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Abstract

How do cells and nature “compute”? They read and “rewrite” DNA
all the time, by processes that modify sequences at the DNA or RNA level.
In 1994, Adleman’s elegant solution to a seven-city Directed Hamiltonian
Path problem using DNA [1] launched the new field of DNA computing,
which in a few years has grown to international scope. However, unknown
to this field, ciliated protozoans of genus Ozytricha and Stylonychia had
solved a potentially harder problem using DNA several million years ear-
lier. The solution to this “problem”, which occurs during the process of
gene unscrambling, represents one of nature’s ingenious solutions to the
problem of the creation of genes. Here we develop a model for the guided
homologous recombinations that take place during gene rearrangement
and prove that such a model has the computational power of a Turing
machine, the accepted formal model of computation. This indicates that,
in principle, these unicellular organisms may have the capacity to perform
at least any computation carried out by an electronic computer.

1 Gene unscrambling as computation

Ciliates are a diverse group of 8000 or more unicellular eukaryotes (nucleated
cells) named for their wisp-like covering of cilia. They possess two types of
nuclei: an active macronucleus (soma) and a functionally inert micronucleus
(germline) which contributes only to sexual reproduction. The somatically ac-
tive macronucleus forms from the germline micronucleus after sexual reproduc-
tion, during the course of development. The genomic copies of some protein-
coding genes in the micronucleus of hypotrichous ciliates are obscured by the
presence of intervening non-protein-coding DNA sequence elements (internally
eliminated sequences, or IESs). These must be removed before the assembly
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Figure 1: DNA hybridization in a molecular computer. PCR primers are
indicated by arrows

of a functional copy of the gene in the somatic macronucleus. Furthermore,
the protein-coding DNA segments (macronuclear destined sequences, or MDS’s)
in species of Ozytricha and Stylonychia are sometimes present in a permuted
order relative to their final position in the macronuclear copy. For example,
in 0. nowva, the micronuclear copy of three genes (Actin I, a-telomere binding
protein, and DNA polymerase «) must be reordered and intervening DNA se-
quences removed in order to construct functional macronuclear genes. Most
impressively, the gene encoding DNA polymerase o (DNA pol «) in O. trifellaz
is apparently scrambled in 50 or more pieces in its germline nucleus [10]. Des-
tined to unscramble its micronuclear genes by putting the pieces together again,
0. trifallaz routinely solves a potentially complicated computational problem
when rewriting its genomic sequences to form the macronuclear copies.

This process of unscrambling bears a remarkable resemblance to the DNA
algorithm Adleman (1994) used to solve a seven-city instance of the Directed
Hamiltonian Path problem. Adleman’s algorithm involves the use of edge-
encoding sequences as splints to connect city-encoding sequences, allowing the
formation of all possible paths through the graph (Figure 1). Afterwards, a
screening process eliminates the paths that are not Hamiltonian, i.e. ones which
either skip a city, enter a city twice, or do not start and end in the correct origin
and final destinations.

The developing ciliate macronuclear “computer” (Figures 2-3) apparently
relies on the information contained in short direct repeat sequences to act as
minimal guides in a series of homologous recombination events. These guide-
sequences provide the splints analogous to the edges in Adleman’s graph, and
the process of recombination results in linking the protein-encoding segments
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Figure 2: Overview of gene unscrambling. Dispersed coding MDSs 1-7
reassemble during macronuclear development to form the functional gene copy
(top), complete with telomere addition to mark and protect both ends of the
gene.

(MDSs, or “cities”) that belong next to each other in the final protein coding
sequence (“Hamiltonian path”). As such, the unscrambling of sequences that
encode DNA polymerase a accomplishes an astounding feat of cellular computa-
tion, especially as 50-city Hamiltonian path problems are sometimes considered
hard problems in computer science and present a formidable challenge to a
biological computer. Other structural components of the ciliate chromatin pre-
sumably play a significant role, but the exact details of the mechanism are still
unknown.

2 The path towards unscrambling

Typical IES excision in ciliates involves the removal of short (14 - 600bp) A-T
rich sequences flanked by direct repeats of 2 to 14 bp. IESs are often released as
circular DNA molecules [21]. The choice of which sequences to remove appears
to be minimally “guided” by recombination between direct repeats of only 2 to
14 base pairs.

Unscrambling is a particular type of IES removal in which the order of the
MDSs in the micronucleus is often radically different from that in the macronu-
cleus. For example, in the micronuclear genome of Ozytricha nova, the MDSs
of a-telomere binding protein (a-TP) are arranged in the cryptic order 1-3-5-
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Figure 3: A ciliate computer? Correct gene assembly in Stylonychia (inset)
requires the joining of many segments of DNA guided by short sequence repeats,
only at the ends. Telomeres, indicated by thicker lines, mark the termini of
correctly assembled gene-sized chromosomes. Note the similarities in principle
to DNA computations that specifically rely on pairing of short repeats at the
ends of DNA fragments, as in Adleman’s experiment.



Figure 4: Model for unscrambling in o-TP (adapted from [15])

7-9-11-2-4-6-8-10-12-13-14 relative to their position in the “clear” macronuclear
sequence 1-2-3-4-5-6-7-8-9-10-11-12-13-14. This particular arrangement predicts
a spiral mechanism in the path of unscrambling which links odd and even seg-
ments in order (Figure 4; [15]).

Homologous recombination between identical short sequences at appropri-
ate MDS-IES junctions is implicated in the mechanism of gene unscrambling,
as it could simultaneously remove the IESs and reorder the MDSs. For ex-
ample, the DNA sequence present at the junction between MDS n and the
downstream IES is generally the same as the sequence between MDS n+1 and
its upstream IES, leading to correct ligation of MDS n to MDS n+1, over a
distance. However the presence of such short repeats (average length 4 bp be-
tween non-scrambled MDSs, 9 bp between scrambled MDSs [18]) implies that
although these guides are necessary, they are certainly not sufficient to guide
accurate splicing. Hence 1t is likely that the repeats satisfy more of a structural
requirement for MDS splicing, and less of a role in substrate recognition. Oth-
erwise, incorrectly spliced sequences (the results of promiscuous recombination)
would dominate, especially in the case of very small (2-4 bp) repeats present
thousands of times throughout the genome. This incorrect hybridization could
be a driving force in the production of newly scrambled patterns in evolution.
However during macronuclear development only unscrambled molecules which
contain 5 and 3’ telomere addition sequences would be selectively retained in
the macronucleus, ensuring that most promiscuously ordered genes would be
lost.



0. nove inverzion

MDE8 24 22 20 1% 16 14 12 10 B ﬁ‘l-l 0—-

] 11 [ I T O N WU B S W 1

¢ EZTIE 6T LT ST ETTT & & S E 4

d
tnversion

. rifalloy

i an

MDE 20 27 25 23 21 19 17 151311 QTSL A—

| 1 LI T T I T I B B N | Frrer et
2

0f 82902 FE E¥ O BT OT PIEZT OT O F £ o»y £

Figure 5: Model for unscrambling of DNA pol «. Vertical lines indicate
recombination junctions between scrambled MDSs, guided by direct repeats.
MDS 10 in O.nova can also give rise to three new MDSs (13-15) in O.trifallaz,
one scrambled on the inverted strand, by two spontaneous intramolecular re-
combination events (2’s) in the folded orientation shown. 0.nove MDS 6 can
give rise to O.trifallaz MDSs 7-9 (MDS 8, shaded, is only 6 bp and was not
identified in [10]). O.trifellaz non-scrambled MDSs 2 and 3 could be generated
by the insertion of an IES in O/nove MDS 2 (similar to a model suggested by
M.Dubois in [10]).

3 Inversions as catalysts of DN A rearrangements

The gene encoding DNA polymerase « is broken into at least 44 MDSs in 0.
nove and 51 in 0. trifallaz, scrambled in a nonrandom order with an inversion
in the middle, and some MDSs located at least several kilo-bases (kb) away
from the main gene (in an unmapped PCR fragment). The resulting hairpin
structural model predicted in Figure 5 could equip the ciliate with a dramatic
shortcut to finding the correct solution to its DNA polymerase o unscrambling
problem.

Figures 5-6 outline a model for the origin and accumulation of scrambled
MDSs. The appearance of an inversion is likely to encourage the formation of
new MDSs in a nonrandomly scrambled pattern. By Muller’s Ratchet, an inver-
sion makes the addition of new MDSs much more likely, given that the hairpin
structure, which juxtaposes coding and noncoding DNA sequences, would pro-
mote recombination, possibly between short arbitrary repeats. For example,
the arrangement of MDSs 2, 6, and 10 in 0. nova could have given rise to the
arrangement of eight new MDSs in O. trifallaz (Figure 5).

We have recently discovered scrambling in the gene encoding DNA poly-
merase « in the micronucleus of a different ciliate, Stylonychia lemnae, which
enjoys the benefit of a working transformation system [22]. The scrambled
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Figure 6: Proposed model for the origin of a scrambled gene. Left: birth
of a scrambled gene from a non-scrambled gene by a double recombination with
an IES or any noncoding DNA (new MDS order 1-3-2 with an inversion between
MDSs 3 and 2). Middle: generation of a scrambled gene with a non-random
MDS order, from a non-scrambled gene with an inversion between two MDSs.
Right: creation of new scrambled MDSs in a scrambled gene containing an inver-
sion. Inversions may dramatically increase the production of scrambled MDSs,
by stabilizing the folded conformation that allows reciprocal recombinations
across the inversion.

gene in S. lemnae shares the presence of an inversion with the two Ozytricha
species. These scrambled genes in ciliates thus offer a unique system in which
to study the origin of a complex genetic mechanism and the role of inversions as
catalysts of acrobatic DNA rearrangements during evolution (Figure 6). DNA
polymerase «’s complex scrambling pattern is possibly the best analog equiva-
lent of a hard path finding problem in nature. Alternate splicing at the RNA
level, as well as other forms of programmed DNA rearrangements, could also
be viewed as solutions to path finding problems in nature. Dynamic processes,
such as maturation of the immune response, provide examples of genuine evo-
lutionary computation in cells, whereas the path finding problems here may
follow a more deterministic algorithm. Current effort is directed toward under-
standing how cells unscramble DNA, how this process has arisen, and how the
“programs” are written and executed. Do they decode the message by following
the shortest unscrambling path or by following a more circuitous but equally
effective route, as in the case of RNA editing ([12])? Also, how error prone
is the unscrambling process? Does it actually search through several plausible
unscrambled intermediates or follow a strictly deterministic pathway?



4 The formal model

Before introducing the formal model, we summarize our notation. An alphabet
¥ is a finite, nonempty set. In our case ¥ = {A,C, G, T}. A sequence of letters
from ¥ is called a string (word) over ¥ and in our interpretation corresponds to
a linear strand. The words are denoted by lowercase letters such as u, v, a;, 2;;.
The length of a word w is denoted by |w| and represents the total number of
occurrences of letters in the word. A word with 0 letters in it is called an empty
word and is denoted by A. The set of all possible words consisting of letters
from ¥ is denoted by ¥*, and the set of all nonempty words by ©*. We also
define circular words over ¥ by declaring two words to be equivalent if and only
if (iff) one is a cyclic permutation of the other. In other words, w is equivalent
to w' iff they can be decomposed as w = uv and w' = vu, respectively. Such a
circular word ew refers to any of the circular permutations of the letters in w.
Denote by X® the set of all circular words over X.

With this notation, we define intramolecular recombination using set theo-
retical notation as:

{uzwav}={uzv, owz}

where u,w, r, and v are words in ¥*, and z, the junction sequence that guides
unscrambling, is nonempty.

Thus the defined operation models the process of intramolecular recombi-
nation. After = finds its second occurrence in uzwazv, the molecule undergoes
a strand exchange in x that leads to the formation of two new molecules: uzv
and a circular DNA molecule ewz.

Intramolecular recombination also accomplishes the deletion of either se-
quence wz or xw from the original molecule uzwzv. The fact that ewx is
circular implies that we can use any circular permutation of its sequence as an
input for a subsequent operation.

In this model, the effects of intramolecular recombination can be reversed.
Note that the operation in the forward direction is formally intramolecular re-
combination, whereas the operation in the reverse direction is intermolecular
recombination. The intermolecular recombination

{uzv, ewr }={uzwav}

also accomplishes the insertion of the sequence wz or zw in the linear string
uxv.

The above operations resemble the “splicing operation” introduced by Head
in [7] and “circular splicing” ([8], [20], [17]). [16], [3] and subsequently [23]
showed that these models have the computational power of a universal Turing
machine. (See [9] for a review.)

The process of gene unscrambling entails a series of successive or possibly
simultaneous intra- and inter-molecular homologous recombinations. This is fol-
lowed by excision of all sequences 75y7., where the sequence y is marked by the



presence of telomere addition sequences 7, for telomere “start” (at its 5’ end),
and 7. for telomere “end” (at its 3" end). Thus from a long sequence ursyrev,
this step retains only 7,y7. in the macronucleus. Lastly, the enzyme telom-
erase extends the length of the telomeric sequences (usually double-stranded
TTTTGGGG,, repeats in these organisms) from 7, and 7. to protect the ends
of the DNA molecule.

We now make the assumption that, by a clever structural alignment, such as
the one depicted in Figure 4, or other biological factors, the cell decides which se-
quences are non-protein-coding (IESs) and which are ultimately protein-coding
(MDSs), as well as which sequences = guide homologous recombination. More-
over, such biological shortcuts are presumably essential to bring into proxim-
ity the guiding sequences x. Each of the n MDSs, denoted primarily by «;,
1 < ¢ < n is flanked by the guiding sequences x;_; ; and z; ;11. Each guiding
sequence points to the MDS that should precede or follow «; in the final se-
quence. The only exceptions are «y, which is preceded by 74, and «, which is
followed by 7, in the input string or micronuclear molecule. Note that although
present generally once in the final macronuclear copy, each x; ;41 occurs at least
twice in the micronuclear copy — once after «; and once before a;4.

We denote by € an internal sequence that is deleted; e, does not occur
in the final sequence. Thus, since unscrambling leaves one copy of each x; ;41
between «; and «;41, an IES is nondeterministically either exx; ;41 or ;-1 ;€r,
depending on which guiding sequence x; ;41 is eliminated. Similarly an MDS is
technically either a;x;41 or x;_1 ;a;. For this model, either choice is equivalent.

Removal of nonscrambled TESs in Euplotes crassus actually leaves extra se-
quences (including a duplication of z;;) at the junctions between e;’s in the
resulting non-protein-coding products. This may result when the z;;’s are as
short as two nucleotides [11]. It is unknown whether unscrambling also intro-
duces extra sequences, since it uses considerably longer x;;’s on average. How-
ever, since the extra sequences have always been found at junctions between
€x’s, this would not affect our unscrambling model.

The following example models unscrambling of a micronuclear gene that
contains MDSs in the scrambled order 2-4-1-3:

{U T12 G2 T23 €1 X34 (g Te €2 Tg (X1 X12 €3 T23 (X3 T34 v}:>
{U T12 €3 T23 (43 T34 UV, OQ2 T23 €] T34 Qg Te €2 T 01 T2 } =
{U T12 €3 T23 (X3 T34 U, @€ T34 Qg Te €2 Tg O] T12 (2 51?23}:>

{U T12 €3 T23 €1 X34 (g Te €2 Tg (V1 T12 (N2 T23 (X3 X34 v}:>
{U T12 €3 T23 €1 T34 UV, OQ4q Te €2 Tg (V] T12 (2 T23 (3 51?34} =
{U T12 €3 T23 €] T34 UV, OTg Q1 T2 (2 T23 (g T34 (g Te 62}:>

{Ts Q1 r12 (2 T23 (Vg T34 (V4 Te , €2, U X312 €3 T23 €1 T34 U}



Note that the process is nondeterministic in that, for example, one could
start by replacing the first step, between homologous sequences x12, by recom-
bination between the homologous sequences x34 instead, obtaining the same
result in the same number of steps.

Once the cell has “decided” which are the a;’s, x;;41’s and ¢;’s, the process
that follows is simply sorting, requiring a linear number of steps (possibly fewer
than n if some of the recombination events take place simultaneously). Part of
this “decision” process entails finding the correct “path” linking the pieces of
protein-coding regions in the correct order, with the occurrence of a;x; ;41 and
T; i+10441 1n the micronuclear sequence providing the link between «; and a4
in the macronuclear sequence. The junction sequences x; ;41 thus serve the role
of the “edge” sequences in Adleman’s graph.

A computational difficulty is the presence of multiple copies of the sequences
z; i+1 which may direct the formation of incorrect “paths”. Indeed, throughout
the genome, such simple sequences may be present in extreme redundancy. Some
of the x; ;41 even overlap with each other. For example, in the O.trifallaz gene
encoding DNA polymerase «, 224 25 = GAGAGATAGA contains 21 o= AGATA
as a subsequence. The search for the proper junction sequences thus amounts
to finding the correct “path” and is potentially the most costly part of the
computation. Production of incorrect paths will not necessarily lead to the
production of incorrect proteins unless the path sequences start and end with
the correct telomere addition sites (7, and 7.), since these ensure survival of
the genes in the macronucleus. Analogous to the PCR primers in Adleman’s
experiment, the role of telomeres here is thus to preserve those strands that
start and end with the correct origin and final destinations.

5 Computational power of gene rearrangement

In this section we define the notion of a guided recombination system that mod-
els the process taking place during gene rearrangement, and prove that such
systems have the computational power of a Turing machine, the most widely
used theoretical model of electronic computers.

The following strand operations generalize the intra- and intermolecular re-
combinations defined in the preceding section by assuming that homologous
recombination is influenced by the presence of certain contexts, i.e., either the
presence of an IES or an MDS flanking a junction sequence z;;. The observed de-
pendence on the old macronuclear sequence for correct IES removal in Parame-
cium suggests that this is the case ([14]). This restriction captures the fact
that the guide sequences do not contain all the information for accurate splicing
during gene unscrambling.

We define the contexts that restrict the use of recombinations by a splicing
scheme, [7], [8], a pair (¥, ~) where ¥ is the alphabet and ~, the pairing relation
of the scheme, is a binary relation between triplets of nonempty words satisfying
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the following condition: If (p,x,q) ~ (p',y,¢') then = y.

In the splicing scheme (X, ~) pairs (p,z,q) ~ (p',z,¢") now define the con-
texts necessary for a recombination between the repeats x. Then we define
contertual intramolecular recombination as

{urwrv}={urv,ewz}, where u = u'p,w = qu' = w"p',v = ¢'v'.

This constrains intramolecular recombination within uzwzv to occur only if
the restrictions of the splicing scheme concerning x are fulfilled, i.e., the first
occurrence of x is preceded by p and followed by ¢ and its second occurrence is
preceded by p' and followed by ¢'.

Similarly, if (p,z,q) ~ (p',x,¢"), then we define contextual intermolecular
recombination as

{urv, ewzr}={uzwav} where u = u'p,v = qv',w = w'p’ = ¢'w".

Informally, intermolecular recombination between the linear strand uxv and the
circular strand ewx may take place only if the occurrence of x in the linear strand
is flanked by p and ¢ and its occurrence in the circular strand is flanked by p’
and ¢'. Note that sequences p, x, ¢, p', ¢’ are nonempty, and that both contextual
intra- and intermolecular recombinations are reversible by introducing pairs
(pyz,q") ~ (p,z,q) in ~.

The operations defined in the preceding section are particular cases of con-
textual recombinations, where all the contexts are empty, i.e, (A, 2, A) ~ (A, 2, \)
for all x € 7. This would correspond to the case where recombination may
occur between every repeat sequence, regardless of the contexts.

If we use the classical notion of a set, we can assume that the strings entering
a recombination are available for multiple operations. Similarly, there would be
no restriction on the number of copies of each strand produced by recombination.
However, we can also assume some strings are only available in a limited number
of copies. Mathematically this translates into using multisets, where one keeps
track of the number of copies of a string at each moment. In the style of [6], if N
is the set of natural numbers, a multiset of ¥* is a mapping M : ¥* — NU{oo},
where, for a word w € ¥*, M(w) represents the number of occurrences of w.
Here, M(w) = oo means that there are unboundedly many copies of the string
w. The set supp(M) = {w € ¥*| M(w) # 0}, the support of M, consists of the
strings that are present at least once in the multiset M.

We now define a guided recombination system that captures the series of
dispersed homologous recombination events that take place during these gene
rearrangements in ciliates.

Definition A guided recombination system is a quadruple R = (X, ~, A) where
(3, ~) is a splicing scheme, and A € 7 is a linear string called the aziom.
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A guided recombination system R defines a derivation relation that produces
a new multiset from a given multiset of linear and circular strands, as follows.
Starting from a “collection” (multiset) of strings with a certain number of avail-
able copies of each string, the next multiset is derived from the first one by an
intra- or inter-molecular recombination between existing strings. The strands
participating in the recombination are “consumed” (their multiplicity decreases
by 1) whereas the products of the recombination are added to the multiset (their
multiplicity increases by 1).

For two multisets S and S’ in ¥* UX*, we say that S derives S’ and we write
S=-rS’, iff one of the following two cases hold:

(1) there exist « € supp(S), 3, v € supp(S’) such that

~{a}={03, ev} according to an intramolecular recombination step in R,

- Sa) = S(a)— 1, S'(3) = S(3) + 1, S'(a7) = S(e7) + 1

(2) there exist o', 3" € supp(9), v' € supp(S’) such that

—{a', 03" }=-{~'} according to an intermolecular recombination step in R,

_S'(a’) = S(a') — 1, S'(e) = S(ef) — 1, §'(+") = S() + 1.

Those strands which, by repeated recombinations with initial and interme-
diate strands eventually produce the axiom, form the language of the guided
recombination system. Formally,

LER) = {w € ©*| {w}=%S and A € supp(S)},

where the the multiplicity of w equals k. Note that LX¥(R) C LX1(R) for any
k>1.

In a Turing machine (TM), a read/write head scans an infinite tape com-
posed of discrete “squares”, one square at a time. The read/write head com-
municates with a control mechanism under which it can read the symbol in the
current square or replace it by another. The read/write head is also able to
move on the tape, one square at a time, to the right and to the left (note the
analogy to the action of RNA or DNA polymerase). The set of words which
make a Turing machine finally halt is considered its language.

Formally, [19], a rewriting system TM = (S, X U {#}, P) is called a Turing
machine iff:

(i) S and X U {#} (with # € ¥ and ¥ # ) are two disjoint alphabets
referred to as the state and the tape alphabets.

(ii) Elements sy and sy of S, and B of ¥ are the initial and final state, and
the blank symbol, respectively. Also a subset T of ¥ is specified and referred to
as the terminal alphabet. It is assumed that T is not empty.

12



(iii) The productions (rewriting rules) of P are of the forms

—

TN TN TN TN TN TN TN
e N N N N N N’

sja — s;b  (overprint)

sjac — asjc (move right)

sjaf# — as;B# (move right and extend workspace)
csia — sjeca  (move left)

#s;a — #s;Ba (move left and extend workspace)
6) spa — sy

7) asy — sy

where s; and s; are in S, s; # sy, s; # sy, and a,b, ¢ are in 3. For each
pair (s;,a), where s; and a are in the appropriate ranges, P either contains no
productions (2) and (3) (resp.(4) and (5)) or else contains both (3) and (2) for
every ¢ (resp.contains both (5) and (4) for every ¢). There is no pair (s;, a) such
that the word s;a is a subword of the left side in two productions of the forms
(1), (3), (5).

A configuration of the TM 1is of the form #wjs;ws#, where wyws represents
the contents of the tape, #s are the boundary markers, and the position of the
state symbol s; indicates the position of the read/write head on the tape: if s;
is positioned at the left of a letter a, this indicates that the read/write head
is placed over the cell containing a. The TM changes from one configuration
to another according to its rules. For example, if the current configuration is
#Hws;aw'# and the TM has the rule s;,a — s;b, this means that the read/write
head positioned over the letter a will write b over it, and change its state from
si to s;. The next configuration in the derivation will be thus #ws;bw'#.

The Turing machine TM halts with a word w iff there exists a derivation
that, when started with the read/write head positioned at the beginning of w
eventually reaches the final state, 1.e. if #sow# derives #sy# by succesive ap-
plications of the rewriting rules (1) - (7) The language L(TM) accepted by T M
consists of all words over the terminal alphabet T for which the T M halts. Note
that T'M is determanistic: at each step of the rewriting process, the application
of at most one production is possible.

Theorem. Let L be a language over T accepted by a Turing machine TM =
(S, S U{#},P) as above. Then there exist an alphabet X', a sequence m € X',
depending on L, and a recombination system R such that ¢ word w over T 1s

in L if and only if #5sow#57 belongs to LX(R) for some k > 1.

Proof. Consider that the rules of P are ordered in an arbitrary fashion and
numbered. Thus, if TM has m rules, a rule is of the form ¢ : u; — v; where
1< <m.

We construct a guided recombination system R = (X', ~, A) and a sequence
7 € ¥ with the required properties. The alphabet is &' = SUZU{#}U{$;| 0 <
i < m+ 1}. The axiom, i.e., the target string to be achieved at the end of the

13



computation, consists of the final state of the TM bounded by markers:
A= #n+23f #n—|—2$0$1 v $m$m—|—17

where n is the maximum length of the left-side or right-side words of any of the
rules of the Turing machine.

The sequence 7 consists of the catenation of the right-hand sides of the TM
rules bounded by markers, as follows:

=9 $1€101f1$1 $2€202f2$2 - $m€mvmfm$m $m+17

where ¢ 1 u; — v;, 1 <@ <m 41 are the rules of TM and ¢;,v; € T U {#}.

If a word w € T is accepted by the TM, a computation starts then from
a strand of the form #" T 2sqw# ™ 27, where we will refer to the subsequence
starting with $o as the “program”, and to the subsequence at the left of $, as
the “data”.

We construct the relation ~ so that

(i) The right-hand sides of rules of TM can be excised from the program as
circular strands which then interact with the data.

(i) When the left-hand side of a TM rule appears in the data, the application
of the rule can be simulated by the insertion of the circular strand encoding the
right-hand side, followed by the deletion of the left hand side.

To accomplish (7), for each rule ¢ : v — v of the TM, we introduce in ~
the pairs

(C) ($i1,8ievf) ~ (evf,$i,8it1),

for all e, f € © U {#}.
To accomplish (7i) for each rule i : u — v of the TM, add to the relation ~
the pairs
(A) (ceu, f,d) ~ ($;ev, f,$;ev),

(B) (c,e,uf$i) ~ (ufbie vfd),
for all c € {#}*E*, d € S{#}*, |e|=|d| =n, e, f € SU{#}.

Following the above construction of the alphabet ¥', sequence 7 and recom-
bination system R, for any z,y € X' we can simulate a derivation step of the

TM as follows:
{weeufdy$o ... $i 180 $:8is1 .. Smpt )=
{weeufdy$o ... $io18:8ir1 ... Smyr, 08icvf}=r
{weeuf$iev fdySo ... $i-18:%is1 .. Smit )= r
{weevfdySo ... $i18:8it1 .- Sma1, oSicuf).

The first step is an intramolecular recombination using contexts (C') around
the repeat $; to excise e$,evf. Note that if the current strand does not con-
tain a subword $;ev f$;, this can be obtained from another copy of the original
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linear strand, which is initially present in k copies. The second step is an inter-
molecular recombination using contexts (A) around the repeat f, to insert $;ev f
after ceuf. The third step is an intramolecular recombination using contexts
(B) around the direct repeat e to delete $;euf from the linear strand. Thus,
the “legal” insertion/deletion succession that simulates one TM derivation step
claims that any v in the data, that is surrounded by at least n + 1 letters on
both sides may be replaced by v. This explains why in our choice of axiom we
needed n + 1 extra symbols # to provide the contexts allowing recombinations
to simulate all TM rules, including (3) and (5).

From the fact that a TM derivation step can be simulated by recombination
steps we deduce that, if the TM accepts a word w, then we can start a derivation
in R from

#n+280w#n+2ﬂ' = #"+230w#"+2$0$1 . $i€ﬂ)i Z$Z . $m$m—|—1

and reach the axiom by only using recombinations according to R. This means
that our word is accepted by R, that is, it belongs to L¥(R) for some k. Note
that if some rules of the TM have not been used in the derivation then they
can be excised in the end, and that k& should be large enough so that we do not
exhaust the set of rewriting rules.

For the converse implication, it suffices to prove that starting from the strand
Hnt2s0w# 21 no other recombinations except those that excise rules of TM
from the program and those that simulate steps of the TM in the data are
possible in R.

In the beginning of the derivation we start with no circular strands and k
copies of the linear strand

HF250wH" 20 L Sieivi fi$i . S, w € T,

where ¢ : u; — v; are TM rules, ¢;, f; € SU{#}, 1 < <m.
Assume now that the current multiset contains linear strands of the form
dom, where g € X'* contains only one state symbol and no $; symbols and

T = $0T1T2 Ce Tm$m-|—1,

with r; either encoding the right-hand side of a rule or being the remnant of
a rule, i.e., r; € {$;e;0:f:%:} U {$;}, 1 < i < m. Moreover, assume that the
circular strands present in the multiset are of the form e$;¢e;v; f;, with e;, v;, f;
as before.

Then:

(i) We cannot use (A) or (B) to insert or delete in the program because
that would require the presence of strands ceufd or $;evf$;ev (if we want to
use (A)) or ceuf$; or uf$;evfd (if we want to use (B)). However none of these
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strands can appear in the program. Indeed, the 1st, 3rd, and 4th word all
contain subwords over ¥ U {#} of length at least n 4 3, and this is more than
the length of the longest subword over ¥ U {#} present in the program. The
2nd word cannot appear in the program because no marker $; appears alone in
p, as p contains always at least two consecutive markers.

(1) We cannot use (C') to insert or delete in the data because that would
require the presence in ¢y of two consecutive markers $;,_1%; or $;$,11, which
contradicts our assumptions.

(ii1) We cannot use (C') to insert in the program because that would require
the presence of a circular strand with two markers, - contradiction with our
assumptions.

Arguments (u) - (1) show that the only possible recombinations are either
deletions in the program using (C'), which result in the release of circular strands
e$,ev f, or insertions/deletions in the data using (A) and (B).

Assuming that the data contains as a subword the left-hand side of a TM
rule ¢ : v — v, and assuming that the necessary circular strand e$;evf has
already been excised from the program, the next step is to show that the only
possible insertions/deletions in the data are those simulating a rewriting step of
TM using rule z.

Indeed, in this situation,

(1) It is not possible to delete in 6y using (A), or insert or delete using (B),
as all these operations would require a $; in 6y. Therefore only an insertion
in 6g using (A) is possible. An insertion according to (A) may only take place
between a sequence ceu f and a sequence d, where u contains a state symbol, i.e.
the read/write head, ¢ and d have length n and e and f are letters. This means
that, for the insertion to take place, the linear word has to be of the form

o9 ™ = xceufdy w

and the intermolecular recombination with the circular strand e$;evf inserts
$;evf between u and f producing the linear strand

oy ™ = zceuf$ievfdy w.

Note that, as §y contains only one state symbol and no marker $;, the newly
formed word é; contains only two state symbols (read/write heads), one in u
and one in v, and only one marker $;. (Here we use the fact that every rule
u — v of the TM has exactly one state symbol on each side.)

(2) Starting now from 6q 7,

(2a) We can delete in 6 using (B) and, as there is only one $; in 61, there is
only one position where the deletion can happen. After the release of the strand
o$;cuf as a circular strand, the linear strand produced is

09 m = xcevfdy .
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(2b) No insertion in 6 using (A) may take place, as the marker $; “breaks”
the contexts necessary for further insertions.

Indeed, the occurrence of another insertion according to (A) requires that
the read/write head symbol be both followed and preceded by at least (n + 1)
letters different from $;. In 61, the first read /write head is in v and the number
of letters following it is at most |u|—14|f| < n—1+1 = n, which is not enough
as a right context for insertion using (A). The second read/write head is in v
and the number of letters preceding it is at most |e| + [v]| =1 < 14+n—1=n,
which is not enough as a left context for insertion using (A).

(2¢) No deletion in 61 using (A) may occur, as this would require the presence
of a repeat f bordered by a $;ev on each side. This would imply that the current
strand 67 contains two markers $;, which is not true.

(2d) No insertion in 6; using (B) is possible, as that would require the
presence of a circular strand containing $;evfd. The length of such a strand
would be at least 1+ |e| + |v]| + |f| + |d| that is, at least n + 4, which is more
than the length of any initial or intermediate circular strand. Indeed, all the
circular strands produced from the program have length n + 3 and the only
circular strands that are released are, as seen in (2a), of the form e$,euf and
thus also have lengths at most n + 3.

The arguments above imply that the only possible operations on the data
simulate legal rewritings of the TM by tandem recombination steps that neces-
sarily follow each other.

Together with the arguments that the only operations affecting the program
are excisions of circular strands encoding TM rules, and that the circular TM
rules do not interact with each other, this proves the converse implication.

From the definition of the Turing machine we see that n, the maximum
length of a word occurring in a TM rule, equals 4, which completes the proof of
the theorem.

a

The preceding theorem implies that if a word w € T* is in L(TM), then
#550w#5 T belongs to L¥(R) for some k and therefore it belongs to L:(R) for
any ¢ > k. This means that, in order to simulate a computation of the Turing
machine on w, any sufficiently large number of copies of the initial strand will
do. The assumption that sufficiently many copies of the input strand are present
at the beginning of the computation is in accordance with the fact that there are
multiple copies of each strand available during the (polytene chromosome) stage
where unscrambling occurs. Note that the preceding result is valid even if we
allow interactions between circular strands or within a circular strand, formally
defined in [13] as circular contextual intra- and intermolecular recombinations.

The proof that a guided recombination system can simulate the computation
of a Turing machine suggests that the micronuclear gene, present in multiple
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copies, consists of a sequence encoding the input data, combined with a se-
quence encoding a program, i.e., a list of encoded computation instructions.
The “computation instructions” can be excised from the micronuclear gene and
become circular “rules” that can recombine with the data. The process con-
tinues then by multiple intermolecular recombination steps involving the linear
strand and circular “rules”, as well as intramolecular recombinations within the
linear strand itself. The resulting linear strand, which is the functional macronu-
clear copy of the gene, can then be viewed as the output of the computation
performed on the input data following the computation instructions excised as
circular strands.

The last step, telomere addition and the excision of the strands between
the telomere addition sites, can easily be added to our model as a final step
consisting of the deletion of all the markers, rule delimiters and remaining rules
from the output of the computation. This would result in a strand that contains
only the output of the computation (macronuclear copy of the gene) flanked by
end markers (telomere repeats).

In conclusion, we have developed a model for the acrobatic process of gene
unscrambling in hypotrichous ciliates. While the model is consistent with our
limited knowledge of this biological process, it needs to be rigorously tested
using molecular genetics. We have shown, however, that the model is capable
of universal computation. This both hints at future avenues for exploring bio-
logical computation and opens our eyes to the range of complex behaviors that
may be possible in ciliates, and potentially available to other evolving genetic
systems.
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