,1) in the top left corner of p̄
are labelled by #, and therefore, the node xTL = ϑ−1(tTL) corresponding to
tTL forms an initial graph M0. The adjacent edges of two neighbouring tiles
s, t in p̄ are labelled by the same colour. Suppose s is the west neighbour of t,
then σE(s) = σW (t) ̸= # and both tiles belong to the same row, implying that
σN (s) = # ⇐⇒ σN (t) = # and σS(s) = # ⇐⇒ σS(t) = #. Therefore, their
corresponding nodes in G are connected by an h-edge (ϑ−1(s), ϑ−1(t)) ∈ Eh.
Analogously, if s is the north neighbour of t, then (ϑ−1(s), ϑ−1(t)) ∈ Ev. Next,
we see that the hyperedges of type I and type II can be used in order to create
the top row and left column of the graph M , respectively. Furthermore, the hy-
peredges of type III can be used in order to create all the remaining nodes of
M . We conclude that (M0, {xTL}, id)

∗→
A

(M,O, g) is a derivation in A and we

will prove that (M,O, g) has to be a final configuration with O = ∅. Observe,
that hyperedges of types I and II leave all the nodes active while hyperedges of
type III deactivate at least the top left node in the hyperedge. Thus, all nodes
except for those in the bottom row and in the right column will be deactivated
in the configuration (M,O, g). Furthermore, in order to create the bottom row
and right column hyperedges of type III.2 and III.3 are used, respectively, and
one rule of type III.1 is used in order to create the bottom-right node of M . It
is easy to see that the derivation function is designed such that all nodes will be
deactivated in the configuration (M,O, g) and, therefore, A accepts M .

Now, letM = (NM , Ev,M ∪Eh,M , πM) ∈ L(A) be a graph which is generated
by A. Let G be accepted by the derivation

(M0, O0, g0) →
A

(M1, O1, g1) →
A

· · · →
A

(Mk, Ok, gk)

where (M0, O0, g0) = (Ge0 , Oe0 , id) is an initial configuration with e0 ∈ E0 and
(Mk, Ok, gk) = (M, ∅, g) is a final configuration. Let Ni be the node set of the
graph Mi. Note that for any 0 ≤ i ≤ k the function gi is the restriction of g
by Ni, that is gi = g|Ni . In order to avoid confusion, nodes in the graph M are
consistently denoted by x, y and nodes in the graph G are consistently denoted
by x′, y′; the nodes may have subscripts.

Let the nodes in the graphs M0, . . . ,Mk be embedded in Z2 such that all h-
edges point rightwards and all v-edges point downwards; just like we did above.
The creation of graph M =Mk starts with the initial graph M0 which contains
only one node xTL ∈ NT ∩NL. Let xTL lie on position (1, 1) in all of the graphs
M0, . . . ,Mk. The graph M0 can be extended rightwards by using hyperedges of
type I and downwards by hyperedges of type II. Since none of the hyperedges
attach a new node upwards or leftwards of an existing node in Mi−1 in order to
obtain Mi, the node xTL lies in the top row and in the left column of Mi. By

22

the definition of type I and II hyperedges, for every node y in the top row (resp.,
left column) of M we have g(y) ∈ NT (resp., g(y) ∈ NL). By using hyperedges
of type III the area spanned by the top row and left column can be filled with
nodes. It is easy to see that for all graphs M0, . . . ,Mk we have that if a node
lies on position (i, j), then for all (i′, j′) ∈ [i]× [j] a node lies on position (i′, j′).
Furthermore, if i′ < i, then the node on position (i′, j′) has an outgoing v-edge,
and if j′ < j, then the node on position (i′, j′) has an outgoing h-edge. In other
words, in the axis-parallel rectangle spanned by the points (1, 1) and (i, j) all
nodes are connected by edges with all direct neighbours (nodes which have an
Euclidean distance of 1).

In the final configuration (Mk, ∅, g) there is no active node. Thus, the last
node which is added to the graph Mk−1 in order to obtain Mk is a node xBR
such that g(xBR) ∈ NB ∩NR, as all other derivation rules will leave some nodes
active. Next, let us consider the nodes which belong to the same row and column
as xBR does. Note that if two nodes x and y in M are connected by an edge,
then the corresponding nodes g(x) and g(y) in G are connected by an edge, too;
more precisely, if (x, y) ∈ Ev,M , then (g(x), g(y)) ∈ Ev, and if (x, y) ∈ Eh,M ,
then (g(x), g(y)) ∈ Eh. Since a node in NB (resp., NR) only is connected by
h-edges (resp., v-edges) in G to other nodes from NB (resp., NR), we see that
for every node y in the row of xBR (resp., column of xBR) we have g(y) ∈ NB
(resp., g(y) ∈ NR). A node y′ ∈ NB (resp., y′ ∈ NR) does not have any outgoing
v-edges (resp., h-edges) as the south edge (resp., east edge) of ϑ(y′) is labelled
by #. We conclude that xBR sits in the bottom row and right column of the
graph M and, by the observations made above, this implies that M is a picture
graph.

We claim that the picture p(M) which corresponds to the graph M can be
generated by the assembly p̄ given by the embedding of nodes in M and the
function ϑ ◦ g. Clearly, for every node y on position (i, j) in M we have that
p(M)i,j = πM (y) = λ(ϑ(g(y))), therefore, the pictures p and λ(p̄) coincide. Next,
we prove that p̄ is a tiled picture in the Wang tile system W . Recall, that all
nodes on the top, right, bottom, and left border of M correspond to tiles in
MT , MR, MB , and ML, respectively, and therefore, p̄ is well-bordered. Let tx
and ty be two neighbouring tiles in p̄ which lie on positions (i, j) and (i, j + 1),
respectively. Let x and y be the nodes in M which lie on the positions (i, j) and
(i, j + 1), respectively. Note that tx = ϑ(g(x)) and ty = ϑ(g(y)). Since M is a
picture graph, (x, y) ∈ Eh,M and (g(x), g(y)) ∈ Eh. The edge set Eh was build
to ensure that σE(tx) = σW (ty). We conclude that all adjacent east-west edges
in p̄ have matching colours. By symmetric arguments, we also conclude that all
adjacent north-south edges in p̄ have matching colours. Therefore, p̄ is a tiled
picture in W and p ∈ L.

Finally, let us consider the case when NT ∩NB ̸= ∅. We can add a component
to the SA-hypergraph automaton which works similar to a non-deterministic
finite automaton and where every hyperedge induces an graph of type I in Fig-
ure 7. The initial graphs are given by all nodes from NT ∩ NB ∩ NL. For all
nodes x, y ∈ NT ∩ NB with (y, x) ∈ Eh we define a hyperedge ex,y such that

23

f(ex,y) = {x, y}. The derivation function is given as d(ex,y) = {y} → {x} if
x /∈ NR, and d(ex,y) = {y} → ∅ otherwise. Obviously, this attachment to the hy-
pergraph A accepts all graphs which correspond to pictures p ∈ L with h(p) = 1.
The case when NL ∩NR ̸= ∅ can be covered analogously. ⊓⊔

D Theorem 2

Theorem 4. Let A be a SA-hypergraph automaton without any strong loops.
The picture language L = p(L(A)), associated to the graph language L(A), is
recognizable (by a Wang Tile System).

Proof. Let A = (N,E, f, d,G,E0) and let G = (N,Ev ∪Eh, π). We may assume
that e ∈ E0 if and only if d(e) = ∅ → Oe. Therefore, none of the initial hy-
peredges can be used in a transition. This assumption is justified by the fact
that we can duplicate all hyperedges in E0 such that one copy can be used in
a transition but does not belong to E0 and the other copy which belongs to E0

cannot be used in a transition. Furthermore, any hyperedge without incoming
active nodes which does not belong to E0 is useless and can be removed from E.

For a node x ∈ N we define the list of related hyperedges to x, Hx =
{e ∈ E | x ∈ f(e)}. Let x be a node and ψ ⊆ Hx. We call a hyperedge g ∈ ψ a
generator of (x, ψ) if x /∈ Q1 with d(g) = Q1 → Q2. Note that if g ∈ E0, then g
must be a generator. We call a hyperedge c ∈ ψ a consumer of (x, ψ) if x /∈ Q2

with d(c) = Q1 → Q2. The pair (x, ψ) is a tile candidate if ψ contains exactly one
generator g(x,ψ) and exactly one consumer c(x,ψ); furthermore, if g(x,ψ) = c(x,ψ),
we require that ψ = {g(x,ψ)}. Note that if g(x,ψ) ̸= c(x,ψ), then for all e ∈ ψ with
d(e) = Q1 → Q2, we have that x ∈ Q1 unless e is the generator and x ∈ Q2

unless e is the consumer. The tile candidate (x, ψ) describes the attachment of
a copy of the node x to the output graph by the generator; afterwards, x is used
as active node by all hyperedges in ψ \ {g(x,ψ), c(x,ψ)}; finally, x is deactivated
by the consumer. Let Gψ be the node-induced subgraph of G by

∪
e∈ψ f(e). If

Gψ is not a subgrid (a subgraph of some picture graph), we remove (x, ψ) from
the set of tile candidates. Let Ψ denote the set of all remaining tile candidates.

The Wang tile system W = (Σ,C,Θ) which recognizes L is constructed
based on the list Ψ . In order to recognize the picture language associated to
L(A), we have to define the attachments of tile candidates. We use unordered
pairs {(x, ψ), (y, φ)} ∈ Ψ2 of tile candidates for the colours on the edges. For a
tile candidate (x, ψ) ∈ Ψ we define the set of labelled Wang tiles

Θ(x,ψ) = SN,(x,ψ) × SE,(x,ψ) × SS,(x,ψ) × SW,(x,ψ) × {lx}

where lx is the label π(x) and SN,(x,ψ), SE,(x,ψ), SS,(x,ψ), SW,(x,ψ) are sets of
colours which are defined below. The set of all tiles is the unionΘ =

∪
(x,ψ)∈Ψ Θ(x,ψ).

For (x, ψ), (y, φ) ∈ Ψ , we let {(x, ψ), (y, φ)} ∈ SE,(x,ψ) and {(x, ψ), (y, φ)} ∈
SW,(y,φ) if and only if

1. (x, y) ∈ Eh,

24

2. Hx ∩ φ ⊆ ψ,
3. ψ ∩Hy ⊆ φ, and
4. g(x,ψ) = g(y,φ) or y ∈ Q1 for d(g(x,ψ)) = Q1 → Q2 or x ∈ Q′

1 for d(g(y,φ)) =
Q′

1 → Q′
2.

For (x, ψ), (y, φ) ∈ Ψ , we let {(x, ψ), (y, φ)} ∈ SS,(x,ψ) and {(x, ψ), (y, φ)} ∈
SN,(y,φ) if and only if (x, y) ∈ Ev and conditions 2 to 4 are satisfied. For (x, ψ) ∈
Ψ , we let SE,(x,ψ) = {#} if x does not have an incoming vertical edges in the
graph Gψ. By symmetric condition we let SN,(x,ψ) = {#}, SS,(x,ψ) = {#}, or
SW,(x,ψ) = {#}.

Now, consider an m×n-picture graph M = (NM , Ev,M ∪Eh,M , πM) ∈ L(A).
We will show that there is a tiled version p̄ of picture p = p(M) which uses tiles
from Θ and, therefore, p is recognized byW . Let G be accepted by the derivation

(M0, O0, g0) →
A

(M1, O1, g1) →
A

· · · →
A

(Mk, Ok, gk)

where (M0, O0, g0) = (Ge0 , Oe0 , id) is an initial configuration (that is e0 ∈
E0) and (Mk, Ok, gk) = (M, ∅, g) is a final configuration. Let ei be the hy-
peredge and Pi ⊆ Oi−1 be the active nodes which are used in the transition
(Mi−1, Oi−1, gi−1) →

A
(Mi, Oi, gi). Let d(ei) = Q1,i → Q2,i for 1 ≤ i ≤ k. Recall

that, by definition,Mi−1 is a full subgraph ofMi and, by induction, every graph
Mi is a full subgraph of M . Being an m× n-picture graph, the nodes in M can
be naturally embedded in [m]× [n] by the function fM .

Consider one node x′ ∈ NM and its original x = g(x′) in G. We assign to x′

a list of hyperedges ψ ⊆ E such that ei ∈ ψ if x′ ∈ Pi or x
′ belongs to Mi but

not Mi−1. We intend to use a tile from Θ(x,ψ) for the pixel p̄fM (x′) representing
x′ in the tiled picture p̄. Observe that ψ contains a consumer as x′ is not active
in the final configuration and ψ cannot contain two consumers because a node
can only be deactivated once. In addition, the hyperedge ei such that x′ belongs
to Mi but not Mi−1 is the single generator in ψ. Since Gψ is isomorphic to a
subgraph of M , we conclude that (x, ψ) is indeed a tile candidate. If x′ does not
have an outgoing horizontal edge, then the node x in the graph Gψ cannot have
an outgoing horizontal edge either and, therefore, SE,(x,ψ) = {#}. Symmetric
arguments apply if x does not have an incoming horizontal, outgoing vertical,
or incoming vertical edge.

Next, consider two nodes x′, y′ ∈ NM which are connected by an edge and, by
symmetry, assume (x′, y′) is a horizontal edge. Let x = g(x′), y = g(y′) be their
originals and let ψ,φ be the set of hyperedges associated to x′, y′, respectively.
We will show that {(x, ψ), (y, φ)} is a colour in SE,(xψ) as well as in SW,(y,φ).
Thus, we can choose tiles from Θ(x,ψ) and Θ(y,φ) for the positions fM (x′) and
fM (y′) in p̄, respectively. Clearly, the choice of the tiles also depends on the
other neighbours of x′ and y′. We have to show that conditions 1 to 5, above,
are satisfied. The first condition is satisfied by assumption. By contradiction,
suppose the second condition is not satisfied. There is ei ∈ Hx ∩ φ \ ψ; thus,
in the i-th step of the derivation we use the hyperedge ei that presupposes or
generates an edge (x′′, y′) in M where g(x′′) = x but x′′ ̸= x′. This would imply

25

that y has two incoming horizontal edges whence M is not a picture graph. The
third condition is satisfied by symmetric arguments. The edge (x′, y′) in M can
only be created in a step i where x′ or y′ is added to the graph Mi−1. Thus, x

′

and y′ either have the same generator in (x, ψ) and (y, φ), or x′ is in the active
nodes when y′ is generated, or y′ is in the active nodes when x′ is generated. In
all cases condition 4 is satisfied.

We conclude that a tiled picture p̄ such that p = p(M) and M ∈ L(A) can
be generated by using tiles from Θ and, therefore, p(M) ∈ L(W).

Consider a picture p ∈ L(W) and let p̄ be the tiled version of p, using tiles
from Θ =

∪
(x,ψ)∈Ψ Θ(x,ψ).

We start by introducing the concept of masks which can be seen as connected
subpictures of the tiled picture p̄ that represent the nodes in one hyperedge. A
mask m is a h(p̄) × w(p̄) matrix of tiles from Θ ∪ {empty}, such that either
m(i,j) = empty or m(i,j) = p̄(i,j) for all (i, j) ∈ [h(p̄)] × [w(p̄)]. In addition, we
require that the non-empty entries in m are connected; that is, for every pair of
tiles m(i′,j′),m(i,j) ∈ Θ there exists a sequence r = ⟨r0, r1, · · · , rn⟩ of tiles in m
such that r0 = m(i,j), rn = m(i′,j′), rk ∈ Θ, and rk, rk+1 must be adjacent for
all 0 ≤ k < n.

Let e ∈ E be an hyperedge and let Ge = (Ne, Ee,v ∪ Ee,h, πe) be the graph
induced by this hyperedge. By Remark 1, we assume that Ge is a subgrid. We say
Ge is mapped to a mask m if there is a injective function h : Ne → [h(p̄)]× [w(p̄)]
which satisfies: m(i,j) belongs to Θ if and only if (i, j) is in the domain of h; for
all nodes x, y ∈ Ne there is an edge (x, y) ∈ Ee,h (resp., (x, y) ∈ Ee,v) if and
only if h(x) is in north (resp., west) neighbour of h(y). Whenever we use this
mapping, we will ensure that for all x ∈ Ge the tile p̄h(x) belongs to Θ(x,ψ) for
some ψ ⊆ E.

Consider a tile t ∈ p̄(i,j) ∈ Θ(x,ψ) and a hyperedge e ∈ ψ. We define the mask

m[(i,j),x,e] such that the graph Ge can be mapped by function h to m[(i,j),x,e]

and h(x) = (i, j). We say that e is the hyperedge related to the mask m[(i,j),x,e].
Let t′ = p̄(i′,j′) ∈ Θ(y, φ) be a tile that is adjacent to t and let e ∈ ψ. For
simplicity we only consider the case when t′ is the east neighbour of t; i.e.,
(i′, j′) = (i + 1, j). We will show that if (i′, j′) is non-empty in m[(i,j),x,e], then
e ∈ φ. Since t′ is the east neighbour of t conditions 1 to 4, above, apply. As
(i′, j′) is non-empty in m[(i,j),x,e], there exists a horizontal edge (x, z) in Ge.
Furthermore, from conditions 1 and 4 it follows that (x, y) is a horizontal edge
in the graph Gg induced by the generator g = g(x,φ). As both graphs Ge and
Gg are subgraphs of the subgrid Gψ, we see that the edges (x, y) and (x, z)
coincide, thus, y = z. We conclude y ∈ Ge and e ∈ Hy. By condition 3, e ∈ φ.
Because the hyperedge e induces a connected graph, we can infer that for all

non-empty m
[(i,j),x,e]
(i′′,j′′) ∈ Θ(z,χ), we find e ∈ χ. Note that this also implies that

m[(i,j),x,e] = m[(i′,j′),y,e] = m[(i′′,j′′),z,e].
We define the set of masks µ = {m[(i,j),x,e]|p̄(i,j) ∈ Θ(x,ψ), e ∈ ψ} which

are induced by hyperedges in the above manner. Intuitively, every mask in µ
represents one transition in the derivation of a picture graphM which represents

26

the picture p = p(M). In order to use a transition defined by a mask, we need to
guarantee that all of its input areas exist and are active. We will order the set
µ accordingly. Let us define the relation R ⊆ µ × µ such that (m, n) ∈ R if the
transition represented by m has to be used before the transition represented by
n. Let m and n be two distinct masks in µ. The pair (m, n) is in R if there exists
(i, j) such that m(i,j) = n(i,j) ∈ Θ(x,ψ), and m = m[(i,j),x,g] where g = g(x,ψ) or

n = m[(i,j),x,c] where c = c(x,ψ). The pair (µ,R) can be seen as directed graph
Gµ. First, we show that the graph Gµ does not contain any loops, afterwards, a
topological sort of this graph is used to order the transitions represented by the
masks.

When two or masks overlap on a tile (have a common non-empty entry), re-
garding the construction of tile candidates, we know that the related hyperedge
of exactly one of these masks is the generator of the input area of the other
hyperedges. Hence, these masks are connected in the graph Gµ. By contradic-
tion, assume that ⟨n0, n1, . . . , nl⟩ is a non-trivial loop in Gµ (i.e., (ni, ni+1) ∈ R
for every 0 ≤ i < l − 1 and (nl, n0) ∈ R). However, the sequence of related
hyperedges to this sequence of mask is a strong loop in the SA-hypergraph au-
tomaton A which was excluded by assumption. Moreover, since two tiles with
different generators cannot connect without satisfying conditions 4, the graph
Gµ must be connected. Therefore, graph Gµ can be topologically sorted. Sorting
of the hyperedges guaranteed that the active input nodes of one hyperedge are
generated before the gluing of the hyperedge.

By contraction, assume that graph Gµ has two distinct nodes m1 and m2

without any input edges. Let m3 be the first node in the topological order such
that paths m1 →∗ m3 and m2 →∗ m3 exist in Gµ. As m3 is chosen minimal, these
paths do not share any node other than m3. Recall that all incoming active
nodes of a hyperedge are connected. Considering that two nodes cannot connect
to each other unless they are in the same hyperedge or they have glued to each
other, we have a contradiction as m3 cannot be the first common node on both
paths. We conclude that graph Gµ has only one node without input.

Now, let m0,m1, . . . ,mk be the topological sort of µ by the relation R. We
define m + n = o such that o(i,j) = empty if m(i,j) = n(i,j) = empty; otherwise,
o(i,j) = p̄(i,j). We will show that a graph Mk can be generated by a derivation

(M0, O0, g0) →
A

(M1, O1, g1) →
A

· · · →
A

(Mk, Ok, gk)

such that the graph Mi can be mapped to the mask
∑i
j=0 mj ; this implies that

mk can be mapped to p̄ =
∑k
j=0 mj . Let ei be the hyperedge related to the

mask m. The graph M0 = Ge0 is an initial graph because m0 has no incoming
edges in Gµ and, therefore, the derivation function of e0 is d(e0) = ∅ → Q2; thus,
(M0, O0, g0) where O0 = Q2 and g0 = id is an initial configuration. In derivation
step (Mi−1, Oi−1, gi−1) →

A
(Mi, Oi, gi) we use the hyperedge ei. By induction,

we can assume that Mi−1 can be mapped to
∑i−1
j=0 mj by a function hi−1. There

is only one way to glue the hyperedge ei to Mi−1 such that resulting graph Mi

can be mapped to
∑i
j=0 mj . We have to prove that all incoming active nodes

27

of Gei exist and are active in Mi. Let x be an incoming active node which is
represented by the tile p̄(a,b) ∈ Θ(x,ψ). The definition of R ensures that the mask
representing the generator of (x, ψ) in (a, b) has already been used and that the
mask representing the consumer of (x, ψ) in (a, b) has not yet been used. Finally,
every tile candidate has a consumer which means that there are no active nodes
in the final configuration (Mk, Ok, gk). As result, the picture p, generated by the
suggested tiling system, is in p(L(A)). ⊓⊔

