
Some hierarchies for the communication

complexity measures of cooperating grammar

systems

Juraj Hromkovic1, Jarkko Kari2, Lila Kari2

June 14, 2010

Abstract

We investigate here the descriptional and the computational complex-
ity of parallel communicating grammar systems (PCGS). A new descrip-
tional complexity measure - the communication structure of the PCGS -
is introduced and related to the communication complexity (the number
of communications). Several hierarchies resulting from these complexity
measures and some relations between the measures are established. The
results are obtained due to the development of two lower-bound proof
techniques for PCGS. The first one is a generalization of pumping lem-
mas from formal language theory and the second one reduces the lower
bound problem for some PCGS to the proof of lower bounds on the num-
ber of reversals of certain sequential computing models.

1 Introduction

Parallel Communicating Grammar Systems (PCGS) represent one of the sev-
eral attempts that have been made for finding a suitable model for parallel
computing (see [4] for an algebraic and [6], [1] for an automata theoretical ap-
proach). PCGS have been introduced in [12] as a grammatical model in this
aim, trying to involve as few as possible non-syntactic components.

A PCGS of degree n consists of n separate usual Chomsky grammars, work-
ing simultaneously, each of them starting from its own axiom; furthermore, each
grammar i can ask from the grammar j the string generated so far. The result
of this communication is that grammar i includes in its own string the string
generated by grammar j, and that grammar j returns to its axiom and resumes

1Department of Mathematics and Computer Science, University of Paderborn, 4790 Pader-

born, Germany
2Academy of Finland and Department of Mathematics, University of Turku, 20500 Turku,

Finland

1

working. One of the grammars is distinguished as a master grammar and the
terminal strings generated by it constitute the language generated by the PCGS.

Many variants of PCGS can be defined, depending on the communication
protocol (see [8]), on the type of the grammars involved (see [12], [9]), and so
on. In [12], [9], [11], [10] and [8], [14] various properties of PCGS have been
investigated, including the generative power, closure under basic operations,
complexity, and efficiency. In this paper we restrict ourselves to the study of
PCGS composed of regular grammars. As no confusion will arise, in the sequel
we will use the more general term PCGS when referring to these particular
PCGS consisting of regular grammars.

The most investigated complexity measure for PCGS has been the number of
grammars the PCGS consists of, which is clearly a descriptional complexity mea-
sure. Here we propose for investigation two further complexity measures. One is
the communication structure of the PCGS (the shape of the graph consisting of
the communication links between the grammars) which can be considered as an
alternative descriptional complexity measure to the number of grammars. This
measure may be essential for the computational power of the PCGS, as showed
also by results established in this paper. Here we consider mostly the follow-
ing graphs as communication structures: linear arrays, rings, trees and directed
acyclic graphs. The second complexity measure proposed here is the number of
communications between the grammars during the generation procedure. This
measure is obviously a computational complexity measure which is considered
as a function of the length of the generated word. Here we investigate these
complexity measures and the relations between them.

First, in Section 3, we relate these complexity measures to some sequen-
tial complexity measures. It is shown that PCGS with tree communications
structure and f(n) communication complexity can be simulated in real-time by
one-way nondeterministic multicounter machines with at most 2 f(n) reversals.
PCGS with acyclic communication structure can be simulated in linear time by
nondeterministic off-line multitape Turing machines.

The first simulation result is used in Section 4 to prove some lower bounds
on the communication complexity of tree-PCGS. The lower bounds are achieved
due to the modification of the lower bound proof technique on the number of
reversals of multicounter machines developed in [5], [2].

The consequences are not only some hierarchies of communication complex-
ity but also the fact that for tree-PCGS the increase of descriptional complexity
cannot compensate for some small decreases of communication complexity.

Section 5, devoted to descriptional complexity measures, involves pumping
lemmas for PCGS with tree structure, ring structure and with acyclic structures.
This enables to obtain several strong hierarchies on the number of grammars of
such PCGS.

2

2 Definitions and notations

We assume the reader familiar with basic definitions and notations in formal
language theory (see [13]) and we specify only some notions related to PCGS.

For a vocabulary V , we denote by V ∗ the free monoid generated by V under
the operation of concatenation, and by λ the null element. For x ∈ V ∗, |x| is the
length of x and if K is a set, |x|K denotes the number of occurrences of letters
of K in x.

All the grammars appearing in this paper are assumed to be regular, that
is, with productions of the form A−→wB, and A−→w, where A, B are nonter-
minals and w is a terminal word or the empty word.

Definition 1 A PCGS of degree n, n ≥ 1, is an n-tuple

π = (G1, G2, . . . , Gn),

where

• Gi = (VN,i, Σ, Si, Pi), 1 ≤ i ≤ n, are regular Chomsky grammars satisfying
VN,i ∩ Σ = ∅ for all i ∈ {1, 2, . . . , n};

• there exists a set K ⊆ {Q1, Q2, . . . , Qn} of special symbols, called com-
munication symbols, K ⊆

⋃n

i=1 VN,i, used in communications as will be
shown below.

The communication protocol in a PCGS π is determined by its communi-
cation graph. The vertices of this directed graph are labeled by G1, . . . , Gn.
Moreover, for i 6= j there exists an arc starting with Gi and ending with Gj

in the communication graph iff the communication symbol Qj belongs to the
nonterminal vocabulary of Gi.

An n-tuple (x1, . . . , xn) where xi ∈ Σ∗(VN,i ∪ λ), 1 ≤ i ≤ n, is called a
configuration. The elements xi, 1 ≤ i ≤ n, will be called components of the
configuration.

We say that the configuration (x1, . . . , xn) directly derives (y1, . . . , yn) and
write (x1, . . . , xn)=⇒(y1, . . . , yn), if one of the next two cases holds:

(i) |xi|K = 0 for all i, 1 ≤ i ≤ n, and, for each i, either xi contains a
nonterminal and xi=⇒yi in Gi or xi is a terminal word and xi = yi.

(ii) |xi|K > 0 for some i, 1 ≤ i ≤ n.

For each such i we write xi = ziQj, where zi ∈ Σ∗.

(a) If |xj |K = 0 then yi = zixj and yj = Sj .

(b) If |xj |K > 0 then yi = xi.

3

For all the remaining indexes l, that is, for those indexes l, 1 ≤ l ≤ n,
for which xl does not contain communication symbols and Ql has not
occurred in any of the xi, 1 ≤ i ≤ n, we put yl = xl.

Informally, an n-tuple (x1, x2, . . . , xn) directly yields (y1, y2, . . . , yn) if either
no communication symbol appears in x1, . . . , xn and we have a componentwise
derivation, xi=⇒yi in Gi, for each i, 1 ≤ i ≤ n, or communication symbols
appear and we perform a communication step, as these symbols impose: each
occurrence of Qij

in xi is replaced by xij
, provided xij

does not contain further
communication symbols.

A derivation consists of rewriting steps and communication steps.
If no communication symbol appears in any of the components, we perform

a rewriting step which consists of a rewriting step performed synchronously in
each of the grammars. If one of the components is a terminal string, it is left
unchanged while the others are performing the rewriting step. If in one of the
components the nonterminal cannot be rewritten any more, the derivation is
blocked.

If in any of the components a communication symbol is present, a communi-
cation step is performed. It consists of replacing all the occurrences of communi-
cation symbols with the components they refer to, providing these components
do not contain further communication symbols. If some communication sym-
bols are not satisfied in this step, they may be satisfied in one of the next ones.
Communication steps are performed until no more communication symbols are
present. No rewriting is allowed if any communication symbol occurs in one of
the components. Therefore, if circular queries emerge, the derivation is blocked.

The derivation relation, denoted =⇒∗, is the reflexive transitive closure of
the relation =⇒. The language generated by the system consists of the terminal
strings generated by the master grammar, G1, regardless the other components
(terminal or not).

Definition 2 L(π) = {α ∈ Σ∗| (S1, . . . , Sn)=⇒∗(α, β2, . . . , βn)}.

Of special interest are the centralized PCGS, denoted by c-PCGS. In this
case, only the master grammar can ask for the strings generated by the others.
The communication graph is therefore a tree (star) consisting of a father and
its sons.

Definition 3 A dag-PCGS (tree-PCGS, two-way array-PCGS, one-way array-
PCGS, two-way ring-PCGS, one-way ring-PCGS) is a PCGS whose communi-
cation graph is a directed acyclic graph (respectively tree, two-way linear array,
one-way linear array, two-way ring, one-way ring).

Denote by x−PCGSn the class of PCGS’s of degree n whose communication
graph is of type x, where x ∈ {c, dag, tree, two-way array, one-way array, two-
way ring, one-way ring}. Moreover, denote by L(x − PCGSn) the family of

4

languages generated by x−PCGS’s of degree n whose communication graph is
of type x, where x is as before.

If x denotes one of the above communication graphs, x−PCGSn(f(m)) will
denote the class of PCGS’s with communication graph of shape x and using at
most f(m) communication steps to generate any word of length m. (Note that
0 ≤ f(m) ≤ m.) As above, L(x − PCGSn(f(m))) will denote the family of
languages generated by PCGS of this type.

Let us give now a simple example that shows the generative power of PCGS.

Example 1 Let π be the PCGS π = (G1, G2, G3) where

G1 = ({S1, S
′
1, S2, S3, Q2, Q3}, {a, b, c}, S1, {S1−→abc,

S1−→a2b2c2, S1−→a3b3c3, S1−→aS′
1, S

′
1−→aS′

1,

S′
1−→a3Q2, S2−→b2Q3, S3−→c}

)

,

G2 = ({S2}, {b}, {S2−→bS2}) ,

G3 = ({S3}, {c}, {S3−→cS3}) .

This is a regular centralized PCGS of degree 3 and it is easy to see that we have

L(π) = {anbncn|n ≥ 1} ,

which is a non-context-free language.

Let us now informally define one-way nondeterministic multicounter ma-
chines. The formal definition can be found in [3]. A multicounter machine
consists of a finite state control, a one-way reading head which reads the input
from the input tape, and a finite number of counters. We regard a counter as
an arithmetic register containing an integer which may be positive or zero. In
one step, a multicounter machine may increment or decrement a counter by 1.
The action or the choice of actions of the machine is determined by the input
symbol currently scanned, the state of the machine and the sign of each counter:
positive or zero. A reversal is a change from increasing to decreasing contents of
a counter or viceversa. The machine starts with all counters empty and accepts
if it reaches a final state.

3 Characterization of PCGS by sequential

complexity measures

In this section we shall characterize the families of languages generated by PCGS
by some sequential complexity classes. These characterization will depend on
the communication structure of PCGS and on the communication complexity
of PCGS. This enables us to obtain some hierarchies for the communication
complexity measures of PCGS as consequences of some hierarchies for sequential
complexity measures.

5

Let us start first with the characterization of tree-PCGS by linear-time non-
deterministic multicounter machines.

Lemma 1 Let π be a tree-PCGSm(f(n)) for some positive integer m and for
some function f : N−→N. Then there exists a linear-time nondeterministic
(m− 1)-counter automaton M recognizing L(π), with 2 f(n) reversals and f(n)
zerotests.

Proof. Let π = (G1, . . . , Gm) be a tree-PCGSm(f(n)). The simulation of π by
a real-time 1MC(m − 1) machine M is based on the following idea. The finite
control of M is used to store the description of all regular grammars G1, . . . , Gm

and to simulate always the rewriting of one of the grammars which is responsible
for the input part exactly scanned.

M uses its counters C2, C3, . . . , Cm in the following way which secures that
none of the grammars G1, . . . , Gm is used longer than possible in actual situa-
tions (configurations). In each configuration of M and for each i ∈ {2, . . . , m}
the number c(Ci) stored in Ci is the difference between the number of the rewrit-
ing steps of Gi already simulated by M and the number of simulated rewriting
steps of the father of Gi in the communication tree (this means that if Gi is
asked by its father to give its generated word then this word is generated by Gi

in at most c(Ci) steps).
Now let us describe the simulation. M nondeterministically simulates the

work of π by using its finite control to alternatively simulate the work of G1, . . . ,
Gm and checking in real-time whether the generated word is exactly the word
laying on the input tape. The simulation starts by simulating the work of
G1 and with the simultaneous comparison of the generated terminals with the
corresponding terminals on the input tape. During this procedure M increases
after each simulated rewriting step of G1 the content of all counters assigned
to the sons of G1 and does not change the content of any other counter. This
simulation procedure ends when a communication nonterminal Qi (for some i)
is generated. Then M starts to simulate the generation procedure of Gi from
the initial nonterminal of Gi. Now, in each simulation step of M the content of
the counter Ci is decreased by 1 and the contents of all counters of the sons of
Gi are increased by 1. If Gi rewrites its nonterminal in a terminal word, then
M halts and it accepts the input word iff the whole input word has been read.
If Ci is empty and Gi has produced a nonterminal A in the last step then the
control is given to the father of Gi (G1) which continues to rewrite from the
nonterminal A (if A is not a nonterminal of G1, then M rejects the input). If Gi

has produced a communication symbol Qj for some j, then the son Gj of Gi is
required to continue to generate the input word. Now the simulation continues
recursively as described above.

Obviously, the number of reversals is bounded by 2 f(n) and the number of
zerotests is bounded by f(n) because the content of a counter Ci starts to be
decreased iff the communication symbol Qi was produced.

6

Clearly, if there are no rules A−→B, where both A and B are nonterminals,
then M works in real-time. If such rules may be used, then the simulation
works in linear time because there exists a constant d such that for each word
w ∈ L(π) there exists a derivation of w which generates in each d steps at least
one terminal symbol.

Realizing the facts that each 1-multicounter-machine can be simulated in
the same time by an off-line multitape Turing machine, and that the contents of
counters of M from Lemma 1 is in O(|w|) for any input w, we get the following
result.

Theorem 1 L(tree-PCGS) ⊆ NTIME(n)∩ NSPACE(log2 n).

Now let us consider the general simulation of PCGS by an off-line nonde-
terministic multitape Turing machines. A general PCGSm can be simulated by
an m-tape nondeterministic Turing machine with the working tapes T1, . . . , Tm

in the following way. Each tape is used to simulate the rewriting work of one
grammar. If a grammar Gi produces Qj, then the content of the tape Tj is
copied on the tape Ti and the content of the tape Tj is rewritten with Sj (the
initial nonterminal of Gj). Obviously, we cannot assume that this simulation
works in linear time. For instance, if one considers the systems of two grammars
which communicate exactly in each second (even) step and the communication
alternates (each odd communication flows from the second grammar to the first
grammar and each even communication flows from the first grammar to the sec-
ond grammar), then some produced terminals can be linear-time copied from
one tape to the other one and back. Thus, the simulation can require Ω(n2)
steps. In what follows we shall show that there is a simulation working in linear
time for dag-PCGS.

Theorem 2 L(dag-PCGS) ⊆NTIME(n).

Proof. Let π = (G1, . . . , Gm) be a dag-PCGSm. We shall describe an off-line
m-tape nondeterministic Turing machine M recognizing L(M) in linear time.

During the whole simulation M stores the actual nonterminals of all Gis
in its finite control. M uses its tapes T1, . . . , Tm to store the current words
generated by G1, . . . , Gm respectively, or Ti may contain the blank symbol B
if M has nondeterministically decided that the word curently produced by Gi

will never be included in the final word generated by the dag-PCGSm π (This
is to remove the unnecessary transfers from one tape to another one).

The simulation of π by M runs as follows. At the beginning M stores
the initial nonterminals of all grammars in its finite control (state). For each
i = 1, . . . , m M nondeterministically decides whether the next word generated
by Gi will be a part of the final word generated by π or not. If M decides
that the word generated by Gi will be a part of the final word, then M will
simulate the rewriting procedure of Gi on the tape Ti. If M decides that the

7

word generated by Gi will never be a part of the final word generated by π, then
M writes B on the tape Ti and does not simulate the next rewriting procedure
of Gi on Ti. Thus, in this case M only simulates the work of Gi in its final
control by storing the actual nonterminal. The simulation of π by M runs
synchronously, i.e. one simulation step of M consists of the simulation of one
rewriting step of all the grammars Gi on all tapes Ti. The simulation runs in
this way until no nonterminal symbol is on the first tape T1 or at least one
symbol from {Q1, . . . , Qm} appears on a tape.

If no nonterminal symbol is on T1, then the content of T1 is compared with
the content of the input tape. If these contents are identical, then M accepts
the input word.

If the actual nonterminal of Gr, r ∈ {1, . . . , m}, stored in the final control,
is Qi, i ∈ {1, . . . , m}, and both Tr and Ti do not contain B, then the content
of Ti is copied on the tape Tr (the copy is laid on Tr so that it starts on the
position containing Qi). After this M continues to simulate the work of Gr

from the nonterminal (the last symbol of the copy) and the whole content of Ti

is rewritten by one symbol Si (the initial nonterminal of Gi). Now, M again
nondeterministically decides whether the next word generated by Gi will be a
subword of the final word or not. Depending on this decision M either simulates
Gi on Ti or writes B on Ti.

If the actual nonterminal of Gr stored in the final control is Qi for some
1 ∈ {1, . . . , m} and exactly one of the tapes Tr and Ti contains B then M halts
and does not accept the input word (some of the nondeterministic decisions of
M was incorrect).

If the actual nonterminal of Gr stored in the final control is Qi for some
i ∈ {1, . . . , m}, and both tapes Tr and Ti contain B, then M does not change
the content of Tr and it nondeterministically decides whether the next word
generated by Gi will be a subword of the final word or not. Again, depending
on this decision M either simulates Gi on Ti or writes B on Ti. In the case
that several communication symbols appear simultaneously, the transfer of the
contents of the tape is made in a order such that a word ending with a symbol
from {Q1, . . . , Qm} is never transferred. Note that this is possible because the
communication structure does not contain any cycle.

Obviously, for each word w ∈ L(π) there exists a right sequence of nondeter-
ministic decisions of M which leads to the generation of w on the first working
tape T1. Since the communication structure of π does not contain any cycle,
each symbol of the word w generated by π was copied at most m−1 times from
one tape to another tape. Thus, the simulation of π by M works in linear time.

Finally, we let open the problem whether the general PCGS can be simulated
nondeterministically in linear time. Some effort in this direction has been made
in [15], [7], where some PCGS with cycles in communication structures and with
some additional restrictions are simulated nondeterministically in linear time.

8

Another interesting question is whether L(PCGS) ⊆ NLOG. If YES, then
each PCGS can be simulated deterministically in polynomial time because
NLOG⊆ P . We only know as a consequence of Theorem 1 that L(tree-PCGS)
is included in P .

4 Communication complexity hierarchies

In this section we shall use the simulation result from Lemma 1 to get some
strong hierarchies on the number of communication steps for tree-PCGS and
its subclasses. Following Lemma 1 we have that L ∈ L(tree − PCGSm(f(n)))
implies L = L(M) for a real-time nondeterministic (m − 1)-counter automaton
M with 2 f(n) reversals. Following the proof of Lemma 1 we see that M has
the following property.

(i) For any computation part D of M containing no reversal, the counters can
be divided into three sets, S1 = {the counters whose contents is never changed
in D}, S2 = {the counters whose content is increased in D}, and S3 = {the
counters whose content is decreased in D}, such that for each step of D one of
the following conditions holds:

1. either no counter changes its content in the given step, or

2. the counters from S1 do not change their contents, each counter in S2

increases its content by 1, and each counter in S3 decreases its content by
1.

So, the property (i) of D means that, for any subpart D′ of D, there exists
a constant d′ such that the volume of the change of the content of any counter
in D′ is either +d′, or −d′, or 0.

Now we will use (i) to get the folowing result.
Let L = {ai1bi1ai2bi2 . . . aikbikc| k ≥ 1, ij ∈ N for j ∈ {1, . . . , k}}.

Lemma 2 L ∈ L(c-PCGS2(n)) − ∪m∈NL(tree-PCGSm(f(n))) for any f(n) 6∈
Ω(n).

Proof. Let us first prove that L ∈ L(c-PCGS2(n)). In order to do it, it is
sufficient to consider the folowing c−PCGS2(n) π = (G1, G2), where

G1 = ({S1, S2, Q2}, {a, c}, {S1},
{S1−→aS1, S1−→aQ2, S2−→aS1, S2−→c})

G2 = ({S2}, {b}, {S2}, {S2−→bS2})

Now let us prove the fact that L 6∈ ∪m∈NL(tree-PCGSm(f(n))) for f(n) 6∈ Ω(n)
by contradiction.

Let L ∈ L(tree-PCGSm(g(n))) for some m ∈ N and some g(n) 6∈ Ω(n).
Following Lemma 1 we may assume that there is a real-time nondeterministic

9

(m − 1)-counter machine M which recognizes L with 2 g(n) reversals, and
moreover M has the property (i).

Let M have k states. To realize our proof we need to define the following
notion.

Let M read a group of k identical symbols in k steps. Clearly, there has to be
a state q which will be entered twice or more in different configurations in this
part of the computation consisting of k − 1 configurations. If two occurrences
of the state q are adjacent (no further state q and no two equal states different
from q occur in between) we say that the part of the computation from q to q is
a cycle with the state characteristic q, reading head characteristic e-the number
of symbols over which the reading head moves to the right in the cycle- and
counter characteristics e1, . . . , em, where ei ∈ [−k, k] is the difference between
the counter contents at the beginning and at the end of the cycle. The vector
(q, e, e1, . . . , em) is the characteristic vector of the cycle. If all e1, . . . , em−1 ∈
{0, h,−h} for some h ∈ {1, . . . , e} we say that the cycle is (e, h)-regular. Note
that every cycle of M laying between two reversals is a regular cycle because of
the property (i).

The fact g(n) 6∈ Ω(n) implies that for all n0, d ∈ N, there is n ≥ n0 such
that g(n) ≤ n/d. Let us take n0 = 2(k + 1)3 · 10, d = 8 · (k + 1)3, where k is
the number of states of M . Thus, there exists an n ∈ N , n ≥ n0, such that
for any x ∈ L, |x| = n, M has an accepting computation on x with at most
g(n) ≤ n/2(k + 1)3 reversals. This implies that there is a word

w = ai1bi1ai2bi2 . . . ainbinc ∈ L(π),

such that iv = d/8 for each v ∈ {1, . . . , n − 1}, d/4 ≥ in ≥ d/8, and |w| = n
(note that n · d/4 ≤ n ≤ n · d/4 + d/4).

Now, let us consider the accepting computation Cw of M on w which contains
at most n/d reversals. Since n+1 ≥ 4n/d there exists a j ∈ {1, . . . , n} such that
Cw contains no reversal in the part of the computation in which aij bij is read.
Since ij ≥ (k+1)3 there are at least (k+1)2 disjoint regular cycles appearing by
reading aij (bij). This implies that for some r, z, r′, z′ ∈ {1, . . . , k} there exists
an (r, r′)-regular cycle R of M appearing at least k times by reading aij and a
(z, z′)-regular cycle X appearing at least k times by reading bij .

Thus, the computation Cw on w may be written as

Cw = C1C0C2, C0 = P0RP1RP2 . . . Pk−1RZ0XZ1X . . . Zk−1XZk,

where C1, C0, C2 are the parts of Cw on the words ai1bi1 . . . aij−1bij−1 , aij bij ,
aij+1bij+1 . . . ainbinc respectively, and P0, . . . , Pk, Z0, . . . , Zk+1 are some parts
(may be also empty) of the computation of M on aij bij .

Now, we show that the following word

w1 = ai1bi1 . . . aij−1bij−1aij−rz′

bij+r′zaij+1bij+1 . . . ainbinc

10

is accepted by M (w1 ∈ L(M)) which is a contradiction with the fact that
w1 6∈ L. To see this we write the accepting computation Cw1

of M on w.

Cw1
= C1P0P1 . . . Pz′RPz′+1 . . . RPk−1RZ0(X)r′+1Z1XZ2 . . . Zk−1XZkC2.

Cw1
is an accepting computation on w1 because of the following facts:

(1) No counter is emptied in the part C0 of Cw and so no counter can be
emptied in the part

P0P1 . . . Pz′RPz′+1 . . . RPk−1RZ0(X)r′+1Z1XZ2 . . .XZk

of Cw1
(because of the property (i) of M).

(2) M after the computation

C1P0P1 . . . Pz′RPz′+1 . . . RPk−1RZ0(X)r′+1

on w1 is in the same configuration (the same state, the same contents of counters,
the same postfix of the input word on the input tape) as M after the computation
part

C1P0RP1R . . . RPzRPz+1 . . . RPk−1RZ0X

of Cw on w.
Obviously, the fact (2) is a direct consequence of (1) and some trivial com-

putation about the contents of counters.

Following Lemma 2 we get the following hierarchies on the communication
complexity.

Theorem 3 For any function f : N−→N, f(n) 6∈ Ω(n), and any m ∈ N,
m ≥ 2:

L(one-way-array-PCGSm(f(n))) ⊂ L(one-way-array-PCGSm(n)),

L(c-PCGSm(f(n))) ⊂ L(c-PCGSm(n)),

L(tree-PCGSm(f(n))) ⊂ L(tree-PCGSm(n)).

Besides Theorem 3, Lemma 3 claims a more important result namely that no
increase of the number of grammars and no increase of communication links in
tree communication structure (i.e. no increase of the descriptional complexity
under the tree communication structure) can compensate for the decrease of the
number of communication steps (i.e. computational complexity).

Now we shall deal with PCGS whose communication complexity is bounded
by a constant. Let

Lk = {ai1bi1ai2bi1+i2 . . . aikbi1+i2+...+ikc| ij ∈ N for j = 1, . . . , k},

for any k ∈ N.

11

Lemma 3 Lk ∈ L(c-PCGSk+1(k)) − ∪m∈NL(tree-PCGSm(k − 1)).

Proof. To generate Lk the following c-PCGSk+1(k), π = (G0, G1, . . . , Gk) can
be used.

G0 = ({S1, . . . , Sk+1, Q1, . . . , Qk}, {a}, {S1},
{Si−→aSi, Si−→aQi, Sk+1−→c| 1 ≤ i ≤ k}),

Gj = ({Sj, Sj+1}, {b}, {Sj}, {Sj−→bSj+1, Sj+1−→bSj+1}),
for all j = 1, . . . , k.

Now let us prove that Lk 6∈ L(tree-PCGSm(k − 1)) for any m ∈ N by
contradiction. Let there be a tree-PCGSm(k − 1) generating Lk.

Then there exists (following Lemma 1) a linear-time (m − 1)-counter au-
tomaton M recognizing Lk with at most 2(k − 1) reversals and k − 1 zerotests.
Moreover, M has the property (i), and each zerotest of M coincides with a
”lower” reversal of M .

Let M have s states. Choose l = (s + 1)3 and consider the word

w = a2lb2la2lb4la2lb6l . . . a2lb2klc,

that is, i1 = i2 = . . . = ik = 2l.
The word w can be decomposed as

w = alw1u1w2u2 . . . wk−1uk−1wkbklc,

where wi = albil and ui = bilal. As we can have at most 2(k−1) reversals, there
exists i ∈ {1, . . . , k} such that no reversal occurs when reading the subword wi

or ui.
As in the proof of Lemma 2 we see that we can find constants r, z, r′, z′ ∈

{1, . . . , s} such that we can replace wi (respectively ui) by w′
i = al−rz′

bil+r′z

(u′
i = bil−rz′

al+r′z, respectively) obtaining

w′ = alw1u1 . . . w′
iui . . . wkbklc,

w′′ = alw1u1 . . . wiu
′
i . . . wkbklc, respectively,

and M still recognizes the word obtained in this way. This further implies
that w′ (respectively w′′) belongs to the language Lk - a contradiction with the
definition of Lk.

Theorem 4 For any positive integer k and any X ∈ {c, tree, one-way array}
we have

L(X-PCGSk+1(k − 1)) ⊂ L(X-PCGSk+1(k)) and

∪m∈NL(X-PCGSm(k − 1)) ⊂ ∪m∈NL(X-PCGSm(k)).

An open problem is to prove hierarchies for more complicated communication
structures. Some results in this direction have been recently established in [7].

12

5 Pumping lemmas and infinite hierarchies

In this section descriptional complexity measures of PCGS are investigated. For
PCGS with communication structures tree and dag, strong hierarchies on the
number of grammars are proved. To obtain them, some pumping lemmas as
lower bound proof techniques are established. In the case of PCGS with com-
munication structures arrays and rings, no such pumping lemmas are known.
However, the infinity of the hierarchies of such PCGS on the number of gram-
mars is obtained as a consequence of the following stronger result. There exist
languages that can be generated by two-way array-PCGS, two-way ring-PCGS
and one-way ring-PCGS but cannot be generated by any PCGS of smaller de-
gree, regardless of the complexity of its communication graph. This also shows
that in some cases the increase in the descriptional complexity (the number of
grammars the PCGS consists of) cannot be compensated by any increase in the
complexity of the communication graph.

Before entering the proof of the pumping lemmas, an ordering of the vertices
in a directed acyclic graph is needed.

Proposition 1 Let G = (X, Γ) be a dag, where X is the set of vertices and
Γ the set of arcs. We can construct a function f : X −→ N such that for all
x, y ∈ X we have:

f(x) ≥ f(y) implies that there is no path from y to x in the graph π.

Proof. The function defined by:
”f(x) is the length of the longest path in G starting in node x”
satisfies the requested condition.

The classical proof of the pumping lemma for regular languages is based on
finding, along a sufficiently long derivation, of two ”similar” sentential forms.
”Similar” means that the two sentential forms contain the same nonterminal,
fact that allows us to iterate the subderivation between them arbitrarily many
times.

We will use an analogous procedure for dag-PCGS. The difference will be
that, due to the communications we need a stronger notion of ”similarity”.
The first request will obviously be that the correspondent components of the
two ”similar” configurations contain the same nonterminal. Moreover, we will
require that, in case communications are involved, also the terminal strings are
identical.

Definition 4 Let c1 = (x1A1, . . . , xnAn) and c2 = (y1B1, . . . , ynBn) be two
configurations where xi, yi are terminal strings and Ai, Bi are nonterminals or
λ, for 1 ≤ i ≤ n.

The configurations are called equivalent, and we write c1 ≡ c2 if Ai = Bi for
each i, 1 ≤ i ≤ n.

13

Clearly, ≡ is an equivalence relation.
Let us consider a derivation according to π, D : c=⇒∗c1=⇒∗c2=⇒∗c′, where

c1 and c2 are defined as in the previous definition.

Definition 5 The configurations c1 and c2 are called D-similar iff

(i) c1 and c2 are equivalent,

(ii) if a communication symbol Qi, 1 ≤ i ≤ n, is used in the derivation D
between c1 and c2, then xi = yi.

We are now in position to prove the pumping lemma for dag-PCGS. For the
sake of clarity, the proof is splitted in two parts. The first result claims that
in any sufficiently long derivation according to a dag-PCGS we can find two
”similar” configurations.

Lemma 4 Let π be a dag-PCGS. There exists a constant q ∈ N such that in any
derivation D according to π whose length is at least q, there are two D-similar
configurations.

Proof. Let π = (G1, G2, . . . , Gn) be a dag-PCGS, where Gi = (VN,i, Σ, Si, Pi).
Denote by A the number of equivalence classes of the equivalence relation

≡. Clearly,

A =

n
∏

i=1

(|VN,i| + 1).

Denote further by p the maximum number of productions that exists in any of
the grammars.

Define recursively

M1 = A,

Mj+1 = A ·
∏j

k=1 rk
j + Mj ,

where, for each j, rk
j , 0 < k < j, are defined as:

r1
j = (p + 1)Mj ,

rk+1
j = (p + 1 +

∑k

s=1 rs
j)

Mj ,

Claim. For each j, 1 ≤ j ≤ n, in any derivation D of length Mj , where less
than j communication symbols are used, there are two D-similar configurations.

The claim will be proved by induction on j.
If j = 1 then no communication symbols are used in the derivation D. The

length of D is M1 = A and therefore it contains A + 1 configurations. The
number of equivalence classes of ≡ is A, so the pigeon-hole principle says that

14

there are two equivalent configurations in D. Obviously they are D-similar as
well, because no communication symbols appear during D.

j 7→ j +1. Consider a derivation D of length Mj+1 where at most j different
communication symbols are used. If it contains a subderivation of length Mj,
where less than j different communication symbols are used, we are through.

Otherwise, all the subderivations of length Mj from D contain all j different
communication symbols used in D. Let us denote by D′ the subderivation of D
which starts after the first Mj steps of D.

The derivation D′ contains A ·
∏j

j=1 rk
j + 1 configurations. More than

∏j

k=1 rk
j of them must be in the same equivalence class of ≡.

Let us order the j communication symbols used in D, according to the values
of the function f (see Proposition 1) of the corresponding grammars. Thus, the
communication symbols used during the derivation D are Qij

, Qij−1
, . . . , Qi1

where f(Gij
) ≥ f(Gij−1

) ≥ . . . ≥ f(Gi1). The nearest occurrence of Qi1 pre-
ceding any configuration of D′ must appear in one of the Mj predecessor config-
urations. As f(Gi1) is the minimum value among f(Gij

), . . . , f(Gi1), it results
that Gi1 does not ask for strings from any other grammar during D. Therefore
in a single derivation step performed during D′, Gi1 can either use one of its
p productions or remain unchanged. Consequently, there may exist at most
(p + 1)Mj different i1-components in configurations appearing in D′. Define
r1
j = (p + 1)Mj . It follows that there exist at most r1

j different i1-components
in configurations of D′.

Assume now that there are respectively rk−1
j , . . . , r1

j different possibilities for
the components in positions ik−1, . . . , i1 of any configuration of D′. Consider
now the component in the position ik. The nearest occurrence of Qik

preceding
any configuration of D′ appears in one of the Mj predecessor configurations.
After the communication step demanded by Qik

the grammar Gik
returns to the

axiom. In a single derivation step, Gik
may either use one of its p productions, or

remain unchanged, or communicate with one of Gij
, j < k. Indeed, recall that

Gik
can ask only for strings generated by grammars Gr with f(Gik

) > f(Gr).
Consequently, for the ik-component we have

rk
j = (p + 1 +

k−1
∑

l=1

rl
j)

Mj

different possibilities in any configuration appearing in D′.
Counting the possibilities for all the components corresponding to Qij

, . . . ,

Qi1 , one gets
∏j

k=1 rk
j different possibilities. This means that we have at most

∏j

k=1 rk
j configurations along D′ which differ by at least one component whose

corresponding communication symbol has been used in the derivation D′. As
along D′ there are more than

∏j

k=1 rk
j equivalent configurations, an application

of the pigeon-hole principle tells that we can find two D′-similar configurations.
Let us return to the proof of the lemma.

15

From the claim it follows that in any derivation D according to π of length
at least Mn, there are two D-similar configurations. Indeed, the maximum
number of communication symbols that can occur in any derivation is n − 1:
the communication symbols of grammars which have the in-degree zero do not
occur. On the other hand such a node with in-degree zero always exists in a
dag.

Taking now q = Mn, the lemma is proved.

The following pumping lemma shows that any sufficiently long word gener-
ated by a dag-PCGS can be decomposed such that, by simultaneously pumping
a number of its subwords, we obtain words that still belong to the language.
Due to the dag structure of the communication graph which allows a string
to be read by more than one grammar (a vertex can have more fathers), the
number of the pumped subwords can be arbitrarily large. However, the number
of distinct pumped subwords is bounded by the degree of the dag-PCGS.

Lemma 5 (Pumping lemma for dag-PCGS) Let L be a language generated
by a dag-PCGS of degree n > 1. There exists a natural number N such that
every word α ∈ L whose length is at least N can be decomposed as

α = α1β1 . . . αmβmαm+1,

where βi 6= λ for every i, 1 ≤ i ≤ m, and 1 ≤card{β1, . . . , βm} ≤ n. Moreover,
for all s ≥ 0 the word

α1β
s
1 . . . αmβs

mαm+1

belongs to L.

Proof. Let π = (G1, . . . , Gn) be a dag-PCGS like in the preceding lemma. De-
note by z the maximum length of the right sides of all productions.

Claim. The length of any component of a configuration produced by π starting
from the axiom in k derivation steps is at most z · 2k−1.

The claim will be proved by induction on k.
If k = 1 then the claim obviously holds as π can produce in one step only

words of length at most z.
k 7→ k+1. Let us consider a derivation according to π which starts from the

axiom and has k + 1 steps. In the (k + 1)th step, the length of any component
α is:

|α| ≤ |α′| + max{z, |α′|} ≤ 2 · |α′| = z · 2k.

where |α′| denotes the maximum length of any component of a configuration
that can be obtained after k derivation steps, starting from the axiom. The
proof of the claim is complete.

16

If we choose now N = z · 2q−1, where q is the number defined in Lemma 4
and a word α whose length is greater than N , then a minimal derivation D of
α contains at least q steps.

According to the Lemma 4, during this derivation occur at least two D-
similar configurations c1 and c2 as shown below:

(S1, S2, . . . , Sn) =⇒∗ c1 = (x1A1, x2A2, . . . , xnAn)
=⇒∗ c2 = (x1z1A1, x2z2A2, . . . , xnznAn)
=⇒∗ (α,).

If all the strings xizi which occur in c2 and become later subwords of α have
the property zi = λ then D is not minimal. Indeed, if this would be the case,
the subderivation between c1 and c2 could be eliminated – a contradiction with
the minimality of D.

Consequently, there exist i1, . . . , ik ∈ {1, . . . , n}, such that

α = α1xi1zi1α2xi2zi2 . . . αkxik
zik

αk+1

zij
6= λ, 1 ≤ j ≤ k, and xij

zij
, 1 ≤ j ≤ k, are exactly the terminal strings that

have appeared in the components with the corresponding index of c2. Observe
that we do not necessarily have ij 6= ip for j 6= p, 1 ≤ j, p ≤ k. Indeed,
because of possible communications, the same string xij

zij
originating from the

ij-component of c2 can appear several times in α.
By iterating the subderivation between the two D-similar configurations c1

and c2 s times, for an arbitrary s, we obtain a valid derivation for

α(s) = α1xi1z
s
i1

α2xi2z
s
i2

. . . αkxik
zs

ik
αk+1.

The word α(s) therefore belongs to L for all natural numbers s > 0. The
derivation between c1 and c2 can also be omitted and therefore also α(0) belongs
to L.

Note that we do not give an upper bound for k. This follows from the fact
that in a dag a vertex can have more fathers. Consequently, a component xizi

can be read by more than one grammar and thus appear more than once in α.
However, the number of different words zij

is at most n. Indeed when iterating
the subderivation c1=⇒

∗c2, we can only pump the zi’s already existing in some
components of c2, that is, at most n different ones. As explained before, because
of the communications steps that occur after c2, some of the words zs

i can appear
several times in α(s).

An analogous pumping lemma can be obtained for tree-PCGS, but in this
case the number of pumped positions is bounded by the number of grammars
of the tree-PCGS.

17

Lemma 6 (Pumping lemma for tree-PCGS)Let L be a language generated
by a tree-PCGS. There exists a natural number N such that every word α ∈ L
whose length is greater than N can be decomposed as

α = α1β1 . . . αmβmαm+1,

where 1 ≤ m ≤ n, βi 6= λ for every i, 1 ≤ i ≤ m, and the word

α1β
s
1 . . . αmβs

mαm+1

belongs to L for all s ≥ 0.

Proof. Similar to the one of the preceding pumping lemma. The only difference
is that in a tree no vertex can have more than one father. Consequently, a word
zi cannot be read by more grammars at the same time, which implies that no
word zs

i can appear twice in α as a result of a communication. The word zs
i

can appear twice in α only if, by some coincidence, zi = zj for some indices
i 6= j, i, j ≤ n. We conclude that in the case of trees we can pump on at most
n positions.

As a consequence of Lemma 5, we can obtain a language that can be gen-
erated by a tree-PCGS but cannot be generated by any dag-PCGS of smaller
degree.

Theorem 5 For all n > 1, L(tree-PCGSn) − L(dag-PCGSn−1) 6= ∅.

Proof. Consider the language

Ln = {ak+1
1 ak+2

2 . . . ak+n
n | k ≥ 0}.

The language Ln can be generated by the tree PCGS π = (G1, . . . , Gn), where

Gi = (VN,i, Σ, Si, Pi),
Σ = {a1, . . . , an},

VN,1 = {Si| 1 ≤ i ≤ n} ∪ {Qi| 2 ≤ i ≤ n},
VN,i = {Si}, 2 ≤ i ≤ n,

P1 = {S1−→a1S1, Sn−→an} ∪ {Si−→aiQi+1| 1 ≤ i ≤ n − 1},
Pi = {Si−→aiSi}, 2 ≤ i ≤ n,

and therefore Ln ∈ L(tree − PCGSn).
However, Ln cannot generated by any dag-PCGS of degree n− 1 or smaller.

Assume the contrary and let N be the number defined in Lemma 5. Consider
the word

α = aN+1
1 aN+2

2 . . . aN+n
n .

Following Lemma 5, the words α(s) obtained from α by pumping at most n− 1
different subwords of it belong to Ln. First, note that the only words that

18

can be pumped are necessarily of the form ak
i , 1 ≤ i ≤ n. By pumping only

n − 1 of them, the exponent of the letter which is not pumped will remain
bounded, whereas the exponents of the pumped ones will grow arbitrarily large.
This contradicts the form of the words in Ln. Consequently, the language Ln

belongs to L(tree−PCGSn)−L(dag−PCGSn−1) which is therefore nonempty.

The following infinite hierarchies are obtained as consequences of the pre-
ceding result.

Corollary 1 For all n > 1, L(dag-PCGSn) − L(dag-PCGSn−1) 6= ∅.

Corollary 2 The hierarchy {L(dag-PCGSn)}n≥1 is infinite.

Corollary 3 For all n > 1, L(tree-PCGSn) − L(tree-PCGSn−1) 6= ∅.

Corollary 4 The hierarchy {L(tree-PCGSn)}n≥1 is infinite.

In the remaining part of this section we will consider some PCGS with
communication structures for which no pumping lemmas are known, namely
two-way array, two-way ring and one-way ring-PCGS. The following theorem
provides a language that can be generated by a two-way array-PCGS but cannot
be generated by any PCGS of smaller degree. This shows that in some cases
the increase in descriptional complexity cannot be compensated by an increase
in the complexity of the communication structure.

Theorem 6 For all m ≥ 1,

L(two-way array-PCGSm+1) − L(two-way array-PCGSm) 6= ∅.

Proof. Let L be the language

L = {an
1an

2 . . . an
2m| n ≥ 1}.

We shall prove first that L can be generated by a two-way array-PCGS consisting
of m + 1 grammars. Indeed, let π = (G1, . . . , Gm+1) where the communication

19

graph is a two-way linear array and Gi = (VN,i, Σ, Si, Pi), 1 ≤ i ≤ m + 1,

Σ = {a1, a2, . . . , a2m},
VN,1 = {S1, Q2, Z, Z ′} ∪ {Xk

2 | 1 ≤ k ≤ 2m},
VN,j = {Sj , Qj−1, Qj+1, Yj} ∪ {Xk

j | 1 ≤ k ≤ 2m}
∪{Xk

j+1| j ≤ k ≤ 2m − j + 1}, for 2 ≤ j ≤ m,
VN,m+1 = {Sm+1, Qm, Z, Ym+1} ∪ {Xk

m+1| 1 ≤ k ≤ 2m},
P1 = {S1−→a1Q2, X

1
2−→a2X

2
2 , S1−→a1a2 . . . a2mZ ′}

∪{Z−→Z ′, Z ′−→λ} ∪ {Xk
2−→Xk+1

2 | 2 ≤ k < 2m},
Pj = {Sj−→X1

j , Sj−→a2j−1Qj+1, Sj−→Qj−1, Sj−→Yj , Yj−→Yj}

∪{Xk
j −→Xk+1

j | 1 ≤ k < j − 1} ∪ {Xj
j+1−→a2jX

j+1
j+1}

∪{Xk
j+1−→Xk+1

j+1 | j + 1 ≤ k ≤ 2m − j}

∪{Xk
j −→Xk+1

j | 2m − j + 1 < k ≤ 2m − 1}
∪{X2m

j −→X1
j , X2m

j −→a2j−2a2j−1Qj+1},
for all j, 2 ≤ j ≤ m,

Pm+1 = {Sm+1−→X1
m+1, Sm+1−→Qm, Sm+1−→Ym+1, Ym+1−→Ym+1,

X2m
m+1−→X1

m+1, X
2m
m+1−→a2mZ}

∪{Xk
m+1−→Xk+1

m+1| 1 ≤ k < 2m, k 6= m}.

For proving that L ⊆ L(π) we shall show that, for every n, the word
an
1an

2 . . . an
2m can be generated by π.

Claim. For all n ∈ N there exists a derivation

D : (S1, S2, S3, . . . , Sm+1)=⇒
∗(a1Q2, a

n
1an

2X1
2 , an

3an
4X1

3 , . . . , an
2m−1a

n
2mX1

m+1)

according to π.

The claim will be proved by induction on n. For n = 0, we can construct
the derivation

(

S1, S2, . . . , Sm+1)−→(a1Q2, X
1
2 , . . . , X1

m+1

)

.

Let us suppose now that there exists a derivation D

(S1, S2, . . . , Sm+1)=⇒∗
(

a1Q2, a
n
1an

2X1
2 , . . . , an

2m−1a
n
2mX1

m+1

)

.

We shall construct a valid derivation D′ for the configuration

(

a1Q2, a
n+1
1 an+1

2 X1
2 , . . . , an+1

2m−1a
n+1
2m X1

m+1

)

.

The idea of the construction is the following. We shall add a subderivation
to the derivation D, such that every component, except the first one, will have in
the end the exponent increased by one. The increasing of the exponent implies
the catenation of one letter to the left side of the terminal word, and one to
the right. This wouldn’t be possible in an ordinary regular grammar, where

20

the letters are only added to one end. Using the communication, letters can
be added here to both ends of the terminal word of some component. This is
done first by communicating the word to the left component. Together with the
communication symbol, a letter is produced, that means it is catenated to the
left end of the word. Afterwards, working in this auxiliary component another
letter is produced, that means it is catenated to the right. Finally, (after the
change has been made in all components) the new word is communicated back
to the original component where it belonged.

This procedure can be applied in a chain, from left to right, using the fact
that we have one grammar for which we do not need to change the word, that
is we have an auxiliary place. After all the needed letters are produced, the
new strings are in components situated to the left of their original ones. Then,
beginning with the m’th component, the strings are moved one position to the
right, and the requested configuration is obtained. Special attention has to be
paid to the components in the ”waiting status”, because the changing of the
string is only done for one component at a time. Therefore, until the turn of a
particular component to be communicated comes, only renamings are performed
in it, the upper index of the nonterminals Xk

j , 1 ≤ j ≤ m + 1, 1 ≤ k ≤ 2m + 1
counting the ”waiting” steps.

The derivation D′ has therefore the following form:

(

a1Q2, . . . , a
n
2j−3a

n
2j−2X

1
j , an

2j−1a
n
2jX

1
j+1, . . . , a

n
2m−1a

n
2mX1

m+1

)

⇓
j − 1 rewriting steps and
j − 1 communication steps

(

an+1
1 an+1

2 Xj
2 , . . . , a2j−1Qj+1, a

n
2j−1a

n
2jX

j
j+1, . . . , a

n
2m−1a

n
2mXj

m+1

)

⇓ communication step

(an+1
1 an+1

2 Xj
2 , . . . , an+1

2j−1a
n
2jX

j
j+1, Sj+1, . . . , a

n
2m−1a

n
2mXj

m+1)

⇓ rewriting step

(an+1
1 an+1

2 Xj+1
2 , . . . , an+1

2j−1a
n+1
2j Xj+1

j+1 , a2j+1Qj+2, . . . , a
n
2m−1a

n
2mXj+1

m+1)

⇓∗
m − j communication steps and
m − j − 1 rewriting steps

(an+1
1 an+1

2 Xm
2 , . . . , an+1

2j−1a
n+1
2j Xm

j+1, a
n+1
2j+1a

n+1
2j+2X

m
j+2, . . . , Sm+1)

⇓ rewriting step

(an+1
1 an+1

2 Xm+1
2 , . . . , an+1

2j−1a
n+1
2j Xm+1

j+1 , an+1
2j+1a

n+1
2j+2X

m+1
j+2 , . . . , Qm)

⇓∗
m communication steps and
m − 1 rewriting steps

(S1, . . . , a
n+1
2j−3a

n+1
2j−2X

2m
j , an+1

2j−1a
n+1
2j X2m

j+1, . . . , a
n+1
2m−1a

n+1
2m X2m

m+1)

21

⇓ rewriting step

(a1Q2, . . . , a
n+1
2j−3a

n+1
2j−2X

1
j , an+1

2j−1a
n+1
2j X1

j+1, . . . , a
n+1
2m−1a

n+1
2m X1

m+1).

We have found a derivation according to π for the configuration requested
by the induction step, therefore the claim is proved.

The membership of the word an
1an

2 . . . an
2m in L(π) for every n ≥ 1 follows

now from the claim. Indeed, we replace the last step of the derivation D (in
which a new round is started) with a subderivation which plays the role of
collecting all the strings in the first component, in the correct order.

(S1, S2, . . . , Sm+1)=⇒∗ (S1, a
n
1an

2X2m
2 , an

3an
4X2m

3 , . . . , an
2m−1a

n
2mX2m

m+1)
=⇒ (a1Q2, a

n
1an+1

2 a3Q3, a
n
3an+1

4 a5Q4, . . . , a
n
2m−1a

n+1
2m Z)

=⇒∗ (an+1
1 an+1

2 . . . an+1
2m−1a

n+1
2m Z, S2, . . . , Sm+1)

=⇒ (an+1
1 an+1

2 . . . an+1
2m−1a

n+1
2m Z ′, Y2, . . . , Ym+1)

=⇒ (an+1
1 an+1

2 . . . an+1
2m−1a

n+1
2m , Y2, . . . , Ym+1)

The converse inclusion follows because, except the alternative of stoping the
derivation, the use of other productions than the ones we have actually applied
leads to the blocking of the derivation (either by introducing nonterminals that
cannot be rewritten or by introducing circular communication requests). This
implies that the only words that can be generated by the PCGS π are the ones
of the form an

1an
2 . . . an

2m.
We have therefore proved that L(π) = L, which shows that L belongs to

L(two-way array− PCGSm+1).
It has been proved in [14] that the language L cannot be generated by any

PCGS with m grammars, regardless of the shape of its communication graph.
Consequently, we have showed a stronger result than the one stated in the

theorem. For all m > 1 there exists a language that can be generated by a
two-way array PCGS of degree m + 1 but cannot be generated by any PCGS of
smaller degree.

Corollary 5 The hierarchy {L(two-way array-PCGSn)}n≥1 is infinite.

Corollary 6 The hierarchy {L(two-way ring-PCGSn)}n≥1 is infinite.

Proof. A two-way array is a two-way ring where one of the arcs is deleted.
Consequently the preceding theorem holds also for two-way rings.

The language used in the proof of Theorem 6 can be used to show that the
hierarchy of one-way ring-PCGS, relative to the number of the grammars in the
PCGS, is infinite. When constructing the one-way ring-PCGS which generates
the language, special care has to be payed to synchronization problems.

22

Theorem 7 For all m ≥ 1,

L(one-way ring-PCGSm+1) − L(one-way ring-PCGSm) 6= ∅.

Proof. Consider the language L from the proof of Theorem 6. We shall show
in the following that L can be generated by a one-way ring-PCGS π of degree
m + 1, where the sense of the arrows in the ring is clock-wise and

π = (G1, G2, . . . , Gm+1),
Gi = (VN,i, Σ, Si, Pi), 1 ≤ i ≤ m + 1,
Σ = {a1, a2, . . . , a2m},

VN,1 = {S1, A1, Q2, Z, Z ′} ∪ {Xk
2 | 1 ≤ k ≤ m + 1}∪

{Bk
2 | 2 ≤ k ≤ m + 1} ∪ {Y k

i | 2 ≤ i ≤ m + 1, 1 ≤ k ≤ m2},
VN,j = {Sj , Aj , Qj+1} ∪ {Xk

j | 1 ≤ k ≤ j} ∪ {Bk
j | 1 ≤ k ≤ j}∪

{Xk
j+1| j ≤ k ≤ m + 1} ∪ {Bk

j+1| j + 1 ≤ k ≤ m}∪
{Y k

i | 2 ≤ i ≤ m + 1, 1 ≤ k ≤ m2}, 2 ≤ j ≤ m
VN,m+1 = {Sm+1, C, C′, Z, Q1} ∪ {Xk

m+1| 1 ≤ k ≤ m}∪
{Bk

m+1| 1 ≤ k ≤ m} ∪ {Y k
i | 2 ≤ i ≤ m + 1, 1 ≤ k ≤ m2},

P1 = {S1−→a1A1, A1−→Q2, X
1
2−→a2B

2
2 , B2

2−→X2
2}∪

{Xk
2−→Bk+1

2 , Bk+1
2 −→Xk+1

2 | 2 ≤ k ≤ m}∪
{Xm+1

2 −→Y 1
2 } ∪ {Y k

i −→Y k+1
i | 1 ≤ k < m2, 2 ≤ i ≤ m + 1}∪

{S1−→Q2, Z−→Z ′, Z ′−→λ},
Pj = {Sj−→B1

j , B1
j−→X1

j } ∪ {Sj−→a2j−1Aj , Aj−→Qj+1}∪

{Xk
j −→Bk+1

j , Bk+1
j −→Xk+1

j | 1 ≤ k < j − 1}∪

{Xj
j+1−→a2jB

j+1
j+1 , Bj+1

j+1−→Xj+1
j+1}∪

{Xk
j+1−→Bk

j+1, B
k
j+1−→Xk+1

j+1 | j < k ≤ m}∪

{Xm+1
j+1 −→Y 1

j+1} ∪ {Y k
i −→Y k+1

i | 1 ≤ k < m2, 2 ≤ i ≤ m + 1}∪

{Sj−→Qj+1} ∪ {Y m2

j −→B1
j } ∪ {Y m2

j −→Qj+1}, 2 ≤ j ≤ m,
Pm+1 = {Sm+1−→B1

m+1, B
1
m+1−→X1

m+1}∪
{Xk

m+1−→Bk+1
m+1, B

k+1
m+1−→Xk+1

m+1| 1 ≤ k < m}∪
{Sm+1−→C, C−→C′, C′−→Q1} ∪ {Sm+1−→Q1}∪
{Y k

i −→Y k+1
i | 1 ≤ k < m2, 2 ≤ i ≤ m + 1}∪

{Y m2

m+1−→B1
m+1, Y

m2

m+1−→Z}.

The proof of the fact that L = L(π) is similar to that of Theorem 6. We
shall omit the proof and explain instead in an informal way how the one-way
ring-PCGS works.

The main idea is that each grammar Gj+1, 0 < j < m, has to produce a
sentential form an

2j−1a
n
2jD for any n, where D is an arbitrary nonterminal. In

order to increase the exponent of a2j , a rule of Pj+1 can be used. In order
to increase the exponent of a2j−1, the sentential form is communicated to the
left grammar, i.e. Gj , and a rule of Pj produces the necessary a2j−1. The
communication to the left is always possible because the communication graph
is a one-way ring where we considered the sense of the arrows to be clock-wise.

23

Two problems occur in performing the above described operation. The first
one appeared already in the two-way array. It refers to the fact that the changing
of the strings a2j−1a2j is done successively, not simultaneously. This means
that the components in the ”waiting status” have to perform only renamings.
In order to preserve the synchronization of the exponents, the upper indices of
the nonterminals Bk

j and Xk
j will count the steps. This helps also to prevent

communications to occur at undesirable moments: only components with certain
upper indices can be rewritten in the neighbour grammars. The lower indices
of the nonterminals refer to the indices of the corresponding grammar. Notice
that in any grammar Gj , only nonterminals X and B with lower index j or j+1
can be rewritten.

The second problem refers to the fact that after an increase of the exponent
n in an

2j−1a
n
2jD has been accomplished for all j, the sentential forms are all in

the wrong position. More explicitely, they are shifted one position to the left.
In order to be able to repeat the process, the sentential forms have to return
to their old positions. This cannot be accomplished by a shift to the right,
because the ring is one-way. Therefore we have to rotate all components m
positions to the left in order to obtain the changing of the position of one of
the components to the right. In this moment the nonterminals Y k

i enter the
stage. The most important thing about them is the upper index which counts
the number of steps. Their upper index can be updated in any grammar, as
long as it is smaller than m2. They can be changed into B1

j only after all the
components have reached their correct places, that is, m rotations for each of
the m grammars have been performed. The upper index takes care of the fact
that no undesired rule is applied. Indeed, if this would happen, then Y would
reach its grammar with wrong index, and the derivation would be blocked.

In the end of the derivation, we want to collect all the strings in the grammar
G1. This is done by simultaneously producing communication symbols in all
the grammars. This will, in turn, trigger a chain-communication whose effect
will be the catenation of the strings an

2j−1a
n
2j in the correct order into G1.

The above explanations show that L = L(π). In [14] it has been proved
that L cannot be generated by a PCGS with m components, regardless of the
shape of its communication graph. Consequently, for any m > 1 we have found
a language L that can be generated by a one-way ring-PCGS with m + 1 com-
ponents, but cannot be generated by any PCGS of smaller order. This result
implies the relation requested by the theorem.

Corollary 7 The hierarchy {L(one-way ring-PCGSn)}n≥1 is infinite.

The study of hierarchies on the number of grammars for PCGS with other
communication structures (planar graphs, hypercubes, etc) remains open.

24

References

[1] K.Culik, J.Gruska, A.Salomaa. Systolic trellis automata. International Jour-
nal of Computer Mathematics 15 and 16(1984).

[2] P.Duris, J.Hromkovic: Zerotesting bounded multicounter machines. Kyber-
netika 23(1987), No.1, 13-18.

[3] S.Ginsburg: Algebraic and Automata-Theoretic Properties of Formal Lan-
guages. North-Holland Publ.Comp., Amsterdam 1975.

[4] C.A.R.Hoare. Communicating sequential processes. Comm. ACM 21 vol. 8
(1978).

[5] J.Hromkovic: Hierarchy of reversal bounded one-way multicounter ma-
chines. Kybernetica 22(1986), No.2, 200-206.

[6] J.Kari. Decision problems concerning cellular automata. University of
Turku, PhD Thesis (1990).

[7] D.Pardubska. The communication hierarchies of parallel communicating sys-
tems. Proceedings of IMYCS’92, to appear.

[8] Gh.Paun. On the power of synchronization in parallel communicating gram-
mar systems. Stud. Cerc. Matem. 41 vol.3 (1989).

[9] Gh.Paun. Parallel communicating grammar systems: the context-free case.
Found. Control Engineering 14 vol.1 (1989).

[10] Gh.Paun. On the syntactic complexity of parallel communicating grammar
systems. Kybernetika, 28(1992), 155-166.

[11] Gh.Paun, L.Santean. Further remarks on parallel communicating grammar
systems. International Journal of Computer Mathematics 35 (1990).

[12] Gh.Paun, L.Santean. Parallel communicating grammar systems: the regu-
lar case. Ann. Univ. Buc. Ser. Mat.-Inform. 37 vol.2 (1989).

[13] A.Salomaa. Formal Languages. Academic Press New York London (1973).

[14] L.Santean, J.Kari:The impact of the number of cooperating grammars on
the generative power, Theoretical Computer Science, 98, 2(1992), 249-263.

[15] D.Wierzchula: Systeme von parallellen Grammatiken (in German).
Diploma thesis, Dept. of Mathematics and Computer Science, University
of Paderborn, 1991.

25

