
DNA Computing: Foundations and Implications ∗

Lila Kari Shinnosuke Seki Petr Sośık

1 Introduction

DNA computing is an area of natural computing based on the idea that molecu-
lar biology processes can be used to perform arithmetic and logic operations on
information encoded as DNA strands. The aim of this review is two-fold. First,
we introduce the fundamentals of DNA computing, including basics of DNA
structure and bio-operations, and two historically important DNA computing
experiments. Secondly, we describe some of the ways in which DNA computing
research has impacted fields in theoretical computer science.

The first part of this review outlines basic molecular biology notions neces-
sary for understanding DNA computing (Section 2), recounts the first experi-
mental demonstration of DNA computing (Section 3), as well as the milestone
wet laboratory experiment that first demonstrated the potential of DNA com-
puting to outperform the computational ability of an unaided human (Section
4).

The second part of the review describes how the properties of DNA-based
information, and in particular the Watson-Crick complementarity of DNA sin-
gle strands, have influenced areas of theoretical computer science such as formal
language theory, coding theory, automata theory and combinatorics on words.
More precisely, Section 5 summarizes notions and results in formal language
theory and coding theory arising from the problem of design of optimal en-
codings for DNA computing experiments: Section 5.1 describes the problem
of DNA encodings design, Section 5.2 consists of an analysis of intramolecular
bonds (bonds within a given DNA strand), Section 5.3 defines and characterizes
languages that avoid certain undesirable intermolecular bonds (bonds between
two or more DNA strands), and Section 5.4 investigates languages whose words
avoid even imperfect bindings between their constituent strands.

Section 6 contains another, vectorial, representation of DNA strands and
two computational models based on this representation: sticker systems and
Watson-Crick automata. After a brief description of the representation of DNA
partial double strands as two-line vectors, and of the sticking operation that
combines them, Section 6.1 describes basic sticker systems, sticker systems

∗This work was supported by The Natural Sciences and Engineering Council of Canada

Discovery Grant and Canada Research Chair Award to L.K.

1

with complex structures (Section 6.1.1), and observable sticker systems (Sec-
tion 6.1.2). Section 6.2 investigates the accepting counterpart of the generative
sticker systems devices: Watson-Crick automata and their properties.

Section 7 describes the influence that properties of DNA-based informa-
tion have had on research in combinatorics on words, by enumerating sev-
eral natural generalizations of classical concepts of combinatorics of words:
pseudo-palindromes, pseudo-periodicity, Watson-Crick conjugate and commu-
tative words, involutively bordered words, pseudoknot bordered words. In ad-
dition, this section outlines natural extensions in this context of two of the most
fundamental results in combinatorics of words, namely Fine and Wilf’s theorem
and Lyndon-Schützenberger result.

Section 8 presents general thoughts on DNA-based information, bioinforma-
tion and biocomputation.

2 A Computer Scientist’s Guide to DNA

In this section we give a brief description of the basic molecular biology notions
of DNA structure and DNA-based bio-operations used in DNA computing. For
further details, the reader is referred to [107], [35, 12, 49, 78].

A DNA (deoxyribonucleic acid) molecule is a linear polymer. The
monomer units of DNA are nucleotides (abbreviated nt), and the polymer is
known as a “polynucleotide.” There are four different kinds of nucleotides
found in DNA, each consisting of a nitrogenous base (Adenine, A, Cytosine,
C, Guanine, G, or Thymine, T), and a sugar-phosphate unit. The abbrevia-
tion N stands for any nucleotide. The bases are relatively flat molecules and
can be divided into purine bases (adenine and guanine) that have two carbon-
containing rings in their structure, and smaller pyrimidine bases (cytosine and
thymine) that have one carbon-containing ring in their structure.

A sugar-phosphate unit consists of a deoxyribose sugar and one to three
phosphate groups. Together, the base and the sugar comprise a nucleoside.
The sugar-phosphate units are linked together by strong covalent bonds to form
the backbone of the DNA single strand (ssDNA). A DNA strand consisting of
n nucleotides is sometimes called an n-mer. An oligonucleotide is a short DNA
single strand, with twenty or fewer nucleotides. Since nucleotides may differ
only by their bases, a DNA strand can be viewed as simply a word over the
four-letter alphabet {A, C, G, T}.

A DNA single strand has an orientation, with one end known as the 5’ end,
and the other end known as the 3’ end, based on their chemical properties. By
convention, a word over the DNA alphabet represents the corresponding DNA
single strand in the 5’ to 3’ orientation, that is, the word ACGTCGACTAC
stands for the DNA single strand 5’-ACGTCGACTAC-3’. A crucial feature of
DNA single strands is their Watson-Crick (WK) complementarity: A (a purine)
is complementary to T (a pyrimidine), and G (a purine) is complementary
to C (a pyrimidine). Two complementary DNA single strands with opposite
orientation bind to each other by weak hydrogen bonds between their individual

2

bases as follows: A binds with T through two hydrogen bonds, while G binds
with C through three hydrogen bonds. Thus, two Watson-Crick complementary
single strands form a stable DNA double strand (dsDNA) resembling a helical
ladder, with the two backbones at the outside, and the bases paired by hydrogen
bonding and stacked on each other, on the inside. For example, the DNA
single strand 5’-ACGTCGACTAC- 3’ will bind to the DNA single strand 5’-
GTAGTCGACGT-3’ to form the 11 base-pair long (abbreviated as 11bp) double
strand

5′ − ACGTCGACTAC − 3′

3′ − TGCAGCTGATG − 5′
.

Figure 1 schematically illustrates this DNA double strand, omitting the dou-
ble helix structure, for clarity. If v denotes a DNA single strand over the alpha-
bet {A, C, G, T}, then by −→v we will denote its Watson-Crick complement.

Another molecule that can be used for computation is RNA, ribonucleic
acid. RNA is similar to DNA, but differs from it in three main aspects: RNA is
usually single-stranded while DNA is usually double-stranded, RNA nucleotides
contain the sugar ribose, while DNA nucleotides contain the sugar deoxyribose,
and in RNA the base Uracil, U , substitutes for thymine, T , which is present in
DNA.

The genome of an organism is the totality of its genetic information encoded
in DNA. It consists of chromosomes, which, in turn, consist of genes. A gene is a
segment of DNA that holds the information encoding a coherent set of functions
necessary to build and maintain cells, and pass genetic traits to offspring. A
gene comprises coding subsequences (exons) that determine what the gene does,
and non-coding subsequences (introns). When a gene is active, the coding and
non-coding sequences are copied in a process called transcription, producing an
RNA copy of the gene’s information. This piece of RNA can then direct the
translation of the catenation of the coding sequences of this gene into proteins
via the genetic code. The genetic code maps each 3-letter RNA segment (called
codon) into an amino acid. Several designated triplets, the start codon (AUG),
and the stop (UAA, UAG, UGA) codons, signal the initiation, respectively the
termination of a translation. There are twenty different standard amino acids.
Some of them are encoded by one codon, while others are encoded by several
“synonymous” codons. A protein is a sequence over the 20-letter alphabet of
amino acids. Proteins are essential parts of organisms and participate in every
process within cells having, e.g., catalytical, structural or mechanical functions.

To encode, for example, English text using DNA, one can choose an encoding
scheme mapping the Latin alphabet onto strings over {A, C, G, T}, and proceed
to synthesize the obtained information-encoding strings as DNA single strands.
In a hypothetical example, one could encode the letters of the English alphabet
as A → ACA, B → ACCA, C → ACCCA, D → AC4A, etc., wherein the
ith letter of the alphabet is represented by ACiA, i.e., a single strand of DNA
consisting of i repetitions of C flanked by one A at the beginning and another
A at the end. Under this encoding, the text “To be or not to be” becomes the

3

3’

A

T

C

G C

G

A

T C

G C

G A

T G A T C

C
T A

G

3’

5’

(b)

(c)

(a)

(d)

5’

Figure 1: DNA structure: (a) DNA’s sugar-phosphate backbone, (b) DNA
bases, (c) Watson-Crick complementarity between bases A and T of two DNA
single strands of opposite orientation, (d) Watson-Crick complementarity be-
tween bases C and G of two DNA single strands of opposite orientation.

DNA single strand represented by

T
z }| {

AC
20

A

O
z }| {

AC
15

A

B
z }| {

AC
2
A

E
z }| {

AC
5
A

O
z }| {

AC
15

A

R
z }| {

AC
18

A

N
z }| {

AC
14

A

O
z }| {

AC
15

A

T
z }| {

AC
20

A

T
z }| {

AC
20

A

O
z }| {

AC
15

A

B
z }| {

AC
2
A

E
z }| {

AC
5
A

that can be readily synthesized.
Indeed, DNA synthesis is the most basic bio-operation used in DNA

computing. DNA solid-state synthesis is based on a method by which the initial
nucleotide is bound to a solid support, and successive nucleotides are added
step-by-step, from the 3’ to the 5’ direction, in a reactant solution (Figure 2).

While the above encoding example is purely hypothetical, DNA strands of
lengths of up to 100 nucleotides, can be readily synthesized using fully auto-
mated DNA synthesizers. The result is a small test tube containing a tiny, dry,
white mass of indefinite shape containing a homogeneous population of DNA
strands that may contain 1018 identical molecules of DNA. In bigger quantities,
dry DNA resembles tangled, matted white thread.

Using this or other DNA synthesis methods, one can envisage encoding any
kind of information as DNA strands. There are several reasons to consider such
a DNA-based memory as an alternative to all the currently available imple-
mentations of memories. The first is the extraordinary information-encoding
density that can be achieved by using DNA strands. According to [96], 1 gram
of DNA, which contains 2.1 × 1021 DNA nucleotides, can store approximately
4.2 × 1021 bits. Thus, DNA has the potential of storing data on the order of
1010 more compactly than conventional storage technologies. In addition, the
robustness of DNA data ensures the maintenance of the archived information
over extensive periods of time [8, 19, 104].

For the purposes of DNA computing, after encoding the input data of a
problem on DNA strands, DNA bio-operations can be utilized for computa-
tions, see [62, 94, 4]. The bio-operations most commonly used to control DNA
computations and DNA robotic operations are described below.

4

DNA Synthesis

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

��
��
��
��

A A

A

C

T

A

C

A A A

T

C C

A

A

CC

C
C

A

T

A

A

T

Figure 2: DNA solid-state synthesis. The initial nucleotide is bound to a solid
support, and successive nucleotides are added step-by-step, from the 3’ to the 5
direction, in a reactant solution. From [62].

DNA single strands with opposite orientation will join together to form a
double helix in a process based on the Watson-Crick complementarity and called
base-pairing (annealing, hybridization, renaturation), illustrated in Fig-
ure 3. The reverse process – a double-stranded helix coming apart to yield its
two constituent single strands – is called melting or denaturation. As the
name suggests, melting is achieved by raising the temperature, and annealing
by lowering it. Each DNA double-strand denaturates at a specific temperature,
called its melting temperature. The melting temperature is defined as the tem-
perature at which half of the DNA strands are double-stranded, and half are
single-stranded. It depends on both the length of the DNA sequence, and its
specific base-composition, [101].

Cutting DNA double strands at specific sites can be accomplished with the
aid of specific enzymes, called restriction enzymes (restriction endonucleases).
Each restriction enzyme recognizes a specific short sequence of DNA, known
as a restriction site. Any double-stranded DNA that contains the restriction
site within its sequence is cut by the enzyme at that location, according to a
specific pattern. Depending on the enzyme, the cutting operation leaves either
two “blunt-ended” DNA double strands or, more often, two DNA strands that
are double-stranded but have single-stranded overhangs known as “sticky-ends”,
Figure 4. Hundreds of restriction enzymes are now known, and a large number
are commercially available. They usually recognize sites ranging in size from

5

increase decrease
temperature temperature

and Annealing
DNA Melting

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
�����
��
��
��

��
��
��
����

��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
���
�
�
�

������
��
��
��

���
���
���

���
���
���

�
�
�
�

�
�
�
�������

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

C

G

A

C

A

G

G

A

C

T

CTC A

G

G

A

A

T
C

C

T

T

A

T

T

G

C

T

AG

G

Figure 3: Melting (separating DNA double strands into their constituent single
strands), and annealing (the reformation of double-stranded DNA from ther-
mally denatured DNA). Raising the temperature causes a DNA double strand
to “melt” into its constituent Watson-Crick complementary single strands. De-
creasing the temperature has the opposite effect: two DNA single strands that
are Watson-Crick complementary will bind to each other to form a DNA double
strand. From [62].

4bp to 8bp, the recognition sites are often pseudopalindromic (see Section 7 for
a definition of pseudopalindrome).

Another enzyme, called DNA ligase, can repair breaks in a double-stranded
DNA backbone, and can covalently rejoin annealed complementary ends in the
reverse of a restriction enzyme reaction, to create new DNA molecules. The
process of thus pasting together compatible DNA strands is called ligation.

Separation of DNA strands by size is possible by using a technique
called gel electrophoresis. The DNA molecules, which are negatively charged,
are placed in “wells” situated at one side of an agarose or polyacrylamide gel.
Then an electric current is applied to the gel, with the negative pole at the side
with the wells, and the positive pole at the opposite side. The DNA molecules
will be drawn towards the positive pole, with the larger molecules travelling
more slowly through the gel. After a period, the molecules will spread out into
distinct bands according to size, Figure 5. The gel method at constant electric
field is capable of separating by size DNA molecules as long as 50,000 base pairs,

6

DNA Cutting

enzyme finds

G’A’

enzyme cuts

T’G’

C’

G’

C’ A’ C’T’

A’

G’A’T’

C’

restriction site

T’

G

N

N

N N

A

N

N

N

T

N

N

N

CN

N

N

N

G

N

N

G

C

N

T

N

T

A

N

A

G

N

TC

G

A

C

A

N

N

C

G

N

N

A T

T

C

Figure 4: DNA cutting (digestion) by a restriction enzyme. A hypothetical
restriction enzyme (dark grey) recognizes the restriction site CATC on a DNA
double-strand (light grey), and cuts the two backbones of the DNA strand, as
shown. Under most conditions, Watson-Crick complementarity of four base-
pairs is not sufficient to keep the strands together, and the DNA molecule sep-
arates into two fragments. The result of the digestion is thus a CATC − 3′

sticky end overhang, and a 3′ − GTAG sticky end overhang. The reverse pro-
cess of ligation can restore the original strand by bringing together strands with
compatible sticky ends by means of Watson-Crick base-pairing, and using the
enzyme ligase that repairs the backbone breaks (nicks) that had been introduced
by the restriction endonuclease. From [62].

with a resolution of better than 1% the size of the DNA.
Extraction of DNA single strands that contain a target sequence,

v, from a heterogeneous solution of DNA single strands, can be accomplished by
affinity purification, Figure 6. A DNA probe is a single-stranded DNA molecule
used in laboratory experiments to detect the presence of a complementary se-
quence among a mixture of other singled-stranded DNA molecules.

The extraction process begins by synthesizing probes, i.e., strands −→v ,
Watson-Crick complementary to v, and attaching them to a solid support, e.g.,

7

apply an electric field;

Gel Electrophoresis

the DNA migrates

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+-

+-

Gel

Gel

Figure 5: Separation of DNA strands by size (length) by using gel electrophore-
sis. The DNA samples are placed in wells (slots) near one end of the gel slab.
The power supply is switched on and the DNA, which is highly negatively
charged, is allowed to migrate towards the positive electrode (right side of the
gel) in separate lanes or tracks. DNA fragments will move through the gel at
a rate which is dependent on their size and shape. After a while, the DNA
molecules spread out into distinct bands and the use of a control “ladder” that
contains DNA strands of incremental lengths, allows the determination of the
lengths of the DNA molecules in the samples. From [62].

magnetic beads. Then, the heterogeneous solution of DNA strands is passed
over the beads. Those strands containing v are “detected” by becoming an-
nealed to −→v , and are thus retained. Strands not containing v pass through
without being retained. The solid medium, e.g., magnetic beads, can then be
removed from the mixture, washed and the target DNA molecules released from
the entrapment.

DNA replication is accomplished by a process called Polymerase Chain
Reaction, or PCR, that involves the DNA polymerase enzyme, Figure 7.

The PCR replication reaction requires a guiding DNA single strand called
template, and an oligonucleotide called primer, that is annealed to the template.
The primer is required to initiate the synthesis reaction of the polymerase en-

8

Purification
Affinity

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
��� ��

��
��
��

����

��
��
��
��

���
���
���
������

���
���

���
���
���

����

���
���
���

���
���
���

��
��
��

��
��
��

����

��
��
��
��

���
���
���

���
���
���

���
���
���
���

������

��
��
��

��
��
��

��
��
��

��
��
��

GC

A

G

T

CT

AA

G

T

A

T

C

A

ATC

G

A

TA

G

C

C T

AC

A

T

A

G A

C

A

A

TC

A

TA

C

C T

A

G
C

G

A

G

A

G

A

A

T

T
A

C

C

T

T T
A

C

A

C

Figure 6: Extraction of strands that contain a target sequence, v = 5′−GAT −
3′, by affinity purification. (The 3nt pattern GAT is for illustration purposes
only, in practice a longer DNA subsequence would be needed for the process of
extraction to work.) The Watson-Crick complement of v, namely 3′−CTA−5′,
is attached to a solid support, e.g., magnetic beads. The heterogeneous solution
of DNA strands is poured over. The DNA strands that contain the target
sequence v as a subsequence will attach to the complement of the target by
virtue of Watson-Crick complementarity. Washing off the solution will result
in retaining the beads with the attached DNA strands containing the target
sequence. From [62].

zyme. The DNA polymerase enzyme catalyzes DNA synthesis by successively
adding nucleotides to one end of the primer. The primer is thus extended at
its 3’ end, in the direction 5’ to 3’ only, until the desired strand is obtained
that starts with the primer and is complementary to the template. (Note that
DNA chemical synthesis and enzymatic DNA replication proceed in opposite
directions, namely 3′− > 5′ and 5′− > 3′, respectively).

9

DNA Replication

add primer

primer is extended

sequence

��
��
��
��

��
��
��
��

primer finds

by DNA polymerase

��
��
��
��

��
��
��
��

����������

������������

������������
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

TT

G

G

G

A A

G

T

G T

A G

T

A

A

CT

T

A

C

TA

A

TT

TTA

T

T

A

A

G

A

C

G

C

A

T

A TT A
A

T

A

T

A
T

A
A

T C

C

A

C

A

T

AT

Figure 7: DNA strand replication using one primer and the enzyme DNA poly-
merase. Given a template DNA strand 5′−ATAGAGTT − 3′ to replicate, first
a primer 3′ − TCA − 5′ (a short DNA sequence, usually 10-15nt long, that is
complementary to a portion of the template) is added to the solution. DNA
polymerase (dark grey) extends the primer in the 5’ to 3’ direction, until the
template becomes fully double stranded. Repeating the process by heating the
solution to denaturate the double-strands and then cooling it to allow anneal-
ing of the primer, will thus lead to producing many copies of the portion of the
complement of the template strand that starts with the primer. The idea is
used in Polymerase Chain Reaction (PCR) which uses two primers, DNA poly-
merase, dNTPs and thermal cycling to produce exponentially many copies of
the subsequence of a template strand that is flanked by the primers. dNTP, de-
oxyribonucleoside triphosphate, stands for any of the nucleotides dATP, dTTP,
dCTP, dGTP. Each nucleotide consists of a base, plus sugar (which together
form a nucleoside), plus triphosphate. dNTPs are the building blocks from
which the DNA polymerases synthesizes a new DNA strand. From [62].

10

If two primers are used, the result is the exponential multiplication of the
subsequence of the template strand that is flanked by the two primers, in a
process called amplification, schematically explained below. For the purpose of
this explanation, if x is a string of letters over the DNA alphabet {A, C, G, T},
then x will denote its simple complement, e.g., AACCTTGG = TTGGAACC.

Let us assume now that one desires to amplify the subsequence between

x and y from the DNA double strand
5′ − αxβyδ − 3′

3′ − ᾱx̄β̄ȳδ̄ − 5′
, where α, x, β, y, δ are

DNA segments. Then one uses as primers the strand x and the Watson-Crick
complement −→y of y. After heating the solution and thus melting the double-
stranded DNA into its two constituent strands, the solution is cooled and the
Watson-Crick complement of y anneals to the “top” strand, while x anneals
to the “bottom” strand. The polymerase enzyme extends the 3’ ends of both
primers into the 5’ to 3’ direction, producing partially double-stranded molecules
5′ − αxβyδ − 3′

3′ − ᾱx̄β̄ȳ − 5′
and

5′ − xβyδ − 3′

3′ − ᾱx̄β̄ȳδ̄ − 5′
. In a similar fashion, the next heating-

cooling cycle will result in the production of the additional strands 5′−xβy−3′

and 3′−x̄β̄ȳ−5′. These strands are Watson-Crick complementary and will, from
now on, be produced in excess of the other strands, since both are replicated
during each cycle. At the end, an order of 2n copies of the desired subsequences
flanked by x and y will be present in solution, where n is the number of the
heating-cooling cycles, typically 20 to 30.

A biocomputation consists of a succession of bio-operations, [28], such as the
ones described in this section. The DNA strands representing the output of
the biocomputation can then be sequenced (read out) using an automated
sequencer. One sequencing method uses special chemically modified nucleotides
(dideoxyribonucleoside triphosphates - ddNTPs), that act as “chain termina-
tors” during PCR, as follows. A sequencing primer is annealed to the DNA
template that we wish to read. A DNA polymerase then extends the primer.
The extension reaction is split into four tubes, each containing a different chain
terminator nucleotide, mixed with standard nucleotides. For example, tube C
would contain chemically modified C (ddCTP), as well as the standard nu-
cleotides (dATP, dGTP, dCTP and dTTP). Extension of the primer by the
polymerase then produces all prefixes ending in G of the complement of the
original strand. A separation of these strands by length using gel electrophore-
sis allows the determination of the position of all Gs (complements of Cs).
Combining the results obtained in this way for all four nucleotides allows the
reconstruction of the original sequence.

Some of the novel features of DNA-encoded information and bio-operations
have been used for the first time for computational purposes in the breakthrough
proof-of-principle experiment in DNA computing reported by Adleman in 1994.

11

0

1

2

3

4

5

6

Figure 8: The seven-vertex instance of the Hamiltonian Path Problem solved by
Adleman, who used solely molecular biology tools to obtain the answer. This
was the first ever experimental evidence that DNA computing is possible [1].

3 The First DNA Computing Experiment

The practical possibilities of encoding information in a DNA sequence and of
performing simple bio-operations were used by Leonard Adleman in 1994, [1], to
perform the first experimental DNA computation that solved a 7-vertex instance
of an NP-complete problem, namely the directed Hamiltonian Path Problem
(HPP).

A directed graph G with designated vertices vstart and vend is said to have
a Hamiltonian path if and only if there exists a sequence of compatible directed
edges e1, e2, . . . , ez (that is, a directed path) that begins at vstart, ends at vend
and enters every other vertex exactly once.

The following (nondeterministic) algorithm solves the problem:

Input. A directed graph G with n vertices and designated vertices vstart and vend.

Step 1. Generate random paths through the graph.

Step 2. Keep only those paths that begin with vstart and end with vend.

Step 3. Keep only those paths that enter exactly n vertices.

Step 4. Keep only those paths that enter all of the vertices of the graph at least once.

Output. If any paths remain, output “YES”; otherwise output “NO”.

Below we describe Adleman’s bio-algorithm that solves the 7-vertex instance
of the Hamiltonian Path Problem illustrated in Figure 8, where vstart = 0 and
vend = 6.

To encode the input to the problem, that is the vertices and directed edges
of the graph, each vertex of the graph was encoded into a carefully chosen 20-
mer single strand of DNA. Then, for each oriented edge of the graph, a DNA
sequence was designed and synthesized, consisting of the second half of the
sequence encoding the source vertex and the first half of the sequence encoding
the target vertex. Exceptions were the edges that started with vstart, and the
ones that ended in vend, for which the DNA encoding consisted of the full
sequence of the source vertex followed by the first half of the target vertex,
respectively the second half of the source vertex followed by the full sequence

12

of the target vertex.
For example, the DNA sequences for the vertex 3 and the oriented edges

2 → 3 and 3 → 4 were encoded respectively as:
O3 = 5′ − GCTATTCGAGCTTAAAGCTA − 3′

O2→3 = 5′ − GTATATCCGAGCTATTCGAG − 3′

O3→4 = 5′ − CTTAAAGCTAGGCTAGGTAC − 3′.
To implement Step 1, one mixed together in a test tube multiple copies of

each of the encodings of the Watson-Crick complements
−→
Oi of all the vertices,

together with the encodings for all the directed edges, for a ligation reaction.
The complements of the vertices served as splints and brought together
sequences associated to compatible edges. For example, the edges O2→3 and

O3→4 were brought together by the Watson-Crick complement
−→
O3 as follows:

5′ −

edge 2→3
︷ ︸︸ ︷
GTATATCCGAGCTATTCGAG

edge 3→4
︷ ︸︸ ︷
CTTAAAGCTAGGCTAGGTAC −3′

3′−CGATAAGCTCGAATTTCGAT︸ ︷︷ ︸
complement of vertex 3

−5′

Hence, the Watson-Crick complementarity and the combined ligation reac-
tion resulted in the formation of DNA molecules encoding random paths through
the graph. Out of these, the next steps had to find and discard the paths that
were not Hamiltonian.

To implement Step 2 (keep only paths that start with vstart and end with

vend) the product of Step 1 was amplified by PCR with primers O0 and
−→
O6.

Thus, only those molecules encoding paths that begin with the start vertex 0
and end with the end vertex 6 were amplified.

For implementing Step 3 (keep only paths of the correct length) gel elec-
trophoresis was used, allowing separation of DNA strands by length. Since any
Hamiltonian path, if it exists, has to pass through all the 7 vertices of the graph,
only DNA double strands of length 7 × 20 = 140 were retained.

Step 4 (keep only paths that pass through each vertex at least once) was
accomplished by iteratively using affinity purification. After generating single-
stranded DNA from the double-stranded product of the preceding step, one

attached a sequence
−→
Oi to magnetic beads, and the heterogeneous solution of

“candidate paths” was passed over the beads. Those strands containing Oi an-
nealed to the complementary sequence and were hence retained. These strands
represented paths that pass through the vertex i. This process was repeated

successively with
−→
O1,

−→
O2,

−→
O3,

−→
O4 and

−→
O5.

To obtain the Output (are there any paths left?) the presence of a molecule
encoding a Hamiltonian path was checked. This was done by amplifying the

result of Step 4 by PCR with primers O0 and
−→
O6, and then reading out the

DNA sequence of the amplified molecules. Note that the final PCR was not
required for computational purposes: It was employed firstly to make sure that,
after the several filtering steps, the amount of DNA was above the detection
threshold, and secondly to verify the correctness of the answer.

13

The entire computation required approximately seven days of wet lab work,
and was carried out in approximately one fiftieth of a teaspoon of solution [2]. It
was the first proof-of-concept experiment that DNA computation was possible.
From a practical point of view, Adleman’s approach had both advantages and
disadvantages. On one hand, Step 1, which is the cause of the time-complexity
exponential blow-up in the classical electronic implementation of the algorithm,
took only one time-step in Adleman’s bio-algorithm. On the other hand, the
amount of space needed for the generation of the full solution space grows expo-
nentially relative to the problem size. Indeed, a scaled-up input of size n = 200
for the Hamiltonian Path Problem would require, in this brute force approach,
an amount of DNA whose weight would be greater than that of the Earth [53].

The construction of a DNA pool that contains the full-solution space has
been avoided in subsequent bio-algorithms proposed for solving HPP. For ex-
ample, in [88] a bio-algorithm was proposed that stepwise generated only the
possible paths. In this approach, all paths were stepwise extended from vstart
to vend as follows. After letting many molecules representing vstart attach to a
surface, n+1 repetitions of the following step found the Hamiltonian Path: “Ex-
tend each path by one adjacent vertex; Remove paths which contain the same
vertex twice”. In addition to being space and time efficient (each extension step
could be as quick as 30 minutes), this bio-algorithm avoided the laborious step
of separation of strands by length.

4 Beyond Unaided Human Computation

We present another significant milestone in DNA computing research, the first
experiment that demonstrated that DNA computing devices can exceed the
computational power of an unaided human. Indeed, in 2002 an experiment
was reported, [11], that solved a 20-variable instance of the NP-complete 3-
SAT problem, wherein the answer to the problem was found after an exhaustive
search of more than 1 million (220) possible solution candidates.

The input to a 3-SAT problem is a Boolean formula in three-conjunctive-
normal-form (3-CNF), i.e., a Boolean formula that consists of disjunctions of
conjunctive clauses, where each conjunctive clause is the conjunction of at most
three literals (a literal is either a Boolean variable or its negation). This formula
is called satisfiable if there exists a truth value assignment to its variables that
satisfies it, i.e., that makes the whole formula true. Thus, the output to the
3-SAT problem is “yes” if such a satisfying truth value assignment exists, and
“no” otherwise.

The input formula for this experiment was the 20-variable, 24-clause, 3-CNF
formula:

Φ = (x3∨x16∨x18)∧(x5∨x12∨x9)∧(x13∨x2∨x20)∧(x12∨x9∨x5)∧(x19∨
x4∨x6)∧(x9∨x12∨x5)∧(x1∨x4∨x11)∧(x13∨x2∨x19)∧(x5∨x17∨x9)∧(x15∨
x9 ∨ x17)∧ (x5 ∨ x9 ∨ x12)∧ (x6 ∨ x11 ∨x4)∧ (x15 ∨ x17 ∨x7)∧ (x6 ∨ x19 ∨x13)∧
(x12∨x9∨x5)∧(x12∨x1∨x14)∧(x20∨x3∨x2)∧(x10∨x7∨x8)∧(x5∨x9∨x12)∧
(x18∨x20∨x3)∧(x10∨x18∨x16)∧(x1∨x11∨x14)∧(x8∨x7∨x15)∧(x8∨x16∨x10),

14

where, for a Boolean variable xi, xi denotes the negation of xi, 1 ≤ i ≤ 20.
The formula Φ was designed so as to have a unique satisfying truth assignment,
namely x1 = F , x2 = T , x3 = F , x4 = F , x5 = F , x6 = F , x7 = T , x8 = T ,
x9 = F , x10 = T , x11 = T , x12 = T , x13 = F , x14 = F , x15 = T , x16 = T ,
x17 = T , x18 = F , x19 = F , x20 = F .

The DNA computing experiment that solved the problem, [11], was based
on the following non-deterministic algorithm.

Input: A Boolean formula Φ in 3-CNF.
Step 1: Generate the set of all possible truth value assignments.
Step 2: Remove the set of truth value assignments that make the first clause
false.
Step 3: Repeat Step 2 for all the clauses of the input formula.
Output: The remaining (if any) truth value assignments.

To implement this algorithm, the input data was encoded as follows. Every
variable xk, k = 1, . . . , 20, was associated with two distinct 15-mer DNA single
strands. One of them, denoted by XT

k , represented true (T), while the second,
denoted by XF

k , represented false (F).
Below are some examples of the particular 15-mer sequences - none of which

contained the nucleotide G - synthesized and used in the experiment:

XT
2 = ATT TCC AAC ATA CTC, XF

2 = AAA CCT AAT ACT CCT ,
XT

3 = TCA TCC TCT AAC ATA, XF
3 = CCC TAT TAA TCA ATC.

Using these 15-mer encodings for the two truth values of all the 20 variables,
the library consisting of all possible 220 truth assignments was assembled using
the mix-and-match combinatorial synthesis technique of [39]. In brief, oligonu-
cleotides for XT

20 and XF
20 were synthesized separately, then mixed together. The

mixture was divided in half and the result put in two separate test tubes. The
synthesis was restarted separately, with sequences XT

19 and XF
19 respectively. In

principle, the process can be repeated until the desired library is obtained. In
practice, two half-length libraries were created separately, and then linked to-
gether using a polymerase-chain extension similar to that in [105]. Each library
strand encoding a truth assignment was thus represented by a 300-mer DNA
strand consisting of the ordered catenation of twenty 15-mer value sequence,
one for each variable, as follows:

X1X2 . . .X20, where αi ∈ {XT
i , XF

i }, 1 ≤ i ≤ 20.

The biocomputation wet-ware essentially consisted of a glass module filled
with a gel containing the library, as well as twenty four glass clause modules,
one for each of the 24 clauses of the formula. Each clause module was filled with
gel containing probes (immobilized DNA single strands) designed to bind only
library strands encoding truth assignments satisfying that clause.

15

The strands were moved between the modules with the aid of gel elec-
trophoresis, i.e., by applying an electric current that resulted in the migration
of the negatively charged DNA strands through the gel.

The protocol started with the library passing through the first clause module,
wherein library strands containing the truth assignments satisfying the first
clause (i.e. library strands containing sequences XF

3 , or XF
16, or XT

18) were
captured by the immobilized probes, while library strands that did not satisfy
the first clause (i.e. library strands containing sequences XT

3 , and XT
16, and

XF
18) continued into a buffer reservoir. The captured strands were then released

by raising the temperature, and used as input to the second clause module, etc.
At the end, only the strand representing the truth assignment that satisfied all
24 clauses remained.

The output strand was PCR amplified with primer pairs corresponding to
all four possible true-false combinations of assignments for the first and last

variable x1 and x20. None except the primer pair (XF
1 ,

−−→
XF

20) showed any bands,
indicating thus two truth values of the satisfying assignment, namely x1 = F
and x20 = F . The process was repeated for each of the variable pairs (x1, xk),
2 ≤ k ≤ 19, and, based on the lengths of the bands observed, value assignments
were given to the variables. These experimentally derived values corresponded
to the unique satisfying assignment for the formula Φ, concluding thus the
experiment.

One of the remarkable features of this benchmark DNA computing experi-
ment was that the sole bio-operation that was used (except during input and
output) was Watson-Crick complementarity based annealing and melting.

Generally, it is believed that DNA computers that use a brute-force search
algorithm for SAT are limited to 60 to 70 variables [79]. Several other algorithms
that do not use brute force, such as the breadth-first search algorithm [110],
and random walk algorithms [80, 32] have been proposed. With the breadth-
first search algorithm, the capacity of a DNA computer can be theoretically
increased to about 120 variables [110]. A recent example of this approach that
avoids the generation of the full solution space is a solution to the SAT problem
using a DNA computing algorithm based on ligase chain reaction, [108]. This
bio-algorithm can solve an n-variable m-clause SAT problem in m steps, and
the computation time required is O(3m + n). Instead of generating the full-
solution DNA library, this bio-algorithm starts with an empty test tube and
then generates solutions that partially satisfy the SAT formula. These partial
solutions are then extended step by step by the ligation of new variables using
DNA ligase. Correct strands are amplified and false strands are pruned by a
ligase chain reaction (LCR) as soon as they fail to satisfy the conditions.

The two DNA computing experiments described in Section 3 and Section 4
are historically significant instances belonging to a vast and impressive array of
often astonishing DNA computing experiments, with potential applications to,
e.g., nanorobotics, nanocomputing, bioengineering, bio-nanotechnology, and mi-
cromedicine. Several of these significant experiments are described in Chapters
??, ??, ??, ??, and ?? of this handbook.

16

5 DNA Complementarity and Formal Language
Theory

The preceding two sections described two milestone DNA computing experi-
ments whose main “computational engine” was the Watson-Crick complemen-
tarity between DNA strands. We now turn our attention to the study of Watson-
Crick complementarity from a theoretical point of view, and describe the im-
pact this notion has had on theoretical computer science. This section focuses
mainly on the formal language theoretical and coding theoretical approach to
DNA-encoded information, and highlights some of the theoretical concepts and
results that emerged from these studies.

The idea of formalizing and investigating DNA or RNA molecules and their
interactions by using the apparatus of formal language theory is a natural
one. Indeed, even though the processes involving DNA molecules are driven
by complex biochemical reactions, the primary information is encoded in DNA
sequences. Therefore, even without the inclusion of all the thermodynamic pa-
rameters that operate during DNA-DNA interactions, formal language theory
and coding theory are capable of providing a uniform and powerful framework
for an effective study of DNA-encoded information.

To briefly describe the problem of encoding information as DNA strands
for DNA computing experiments, one of the main differences between electronic
information and DNA-encoded information is that the former has a fixed address
and is reusable, while the latter is not. More precisely, DNA strands float freely
in solution in a test-tube and, if one of the input strands for a bio-operation has
become involved in another, unprogrammed, hybridization, that input strand
is unavailable for the bio-operation at hand, compromising thus the final result
of the experiment. Thus, a considerable effort has been dedicated to finding
“optimal” DNA sequences for encoding the information on DNA so as to prevent
undesirable interactions and favour only the desirable programmed ones.

Standard biological methods evaluating and predicting hybridization be-
tween DNA molecules conditions rely on thermodynamical parameters such as
the free energy ∆G (intuitively, the energy needed to melt DNA bonds), and
the melting temperature of DNA molecules. For the calculation of these quan-
tities, not only the WK complementarity between single bases is important, but
also the WK complementarity (or lack thereof) of their neighbouring bases with
their counterparts: the nearest-neighbour model [101] has been frequently used
for this purpose. However, in many natural processes the WK complementarity
alone plays a crucial role. Furthermore, together with various similarity met-
rics, the WK complementarity has been often used to obtain an approximate
characterization of DNA hybridization interactions.

This section is devoted to describing methods of discrete mathematics and
formal language theory which allow for rapid and mathematically elegant char-
acterization of (partially) complementary DNA molecules, their sets, and set-
properties relevant for potential cross-hybridizations. For other approaches to
this problem and to the problem of design of molecules for DNA computing,

17

the reader is referred to [?] in this handbook. The section is organized as fol-
lows. Section 5.1 describes the problem of optimal encoding of information for
DNA computing experiments that was the initial motivation for this research,
as well as it introduces the basic definitions and notation. Section 5.2 describes
the problem of intramolecular hybridization (hybridization within one molecule,
resulting, e.g., in hairpin formation) and results related to hairpin languages
and hairpin-free languages. Section 5.3 describes the problem of intermolecular
hybridization (interaction between two or more DNA molecules) and the theo-
retical concepts and results motivated by this problem. Section 5.4 investigates
properties of languages that guarantee that even undesirable imperfect bonds
between DNA strands are avoided.

5.1 DNA Encoding: Problem Setting and Notation

In the process of designing DNA computational experiments, as well as in many
general laboratory techniques, special attention is paid to the design of an initial
set of “good” DNA strands. References [87, 98] and others distinguish two
elementary subproblems of the encoding sequence design:

• Positive design problem: Design a set of input DNA molecules such that
there is a sequence of reactions which produces the correct result.

• Negative design problem: Design a set of input DNA molecules that do not
interact in undesirable ways, i.e., do not produce incorrect outputs, and/or
do not consume molecules necessary for other, programmed, interactions.

The positive design problem is usually highly related to a specific experi-
ment and it is reported to be hard to find a general framework for its solution.
In contrast, the negative design problem can be solved on a general basis by
construction of a library of molecules which do not allow for undesired mutual
hybridizations. According to [98], the following conditions must be guaranteed:
(1) no strand forms any undesired secondary structure such as hairpin loops
(Figure 9(a)), (2) no string in the library hybridizes with any string in the li-
brary, and (3) no string in the library hybridizes with the complement of any
string in the library (Figure 9(b) or (c)). Many laboratory techniques stress the
importance of a unified framework for the negative design. An example is the
multiplex PCR in which a set of PCR primers is used simultaneously in a single
test tube and mutual bonds between primers must be prevented.

A related issue often studied together with the problem of unwanted hy-
bridization is the uniqueness of the oligonucleotides used in experiments. More
precisely, one requires that individual oligonucleotides in a mixture differ sub-
stantially from each other such that they (and eventually longer sequences pro-
duced by their catenation) can be easily distinguished. Such a property in
the mathematical sense is typical for codes, hence many authors adopted this
naming convention for sets of oligonucleotides, usually of a fixed length, whose
elements are then called DNA codewords.

18

-
�� ��

R

I

R

(a) (b) (c)

-
�

Figure 9: Types of undesired (a) intramolecular and (b), (c) intermolecular
hybridizations.

A wide spectrum of methods devoted to the DNA encoding design exists.
Thermodynamical methods such as those in [30, 33] provide the most precise
results but are computationally the most expensive. Experimental studies try-
ing to construct DNA codes in vitro with the help of the PCR operation can be
found, e.g., in [16, 31]. An opposite approach relying solely on the WK comple-
mentarity allows for fastest but least precise methods (see, e.g., [54, 60, 65] as
examples). Approximation methods trying to capture key aspects of the nearest
neighbour thermodynamic model represent an intermediate step between these
two methodologies. Various discrete metrics based often on Hamming or Leven-
shtein distance have been studied, e.g., in [36, 37, 46, 47]. The reader is referred
to monographs [4, 58, 94] for an overview.

In the sequel we focus on the characterization of DNA hybridization and
unwanted bonds by means of the concepts of formal language and coding theory.
We also give simple examples of construction of DNA codes.

To describe DNA bonds formally, we represent the single-stranded DNA
molecules by strings over the DNA alphabet ∆ = {A, C, T, G}, and we reduce
their mutual reactions to formal manipulation of these strings. Therefore, some
formal language prerequisites are necessary. For further details the reader is
referred to [56], [18], [100].

An alphabet is a finite and nonempty set of symbols. In the sequel we shall
use a fixed non-singleton alphabet Σ, as a generalization of the natural DNA
alphabet ∆. The set of all words over Σ is denoted by Σ∗. This set includes the
empty word λ. The length of a word w ∈ Σ∗ is denoted by |w|. For an x ∈ Σ+,
|w|x denotes the number of occurrences of x within w. For a non-negative integer
n and a word w, we use wn to denote the word that consists of n concatenated
copies of w. A word v is a subword of w if w = xvy for some words x and y.
In this case, if |x| + |y| > 0 then v is a proper subword. By Sub(w) we denote
the set of all subwords of w. For a positive integer k, we use Subk(w) to denote
the set of subwords of length k of w. We say that u ∈ Σ∗ is a prefix of a word
v ∈ Σ∗, and denote it by u ≤ v, if v = ut for some t ∈ Σ∗. Two words u, v
are said to be prefix comparable, denoted by u ∼p v if one of them is a prefix of
the other. In a similar manner, u is said to be a suffix of v if v = su for some
s ∈ Σ∗. By Pref(u) (Suff(u)), we denote the sets of all prefixes (respectively
suffixes) of u.

19

The relation of embedding order over words is defined as follows: u ≤e w iff
(if and only if)

u = u1u2 · · ·un, w = v1u1v2u2 · · · vnunvn+1

for some integer n with ui, vj ∈ Σ∗.
A language L is a set of words, or equivalently a subset of Σ∗. A language

is said to be λ-free if it does not contain the empty word. If n is a non-negative
integer, we write Ln for the language consisting of all words of the form w1 · · ·wn

such that each wi is in L, and L≥n for the language consisting of all catenations
of at least n words from L. We also write L∗ for the language L0∪L1∪L2∪· · · ,
and L+ for the language L∗\{λ}. The set Sub(L) =

⋃
w∈L Sub(w) we call the set

of all subwords of L. The families of regular, linear, context-free, and recursively
enumerable languages are denoted by REG, LIN, CF, and RE, respectively.

Many approaches to the construction of DNA encoding are based on the
assumption that the set of molecules in a test tube (tube language) L is equal
to, or a subset of, K+, where K is a finite language whose elements are called
codewords. In general, K might contain codewords of different lengths. In many
cases, however, the set K consists of words of a certain fixed length l. In this
case, we shall refer to K as a code of length l.

A mapping α : Σ∗ → Σ∗ is called a morphism (antimorphism) of Σ∗ if
α(uv) = α(u)α(v) (respectively α(uv) = α(v)α(u)) for all u, v ∈ Σ∗. Note that
a morphism or an antimorphism of Σ∗ are completely defined if we define their
values on the letters of Σ.

If for a morphism α, α(a) 6= λ for each a ∈ V , then α is said to be λ-free.
A projection associated to Σ is a morphism prΣ : (V ∪ Σ)∗ → Σ∗ such that
prΣ(a) = a for all a ∈ Σ and prΣ(b) = λ otherwise. A morphism h : V ∗ → Σ∗ is
called a coding if h(a) ∈ Σ for all a ∈ V and weak-coding if h(a) ∈ Σ∪{λ} for all
a ∈ V . For a family of languages FL, let us denote by Cod(FL) (respectively
wcod(FL)) the family of languages of the form h(L), for L ∈ FL and h a coding
(respectively weak-coding).

The equality set of two morphisms h1, h2 : V ∗ → Σ∗ is defined as:

EQ(h1, h2) = {w ∈ V ∗ | h1(w) = h2(w)}.

An involution θ : Σ → Σ of Σ is a mapping such that θ2 is equal to the
identity mapping, i.e., θ(θ(x)) = x for all x ∈ Σ. It follows then that an
involution θ is bijective and θ = θ−1. The identity mapping is a trivial example
of an involution. An involution of Σ can be extended to either a morphism
or an antimorphism of Σ∗. For example, if the identity of Σ is extended to a
morphism of Σ∗, we obtain the identity involution of Σ∗. However, if we extend
the identity of Σ to an antimorphism of Σ∗ we obtain instead the mirror-image
involution of Σ∗ that maps each word u into uR where

u = a1a2 . . . ak, uR = ak . . . a2a1, ai ∈ Σ, 1 ≤ i ≤ k.

A word w which is equal to its reverse wR is called a palindrome. If we
consider the DNA alphabet ∆, then the mapping τ : ∆ → ∆ defined by τ(A) =

20

T, τ(T) = A, τ(C) = G, τ(G) = C can be extended in the usual way to an
antimorphism of ∆∗ that is also an involution of ∆∗. This involution formalizes
the notion of Watson-Crick complementarity and will therefore be called the
DNA involution [63].

5.2 Intramolecular Bond (Hairpin) Analysis

In this section we focus on mathematical properties of DNA hairpins and their
importance in DNA encodings. A DNA hairpin is a particular type of DNA
secondary structure illustrated in Figure 10.

GC T AT C
GAT AGC A

C C
A
T

A C C T

G
C

A
TGAC

CTG

Figure 10: A single-stranded DNA molecule forming a hairpin loop.

Hairpin-like secondary structures play an important role in inser-
tion/deletion operations with DNA. Hairpin-freeness is crucial in the design
of primers for the PCR reaction. Among numerous applications of hairpins in
DNA computing we mention only the Whiplash PCR computing techniques [97]
and the DNA RAM [?]. We refer the reader, e.g., to [75, 76, 87] for a characteri-
zation and design of tube languages with or without hairpins. Coding properties
of hairpin-free languages were studied in [59, 60]. A language-theoretical charac-
terization of hairpins and hairpin languages was given in [95]. Hairpins have also
been studied in the context of bio-operations occurring in single-celled organ-
isms. For example, the operation of hairpin inversion was defined as one of the
three molecular operations that accomplish gene assembly in ciliates [26, 27, 38].
Applications of hairpin structures in biocomputing and bio-nanotechnology are
discussed in [?, ?] in this handbook.

The following definition formally specifies hairpin as a structure described
in Figure 10, whose stem consists of at least k base pairs. This condition
is motivated by the fact that a hairpin with shorter stem is less stable. An
oligonucleotide which does not satisfy this condition is said to be hairpin-free.

Definition 5.1 ([59, 66]) Let θ be a (morphic or antimorphic) involution of
Σ∗ and k be a positive integer. A word u ∈ Σ∗ is said to be θ-k-hairpin-free or
simply hp(θ, k)-free if u = xvyθ(v)z for some x, v, y, z ∈ Σ∗ implies |v| < k.

We denote by hpf (θ, k) the set of all hp(θ, k)-free words in Σ∗. The comple-
ment of hpf (θ, k) is the set of all hairpin-forming words over Σ and is denoted by
hp(θ, k) = Σ∗ \ hpf (θ, k). Observe that hp(θ, k + 1) ⊆ hp(θ, k) for all k > 0. A
language L is said to be θ-k-hairpin-free or simply hp(θ, k)-free if L ⊆ hpf (θ, k).

21

Example 1 Let θ = τ, the DNA involution over ∆∗. Then:

hpf (θ, 1) = {A, C}∗ ∪ {A, G}∗ ∪ {T, C}∗ ∪ {T, G}∗

In the version of definition 5.1 given in [59], a θ-k-hairpin-free language was
called θ-subword-k-code. The authors focused on their coding properties and
relations to other types of codes. A restriction on the length of the loop of a
hairpin was also considered: 1 ≤ |y| ≤ m for some m ≥ 1. Most of the results
mentioned in this section remain valid if this additional restriction is considered.

Theorem 5.2 ([95]) The languages hp(θ, k) and hpf (θ, k), k ≥ 1, are regular.

Figure 11 illustrates a nondeterministic finite automaton (NFA) accepting
the language hp(θ, 2) over the alphabet {a, b} where θ(a) = b and θ(b) = a.
Given the above characterization of hp(θ, k) and hpf (θ, k), the following result
is rather immediate:

Theorem 5.3 ([66]) The following problem is decidable in linear (or cubic,
respectively) time with respect to (w.r.t.) |M | :

Input: A nondeterministic regular (pushdown, respectively) automaton M.

Output: Yes/No depending on whether L(M) is hp(θ, k)-free.

The maximality problem of hairpin-free languages is stated as follows: can a
given language L ⊆ Σ∗, satisfying a certain property (e.g., to be a hairpin-free
language), be still extended without loss of this property? Formally, a language
L ⊆ Σ∗ satisfying a property P is said to be maximal w.r.t. P iff L ∪ {w} does
not satisfy P for any w ∈ M \L, where M is a fixed library of available strands.

Theorem 5.4 ([66]) The following problem is decidable in time O(|M1| · |M2|)
(or O(|M1| · |M2|

3), respectively):

Input: A positive integer k, a deterministic finite (pushdown, respectively) au-
tomaton M1 accepting a hp(θ, k)-free language, and an NFA M2.

Output: Yes/No depending on whether there is a word w ∈ L(M2)\L(M1) such
that L(M1) ∪ {w} is hp(θ, k)-free.

For hairpin-free languages it is relatively straightforward to solve the optimal
negative design problem: to construct a set of hairpin-free DNA words of a given
size, where the words can be chosen from a certain library. All the hairpin-free
sets are subsets of hpf (θ, k). For example, if the length of the desired DNA
words equals a constant ℓ, the optimal hairpin-free set is simply hpf (θ, k)∩Σℓ.
Due to Theorem 5.2, the set hpf (θ, k) is regular and hence can be accepted by
a finite automaton. The size of the automaton, however, grows exponentially
with respect to k.

Theorem 5.5 ([66]) Consider the DNA alphabet ∆ = {A, C, T, G} and the
DNA involution τ.

22

aa

ba

a,b

a,b

a,b

a,b

a,b

a
a

b

a b
q

1

S

S

q

b

a

a

b

b

ab

a,b

qbb

b a

ba
ab

q

S 1
p

p

p

Figure 11: An NFA accepting the language hp(θ, 2) over the alphabet {a, b},
where the antimorphism is defined as θ(a) = b and θ(b) = a.

(i) The size of a minimal NFA accepting hp(τ, k) is at most 15 · 4k. The
number of its states is between 4k and 3 · 4k.

(ii) The number of states of either a minimal deterministic finite automaton

(DFA) or an NFA accepting hpf (τ, k) is between 22k−1

and 23·22k

.

The reader is referred to [66] for a generalization of the above theorem for
the case of an arbitrary alphabet and arbitrary involution. The construction of
the automaton is illustrated in Figure 11 for the case of alphabet {a, b} and an
antimorphism θ, where θ(a) = b and θ(b) = a.

Problems analogous to Theorems 5.2–5.5 have been studied also in the case
of scattered hairpins and hairpin frames which represent more complex but
rather common types of intramolecular hybridization. The definition of scat-
tered hairpins covers structures like the one described in Figure 12.

Definition 5.6 ([66]) Let θ be an involution of Σ∗ and let k be a positive in-
teger. A word u = wy, for u, w, y ∈ Σ∗, is θ-k-scattered-hairpin-free or simply
shp(θ, k)-free if for all t ∈ Σ∗, t ≤e w, θ(t) ≤e y implies |t| < k.

Similarly, the following definition of hairpin frames characterizes secondary
structures containing several complementary sequences such as that in Figure
13.

Definition 5.7 ([66]) The pair (v, θ(v)) in a word u of the form u = xvyθ(v)z,
for x, v, y, z ∈ Σ∗, is called an hp-pair of u. The sequence of hp-pairs (v1, θ(v1)),

23

GC T AT C
GAT AGC A

C C
A
T

A C C T

A

AA

CTG
CC

A
TGAC

CTG

Figure 12: An example of a scattered hairpin – a word in shp(τ, 11).

(v2, θ(v2)), · · · , (vj , θ(vj)) of the word u in the form:

u = x1v1y1θ(v1)z1x2v2y2θ(v2)z2 · · ·xjvjyjθ(vj)zj

is called an hp-frame of degree j of u or simply an hp(j)-frame of u.

GC T AT C
GAT AG

C−G
C

T−A
C−G
C−G
A−T

GC AC C
GT GGC

A
C C

A
T

A C C T

AG
A

T G
CT

A−T
C−G

A
G

T

C
T

C

A

Figure 13: An example of a hairpin frame.

Several other studies have been published, focusing on formal-language as-
pects of the hairpin formation. A complete characterization of the syntactic
monoid of the language consisting of all hairpin-free words over a given alpha-
bet was given in [71]. The reference [83] described formal language operations
of hairpin completion and reduction and studied their closure and other math-
ematical properties. DNA trajectories – a new formal tool for description of
scattered hairpins – were presented in [34], where also complexity of the set
of hairpin-free words described by a set of DNA trajectories and closure prop-
erties of hairpin language classes were studied. Hairpin finite automata with
the ability to apply the hairpin inversion operation to the remaining part of
the input were introduced in [10]. The authors studied the power of hairpin-
inspired operations and the resulting language classes. Finally, the reference [74]
focused on a related secondary structure based on intramolecular bonds – pseu-
doknots (see also [33] for more information on pseudoknots). Authors provided
mathematical formalization of pseudoknots and obtained several properties of
pseudoknot-bordered and -unbordered words.

24

5.3 How to Avoid DNA Intermolecular Bonds

In this section we formally characterize several properties of a tube language
L ⊆ Σ+, which prohibit various types of undesired hybridizations between two
DNA strands. Many authors assume, for simplicity, that hybridization occurs
only between those parts of single-stranded DNA molecules which are perfectly
complementary. The following language properties have been considered in
[57, 63, 67].

(A) θ-non-overlapping: L ∩ θ(L) = ∅.

(B) θ-compliant: ∀w ∈ L, x, y ∈ Σ∗, w, xθ(w)y ∈ L ⇒ xy = λ.

(C) θ-p-compliant: ∀w ∈ L, y ∈ Σ∗, w, θ(w)y ∈ L ⇒ y = λ.

(D) θ-s-compliant: ∀w ∈ L, y ∈ Σ∗, w, yθ(w) ∈ L ⇒ y = λ.

(E) strictly θ-compliant: both θ-compliant and θ-non-overlapping.

(F) θ-free: L2 ∩ Σ+θ(L)Σ+ = ∅.

(G) θ-sticky-free: ∀w ∈ Σ+, x, y ∈ Σ∗, wx, yθ(w) ∈ L ⇒ xy = λ.

(H) θ-3′-overhang-free: ∀w ∈ Σ+, x, y ∈ Σ∗, wx, θ(w)y ∈ L ⇒ xy = λ.

(I) θ-5′-overhang-free: ∀w ∈ Σ+, x, y ∈ Σ∗, xw, yθ(w) ∈ L ⇒ xy = λ.

(J) θ-overhang-free: both θ-3′-overhang-free and θ-5′-overhang-free.

For convenience, we agree to say that a language L containing the empty
word has one of the above properties if L \ {λ} has that property. Observe that
(F) avoids situations like Figure 9(c), while other properties exclude special
cases of 9(b).

In [60], a θ-non-overlapping language was said to be strictly θ. Generally, if
any other property holds in conjunction with (A), we add the qualifier strictly.
We have already used this notation for the property (E). Both strict and non-
strict properties turn out to be useful in certain situations.

For example, a common way to check for the presence of a certain single-
stranded molecule w is to add to the solution its complement τ(w), and use
enzymes to destroy any molecules which are not fully double stranded. Simul-
taneously, we want to prevent all other hybridizations except w and τ(w). This
condition is equivalent to testing whether the whole solution, including w and
τ(w), is non-strictly bond-free (exact matches are allowed).

Further properties have been defined in [60] for a language L. Observe that
the property (K) below avoids bonds like those in Figure 9(a), with a restricted
length of the loop part:

(K) θ(k, m1, m2)-subword compliant: ∀u ∈ Σk, Σ∗uΣmθ(u)Σ∗ ∩ L = ∅ for
k > 0, m1 ≤ m ≤ m2.

(L) θ-k-code: Subk(L) ∩ Subk(θ(L)) = ∅, k > 0.

25

The property (L) was also considered implicitly in [9] and [40]. In particular,
the reference [9] considered tube languages of the form (sZ)+ satisfying (L),
where s is a fixed word of length k and Z is a code of length k – the notation
sZ represents the set of all words sz such that z is in Z.

The following property was defined for θ = I, the identity relation, in [54].
A language L is called

(M) solid if:

1. ∀x, y, u ∈ Σ∗, u, xuy ∈ L ⇒ xy = λ, and

2. ∀x, y ∈ Σ∗, u ∈ Σ+, xu, uy ∈ L ⇒ xy = λ.

L is solid relative to a language M ⊆ Σ∗ if 1. and 2. above must hold only when
there are p, q ∈ Σ∗ such that pxuyq ∈ M. L is called comma-free if it is solid
relative to L∗. Solid languages were also used in [67] as a tool for constructing
error-detecting tube languages that were invariant under bio-operations.

Figure 14 shows the hierarchy of some of the above language properties.
Arrows stand for inclusion relations among language classes satisfying these
properties.

Example 2 ([65]) Consider the language L = {AnTn |n ≥ 1} ⊂ ∆+, and the
DNA involution τ. Observe that τ(L) = L. We can deduce that L is:

• neither τ -non-overlapping, nor τ -k-code for any k ≥ 1;

• not τ -compliant, as for w = AnTn, x = A, y = T we have w, xτ(w)y ∈ L;

• τ -p-compliant, as w, θ(w)y ∈ L implies w = AnTn, y = λ; similarly, L is
τ -s-compliant;

• not τ -free, as AnTnAmTm, n, m > 1, is both in L2 and in ∆+L∆+;

• not τ -sticky-free, as for w = y = An x = Tn we have wx, yτ(w) ∈ L;

• τ -3′-overhang-free, as wx, τ(w)y ∈ L implies w = AnTm, x = Tn−m,
y = Tm−n and hence xy = λ; similarly, L is τ -5′-overhang-free and hence
τ -overhang-free;

• not θ(k, m1, m2)-subword compliant for any k, m1, m2.

For further details and relations between the above listed DNA language
properties we refer the reader to [60, 65, 67].

To establish a common framework allowing to handle various types of un-
wanted hybridization in a uniform way, it is necessary to introduce the general-
izing concept of word operations on trajectories. Consider a trajectory alphabet
V = {0, 1} and assume V ∩ Σ = ∅. We call any string t ∈ V ∗ a trajectory.
A trajectory is essentially a syntactical condition which specifies how a binary
word operation is applied to the letters of its two operands. Let t ∈ V ∗ be a
trajectory and let α, β be two words over Σ.

26

'
&

$
%θ-p-compliant

'
&

$
%θ-3’-overhang-f.

'
&

$
%

'
&

$
%

'
&

$
% θ-compliantθ-sticky-freeθ-5’-overhang-f.

'
&

$
%θ-s-compliant

'
&

$
%θ-overhang-free

'
&

$
%

'
&

$
%

�

�
-

-
�

-

-
�

-
��

-

�
-

�
-

�
-�

-

�
-

=s9s

j+9 zs� z9

? z9

'
&

$
%θ-k-code

k︷︸︸︷

Figure 14: Classes of tube languages free of certain types of undesired hybridiza-
tion.

Definition 5.8 [86] The shuffle of α with β on a (fixed) trajectory t, denoted
by α⊔⊔t β, is the following binary word operation:

α⊔⊔t β = {α1β1 . . . αkβk |α = α1 . . . αk, β = β1 . . . βk, t = 0i11j1 . . . 0ik1jk ,
where |αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Example 3 Let α = a1a2 . . . a8, β = b1b2 . . . b5 and assume that t =
03120310101. The shuffle of α and β on the trajectory t is:

α⊔⊔t β = {a1a2a3b1b2a4a5a6b3a7b4a8b5}.

Observe that the result of the operation is generally a set of words, though in
the case of shuffle on trajectory it is always a singleton or the empty set. Notice
also that α⊔⊔t β = ∅ if |α| 6= |t|0 or |β| 6= |t|1.

A set of trajectories is any set T ⊆ V ∗. The shuffle of α with β on the set
T, denoted by α⊔⊔T β, is:

α⊔⊔T β =
⋃

t∈T

α⊔⊔t β. (1)

27

The shuffle on (sets of) trajectories generalizes several traditional word opera-
tions. Let, for example, T = 0∗1∗. Then ⊔⊔T = ·, the operation of catenation.

To characterize the properties of tube languages described above, we define
formally a property P as a mapping P : 2Σ∗

−→ {true, false}. We say that a
language L has (or satisfies) the property P if P(L) = true. The next definition
introduces a general concept of bond-free property which covers surprisingly
many types of undesired bonds studied in the literature.

Definition 5.9 ([65]) Consider a language property P. Let there be binary word
operations ♦lo, ♦up and an involution θ such that for an arbitrary L ⊆ Σ∗,
P(L) = true iff

(i) ∀w ∈ Σ+, x, y ∈ Σ∗ ((w♦lo x) ∩ L 6= ∅, (θ(w)♦up y) ∩ L 6= ∅) ⇒ xy = λ,
then P is called a bond-free property (of degree 2);

(ii) ∀w, x, y ∈ Σ∗ ((w♦lo x) ∩ L 6= ∅, (θ(w)♦up y) ∩ L 6= ∅) ⇒ w = λ, then P
is called a strictly bond-free property (of degree 2).

If not stated otherwise, we assume in the sequel that ♦lo = ⊔⊔Tlo
and

♦up = ⊔⊔Tup
for some sets of trajectories Tlo, Tup. Intuitively, w and θ(w) rep-

resent two complementary oligonucleotides. Then w⊔⊔Tlo
x and θ(w)⊔⊔Tup

y
represent two DNA single strands which could form a double-stranded DNA
molecule with blunt ends, depicted in Figure 14. The bond-free property P
guarantees that w⊔⊔Tlo

x and θ(w)⊔⊔Tup
y with nonempty x, y (i), or w (ii),

cannot simultaneously exist in L.

Theorem 5.10 ([65])

(i) The language properties (B), (C), (D), (G), (H), (I), (M.1), (M.2) are
bond-free properties.

(ii) The language properties (A), strictly (B)–(D), strictly (G)–(I), (L),
strictly (L) are strictly bond-free properties.

Moreover, in both cases the associated sets of trajectories Tlo, Tup are regular.

Proof. Let θ be an antimorphism and let the sets of trajectories Tlo, Tup

corresponding to the listed bond-free properties be:

(A) Tlo = Tup = 0+

(B) Tlo = 0+, Tup = 1∗0+1∗

(C) Tlo = 0+, Tup = 0+1∗

(D) Tlo = 0+, Tup = 1∗0+

(G) Tlo = 0+1∗, Tup = 1∗0+

(H) Tlo = 0+1∗, Tup = 0+1∗

(I) Tlo = 1∗0+, Tup = 1∗0+

(L) Tlo = Tup = 1∗0k1∗

(L) strictly: Tlo = Tup = 1∗0k1∗ ∪ 0+

28

If θ is a morphism, one can similarly define:

(M.1) Tlo = 0∗, Tup = 1∗0∗1∗

(M.2) Tlo = 1∗0+, Tup = 0+1∗

Consider, e.g., the property (H), θ-3’-overhang-freedom. Then w⊔⊔Tlo
x = {wx}

and θ(w)⊔⊔Tup
y = {θ(w)y}. The relations in Definition 5.9 (i) take the form

wx ∈ L, θ(w)y ∈ L which corresponds to the definition of (H) above. The proofs
of the other mentioned properties are analogous. 2

Observe that Tlo, Tup for a certain property correspond to the “shape” of
the bonds prohibited in languages satisfying the property. The above theorem
allows for a general characterization of bond-free properties via a solution of an
unique language inequation in [65]. As a consequence we obtain the following
result.

Theorem 5.11 ([65]) Let P be a (strictly) bond-free property associated with
regular sets of trajectories Tlo, Tup. Then the following problem is decidable in
quadratic time w.r.t. |A| :

Input: an NFA A.

Output: Yes/No depending on whether L(A) satisfies P.

By Theorem 5.10, the above result applies to the properties (A) – (D), (G)
– (J), (M), strictly (B) – strictly (D), strictly (G) – strictly (J), (L), strictly (L),
in the case of regular languages, on one hand. On the other hand, for a given
context-free language L it is undecidable whether it satisfies certain bond-free
properties, e.g., (B) and (F).

Theorem 5.12 ([57]) The following problem is undecidable.

Input: A bond-free property P associated with regular sets of trajectories Tlo,
Tup, and a context-free language L.

Output: Yes/No depending on whether P(L) = true.

An important problem studied in the literature is the optimal negative de-
sign problem: how to construct a non-crosshybridizing set (i.e., a set of single-
stranded molecules which do not mutually hybridize) of a certain required size,
given a fixed library of available molecules. In general, even to decide whether
such a finite set exists is an NP-complete problem and its equivalence with the
maximal independent set problem can be easily shown [30]. Various heuristics
were used to find a nearly-optimal solution [91]. Here we focus on a similar but
in some cases easier maximality problem defined formally in Section 5.2.

Theorem 5.13 ([65]) Let M ⊆ Σ+ be a regular set of words, and L ⊆ M a
regular language satisfying a bond-free property P.

29

(a) Let θ be an antimorphism and let P be one of the properties (B), (C), (D),
(G), strictly (B) – strictly (D), strictly (G), (L), strictly (L), or

(b) let θ be a morphism and let P be one of the properties (B), (C), (D), (H),
(I), strictly (B) – strictly (D), strictly (H), strictly (I), (L), strictly (L).

Then there is an algorithm deciding whether there is a w ∈ M \ L such that
L ∪ {w} satisfies P.

Algorithms deciding the maximality of these properties can require an ex-
ponential time w.r.t. the size of an NFA accepting L. The same holds when
we want to construct a maximal regular set of DNA strands satisfying these
bond-free properties. In two important cases, however, a polynomial time can
be achieved [65]: (i) for maximality of regular non-overlapping sets satisfying
the property (A), and (ii) for maximality of finite θ-compliant sets satisfying
the property (B).

5.4 Preventing Imperfect DNA-DNA Bonds

In Section 5.2 and 5.3 we presented properties of DNA codes based on the
assumption that hybridization binds only two perfectly WK complementary
single-stranded DNA molecules. In reality, however, thermodynamical laws al-
low for hybridization also in cases of some ‘roughly’ complementary molecules
with certain irregularities in the WK complementarity sense. This section de-
scribes properties of languages that ensure that even such imperfect bindings
can be described and eventually prevented.

As we have already mentioned, the negative design problem is rather compu-
tationally expensive when using thermodynamical methods. Various approxi-
mative methods using discrete similarity metrics have been therefore studied. In
[84] and [106], the authors considered codes K of length k satisfying the follow-
ing property (H(u, v) is the Hamming distance, i.e., the number of mismatches
at corresponding positions, between words u and v of the same length).

X[d, k]: If u and v are any codewords in K then H(u, τ(v)) > d.

In fact the above property is studied in conjunction with the uniqueness property
H(K) > d – here H(K) is the smallest Hamming distance between any two
different words in K.

The reference [46] introduced the H-measure based on Hamming distance
for two words x and y of length k and explained how this measure can be used to
encode instances of the Hamiltonian Path Problem. This measure was also used
in [47] to search optimal codes for DNA computing using the shuffle operation
on DNA strands. A similar measure was defined in [6, 7] extending the work
of [45] and was applied to codes of length k whose words can be concatenated
in arbitrary ways. Thus, the tube language here was L = K+. The code K
satisfied certain uniqueness conditions. In particular, the tube language L = K+

satisfied the following property.

30

5’- v A A G C G T T C G A w -3’

\ \ | | | | | |

3’-z T T G C A G G C T y -5’

Figure 15: Two DNA molecules in which the parts 5′ − AAGCGTTCGA − 3′

and 5′ − TCGGACGTT − 3′ bind together although these parts have different
lengths.

Y[d, k]: If x is a subword of L of length k and v is a codeword in K then
H(x, τ(v)) > d.

This property was considered also in [96] for tube languages of the form
K1K2 · · ·Km, where each Ki is a certain code of length k.

Finally, [64] introduced the following property of a tube language L, moti-
vated by the fact that the above defined properties X, Y still allow for certain
types of undesired bonds between DNA codewords.

Z[d, k]: If x and y are any subwords of L of length k then H(x, τ(y)) > d.

The reader can observe that the property X is a generalization of (A) from the
previous section. Similarly, Y is a generalization of (B) and Z generalizes (L).
Note that any set L satisfying property Z[d, k] satisfies also Y[d, k]. Further
relations among different bond-free properties using similarity measures were
studied in [64].

The choice of the Hamming distance in the condition H(x, τ(y)) ≤ d for
similarity between words is a very natural one and has attracted a lot of interest
in the literature. One might argue, however, that parts of two DNA molecules
could form a stable bond even if they have different lengths. In Figure 15, for
example, the bound parts of the two molecules have lengths 10 and 9. Such
hybridizations (and even more complex ones) were addressed in [5]. Based on
this observation, the condition for two subwords x and y to bind together should
be

|x|, |y| ≥ k and Lev(x, τ(y)) ≤ d.

The symbol Lev(u, v) denotes the Levenshtein distance between the words u
and v – this is the smallest number of substitutions, insertions and deletions of
symbols required to transform u into v.

To establish a general framework which would cover both the similarity mea-
sure H, Lev and possibly also others, [64] considered a general binary relation
γ on words over Σ, i.e., a subset of Σ∗ × Σ∗. The expression ‘(u, v) is in γ’ can
be rephrased as ‘γ(u, v) is true’ when we view γ as a logic predicate. A binary
relation is called rational if it can be realized by a finite transducer.

Definition 5.14 ([64]) A binary relation sim is called a similarity relation with
parameters (t, l), where t and l are non-negative integers, if the following con-
ditions are satisfied.

31

(i) If sim(u, v) is true then abs(|u| − |v|) ≤ t, where abs is the absolute value
function.

(ii) If sim(u, v) is true and |u|, |v| > l then there are proper subwords x and y
of u and v, respectively, such that sim(x, y) is true.

We can interpret the above conditions as follows: (i) the lengths of two
similar words cannot be too different and (ii) if two words are similar and long
enough, then they contain two similar proper subwords.

We shall use the notation Hd,k for the relation ‘|u|, |v| ≥ k and H(u, v) ≤ d’,
and Levd,k for ‘|u|, |v| ≥ k and Lev(u, v) ≤ d’. It is evident that the Hd,k is an
example of a rational similarity relation with parameters (0, k). It is also easy
to show that Levd,k is a rational similarity relation as well, with parameters
(d, d + k).

Based on the above definition, for any similarity relation sim(·, ·) between
words and for every involution θ, we define the following property of a language
L with strong mathematical properties.

P[θ, sim]: If x and y are any nonempty subwords of L then sim(x, θ(y)) is false.

Any language satisfying P[θ, sim] is called a (θ, sim)-bond-free language. Al-
though this property seems to be quite general and covering many possible
situations, we show that it is only a special case of the strict bond-freeness
defined in Section 5.3.

Theorem 5.15 ([64]) P[θ, sim] is a strictly bond-free property.

Proof. We define the mappings simL and simR as follows:

simL(y) = {x ∈ Σ∗ | sim(x, y)},

simR(x) = {y ∈ Σ∗ | sim(x, y)}.

Recall that a language L is (θ, sim)-bond-free iff

∀x1, y1, x2, y2 ∈ Σ∗, w1, w2 ∈ Σ+

(x1w1y1, x2w2y2 ∈ L) ⇒ not sim(w1, θ(w2)) iff

∀x1, y1, x2, y2 ∈ Σ∗, w1, w2 ∈ Σ+

(x1w1y1, x2θ(w2)y2 ∈ L) ⇒ not sim(w1, w2) iff

∀x1, w1, y1, x2, w2, y2 ∈ Σ∗

(x1w1y1, x2θ(w2)y2 ∈ L, w2 ∈ simR(w1)) ⇒ (w1 = λ or w2 = λ) iff

∀x1, y1, x2, y2, w ∈ Σ∗

({x1wy1} ∩ L 6= ∅, {x2} · θ(simR(w) ∩ Σ+) · {y2} ∩ L 6= ∅) ⇒ w = λ iff

∀x, y, w ∈ Σ∗

(w⊔⊔T x ∩ L 6= ∅, θ(simR(w))⊔⊔T y ∩ L 6= ∅) ⇒ w = λ,

32

where T = 1∗0+1∗. 2

Therefore, we have obtained an expression corresponding to the definition
of strictly bond-free property. Notice that results analogous to Theorem 5.15
could be proved also for the properties X[d, k], Y[d, k] and Z[d, k]. Observe,
furthermore, that the operation on words w and y defined as θ(simR(w))⊔⊔T y is
‘almost’ ⊔⊔T , and hence some results from Section 5.3 are applicable in the case
of (θ, sim)-bond-free languages, provided that the relation sim is ‘reasonable.’

Theorem 5.16 ([64]) Let sim be a rational relation. The following problem is
decidable in quadratic time w.r.t. |A|.

Input: An NFA A.

Output: YES/NO, depending on whether L(A) is a (θ, sim)-bond-free language.

For the case where sim is one of the similarity relations Hd,k or Levd,k, the
algorithm runs at time O(dk|A|2) (or O(dk2|A|2), respectively). The (θ, sim)-
bond-freeness remains decidable even in the case of context-free tube languages,
although the existence of a polynomial time algorithm cannot be guaranteed.

Two problems related to the design of large sets of bond-free molecules,
the optimal negative design problem and the maximality problem have been ad-
dressed, too. Both were formally specified in previous sections. The optimal
negative design problem remains NP complete even for finite tube languages
in the case of various similarity metrics. The problem of maximality of regular
(θ, sim)-bond-free languages has been shown decidable in [64], although the exis-
tence of a polynomial-time algorithm cannot be generally guaranteed. However,
rather surprisingly, in the important Hamming case such an algorithm exists.
Let us consider languages that are subsets of (Σk)+, for some positive integer
k. We call such languages k-block languages. Naturally, any regular k-block
language can be represented by a special type of lazy DFA [109], which we call
a k-block DFA.

Theorem 5.17 ([64]) Let d be fixed to be either 0 or 1. The following problem
is computable in a polynomial time.

Input: k-block DFA A such that L(A) is a (θ, Hd,k)-bond-free subset of (Σk)+.

Output: YES/NO, depending on whether the language L(A) is maximal with
that property. Moreover, if L(A) is not maximal, output a minimal-length
word w ∈ (Σk)+\L(A) such that L(A)∪{w} is a (θ, Hd,k)-bond-free subset
of (Σk)+.

In particular, the time complexity t(|A|) is bounded as follows:

t(|A|) =

O(k|A|3), if k is odd and d = 0;
O(|A|6), if k is even and d = 0;
O(k3|A|6), if d = 1.

33

The concept of (θ, sim)-bond-free languages is quite general and could cover
also subtler similarity measures than the Hamming or Levenshtein distance.
Consider the original nearest-neighbour thermodynamical approach to the hy-
bridization problem [101]. The calculation of ∆Gmin, the minimum free energy
among the free energies of all possible secondary substructures that may be
formed by the examined DNA sequences, is frequently used to determine the
most likely secondary structure that will actually form. Assume secondary sub-
structures of a size limited from above (say, of at most 25 bp), which is reason-
able from the practical point of view. Let us consider two DNA sequences similar
if and only if they contain subsequences satisfying the condition ∆Gmin ≥ B,
where B is a threshold value for hybridization energy (the ‘all or nothing’ hy-
bridization model). Such a similarity relation obviously fulfills the conditions
of Definition 5.14 and, furthermore, it is rational (even finite). Therefore, for a
fixed value of B, the hybridization analysis can possibly benefit from the above
mentioned results and rapid algorithms.

We conclude with two examples of a construction of DNA codes in the Ham-
ming case. The first example is based on the method of k-templates proposed
originally in [7]. This method allows to produce codes which are subsets of
(Σk)+.

Theorem 5.18 ([64]) Let I be a nonempty subset of {1, . . . , k} of cardinality
m = ⌊k/2⌋ + 1 + ⌊(d + (k rem 2))/2⌋. Then the language K+ is (τ, Hd,k)-bond-
free, where

K = {v ∈ Σk | if i ∈ I then v[i] ∈ {A, C}}.

Observe that the size of the code K is 2m4k−m. An advantage of the method
of Theorem 5.18 is that we can construct (τ, Hd,k)-bond-free languages with a
large ratio d/k.

Another method is based on the operation of subword closure K⊗ of a set
K ⊆ Σk :

K⊗ = {w ∈ Σ∗ | |w| ≥ k, Subk(w) ⊆ K}.

Denote further K⊕ def
= K⊗ ∩ (Σk)+. The following theorem characterizes all

maximal (τ, Hd,k)-bond-free subsets of (Σk)+ and ΣkΣ∗.

Theorem 5.19 ([64]) The class of all maximal (τ, Hd,k)-bond-free subsets of
(Σk)+ is finite and equal to

{K⊕ | K is a maximal (τ, Hd,k)-bond-free subset of Σk}.

The above theorem holds also for subsets of ΣkΣ∗ if we replace K⊕ with K⊗.
As a consequence, if one constructs a maximal finite subset K of Σk satisfying
τ(K) ∩ Hd(K) = ∅, then the language K⊕ is a maximal (τ, Hd,k)-bond-free
subset of (Σk)+. Another implication of Theorem 5.19 is that all maximal
(τ, Hd,k)-bond-free subsets of (Σk)+ or ΣkΣ∗ are regular.

To conclude, in Section 5 we characterized several basic types of DNA inter-
action based on Watson-Crick complementarity, using the apparatus of formal

34

language and automata theory. Besides its value as a contribution to theoretical
computer science, the main application of this research is the description and
construction of sets of DNA molecules (called also DNA codes) which are free
of certain types of unwanted binding interactions. These codes are especially
useful in DNA computing and many other laboratory techniques which assume
that an undesirable hybridization between DNA molecules does not occur. We
have shown that a uniform mathematical characterization exists for many types
of DNA bonds, both perfect and imperfect with respect to the WK complemen-
tarity principle. This characterization, in turn, implies the existence of effective
algorithms for manipulation and construction of these DNA codes.

6 Vectorial Models of DNA-Based Information

In Section 5 we saw that formal language theory is a natural tool for modelling,
analyzing, and designing “good” DNA codewords which control DNA strand
inter- and intra-molecular interactions based on Watson-Crick complementarity.
This was achieved by formalizing a DNA single-strand in the 5’- 3’ orientation
as a linear word over the DNA alphabet {A, C, G, T}. A limitation of this
representation of DNA single strand as words is that it does not model double-
stranded DNA molecules, partially double-stranded DNA molecules (such as
DNA strands with sticky ends), or interactions between DNA single strands
that may lead to double strands.

This section offers an alternative natural way of representing DNA strands,
namely as vectors. A (single, partially double-stranded or fully double-stranded)
DNA molecule is modelled namely by a vector whose first component is a word
over the DNA alphabet representing the “top” strand, and the second compo-
nent is a word over the DNA alphabet representing the “bottom” strand. Using
this representation one can model naturally the operations of annealing and
ligation.

We now introduce two computational models that use this representation of
DNA strands: a language generating device called sticker system (Section 6.1)
[44, 73, 93], and its automata counterpart, Watson-Crick automata (Section 6.2)
[44]. A summary of essential results on these topics can be found in [94].

We start by introducing a vectorial formalism of the notions of DNA single
strand, double strand and partial double strand, as well of the bio-operations
of annealing (hybridization) and ligation. Other notions and notations we use
here have been defined in Section 5.1.

The notion of Watson-Crick complementarity is formalized by a symmetric
relation. A relation ρ ⊆ Σ × Σ is said to be symmetric if for any a, b ∈ Σ,
(a, b) ∈ ρ implies (b, a) ∈ ρ. In order to define a symmetric relation ρ, it suffices
to specify one of (a, b) and (b, a) as long as we explicitly note that ρ is symmetric.

DNA strands are modelled by 2×1 vectors, wherein the first row corresponds
to the “top” DNA strand and the second row corresponds to the “bottom” DNA
strand. In this formalism, DNA double strands are modelled as 2 × 1 vectors
in square brackets where the top word is in relation ρ with the bottom word,

35

while DNA single strands are modelled as 2×1 vectors in round brackets where

one of the rows is the empty word. More concretely, we write

[
a
b

]

ρ

if two letters

a, b are in the relation ρ. Whenever ρ is clear from context, the subscript ρ is
omitted. We now define an alphabet of double-stranded columns

Σd =

[
Σ
Σ

]

ρ

∪

(
Σ
λ

)
∪

(
λ
Σ

)
,

where

[
Σ
Σ

]

ρ

=

{[
a
b

] ∣∣∣∣ a, b ∈ Σ, (a, b) ∈ ρ

}
,

(
Σ
λ

)
=

{(
a
λ

) ∣∣∣∣ a ∈ Σ

}
, and

(
λ
Σ

)
=

{(
λ
b

) ∣∣∣∣ b ∈ Σ

}
.

The Watson-Crick domain associated to Σ and ρ is the set WKρ(Σ) defined

as WKρ(Σ) =

[
Σ
Σ

]∗

ρ

. An element

[
a1

b1

] [
a2

b2

]
· · ·

[
an

bn

]
∈ WKρ(Σ) can be written

as

[
a1a2 · · ·an

b1b2 · · · bn

]
succinctly. Note that

(
w1

w2

)
means no more than a pair of words

w1, w2, whereas

[
w1

w2

]
imposes that |w1| = |w2| and their corresponding letters

are complementary in the sense of the relation ρ. Elements of WKρ(Σ) are
called complete double-stranded sequences or molecules. Moreover, we denote
WK+

ρ (Σ) = WKρ(Σ) \ {(λ, λ)}.
Note that elements of WKρ(Σ) are fully double-stranded. In most DNA com-

puting experiments, e.g., Adleman’s first experiment, partially double-stranded
DNA, i.e., DNA strands with sticky ends, are essential. To introduce sticky
ends in the model, let S(Σ) =

(
λ
Σ∗

)
∪

(
Σ∗

λ

)
be the set of sticky ends. Then we

define a set Wρ(Σ) whose elements are molecules with sticky ends at both sides
as Wρ(Σ) = Lρ(Σ) ∪ Rρ(Σ) ∪ LRρ(Σ), where

Lρ(Σ) = S(Σ)WKρ(Σ)

Rρ(Σ) = WKρ(Σ)S(Σ)

LRρ(Σ) = S(Σ)WK+
ρ (Σ)S(Σ).

Note that unlike an element in Lρ(Σ) or Rρ(Σ), elements of LRρ(Σ) must have

at least one “column”

[
a
b

]
. Any element of Wρ(Σ) with at least a position

[
a
b

]
,

a 6= λ, b 6= λ, is called a well-started (double stranded) sequence. Thus, LRρ(Σ)
is equivalent to the set of all well-started sequences.

Annealing and ligation of DNA molecules can be modelled as a partial op-
eration among elements of Wρ(Σ). A well-started molecule can be prolonged
to the right or to the left with another molecule, provided that their sticky
ends match. We define “sticking y to the right of x” operation, denoted by
µr(x, y). In a symmetric way, µℓ(y, x) (sticking y to the left of x) is defined.
Let x ∈ LRρ(Σ) and y ∈ Wρ(Σ). Being well-started, x = x1x2x3 for some

36

x1, x3 ∈ S(Σ), x2 ∈ WK+
ρ (Σ). Then µr(x, y) is defined as follows (also see

Figure 16):

Case A If y is single-stranded, that is, y ∈ S(Σ), we have the following cases:
for r, p ≥ 0,

1 If x3 =

(
a1 · · ·ar

λ

)
and y =

(
ar+1 · · ·ar+p

λ

)
,

then µr(x, y) = x1x2

(
a1 · · ·arar+1 · · ·ar+p

λ

)
.

2 If x3 =

(
a1 · · ·ar

λ

) (
ar+1 · · ·ar+p

λ

)
, y =

(
λ

b1 · · · br

)
, and (ai, bi) ∈ ρ

for 1 ≤ i ≤ r, then µr(x, y) = x1x2

[
a1 · · ·ar

b1 · · · br

](
ar+1 · · ·ar+p

λ

)
.

3 If x3 =

(
a1 · · ·ar

λ

)
, y =

(
λ

b1 · · · br

) (
λ

br+1 · · · br+p

)
, and (ai, bi) ∈ ρ

for 1 ≤ i ≤ r, then µr(x, y) = x1x2

[
a1 · · ·ar

b1 · · · br

](
λ

br+1 · · · br+p

)
.

4 The counterparts of cases A1 – A3 where the roles of upper and lower
strands are reversed.

Case B If y is well-started (partially double-stranded), that is, y = y1y2y3 for
some y1, y3 ∈ S(Σ) and y2 ∈ WK+

ρ (Σ): for r ≥ 0,

1 If x3 =

(
a1 · · ·ar

λ

)
, y1 =

(
λ

b1 · · · br

)
, and (ai, bi) ∈ ρ for 1 ≤ i ≤ r,

then µr(x, y) = x1x2

[
a1 · · ·ar

b1 · · · br

]
y2y3.

2 The counterpart of case B1 when the roles of upper and lower strands
are reversed.

If none of these cases applies, µr(x, y) is undefined. Note that in all cases, r
can be 0, that is, the system is allowed to prolong the blunt ends of molecules.
Moreover, we have µr(x,

(
λ
λ

)
) = µℓ(

(
λ
λ

)
, x) = x for any x ∈ LRρ(Σ).

Note also that this vectorial model of DNA molecules allows – unlike its
linear counterpart presented in the previous section – the differentiation be-
tween single-stranded DNA molecules, double-stranded DNA molecules, and
DNA molecules with sticky ends, as well as for modelling of DNA-DNA inter-
actions such as annealing and ligation.

6.1 Sticker Systems

Sticker systems are formal models of molecular interactions occurring in DNA
computing, based on the sticking operation. Several variants of sticker systems
have been defined in the literature. In this section we describe the simple regu-
lar sticker system, which is the most realistic variant but which is weak in terms

37

Case A-1

Case A-2

Case A-3

Case B-1 or

x1 x2
x3 y

x1 x2 x3 y

x1 x2
x3

y
x1 x2 x3

y

x1 x2
x3

y
x1 x2 x3

y

x1 x2
x3

y1
y2 y3 x1 x2 x3

y1 y2 y3

Figure 16: Sticking operations: prolongation of a well-started molecule to the
right.

of generating capacity. We also introduce two practical ways to strengthen
this variant: by using some complex DNA structures (Section 6.1.1), and by
observing the sticker system externally (Section 6.1.2). Both enhance the com-
putational power of the sticker system to Turing universality.

A sticker system prolongs given well-started DNA molecules, both to the
left and to the right, by using the sticking operation, so as to turn them into
complete double-stranded molecules. This system is an appropriate model of
molecular interaction occurring, e.g., in Adleman’s 1994 experiment, and was
proposed under the name bidirectional sticker system [43].

A (bidirectional) sticker system over a relation ρ is a 4-tuple γ = (Σ, ρ, A, P),
where Σ is an alphabet endowed with the symmetric relation ρ ⊆ Σ × Σ, A ⊆
LRρ(Σ) is a finite subset of well-started sequences (axioms), and P is a finite
subset of Wρ(Σ) × Wρ(Σ). Starting from an axiom in A, the system prolongs
it with using a pair in P as follows:

x ⇒γ w iff w = µr(µℓ(y, x), z) for some (y, z) ∈ P.

In other words, x ⇒γ w iff sticking y to the left and z to the right of x results
in w. The reflexive and transitive closure of ⇒γ is denoted by ⇒∗

γ . A sequence
x1 ⇒γ x2 ⇒γ . . . ⇒γ xk, x1 ∈ A, is called a computation in γ (of length k − 1).
A computation as above is complete if xk ∈ WK+

ρ (Σ).
The set of all molecules over Σ generated by complete computations in γ

is defined as: LM(γ) = {w ∈ WK+
ρ (Σ) | x ⇒∗

γ w, x ∈ A}. We can also
consider the sticker systems as a generator of languages of strings rather than
double-stranded molecules. To this aim, the following language is associated
with LM(γ):

L(γ) =

{
w ∈ Σ∗

∣∣∣∣

[
w
w′

]

ρ

∈ LM(γ) for some w′ ∈ Σ∗

}
.

A language L is called a sticker language if there exists a sticker system γ such
that L(γ) = L.

38

A sticker system γ = (Σ, ρ, A, P) is said to be simple (respectively regular)
if for each pair (y, z) ∈ P , y, z ∈ S(Σ) (respectively y = λ). A simple regular
system extends either the upper or lower strand, one at a time (hence the
attribute “simple”), and only to the right (hence the attribute “regular”). Thus,
a simple regular sticker system can be rewritten as 5-tuple (Σ, ρ, A, Du, Dℓ),
where Du and Dℓ are finite subsets of

(
Σ∗

λ

)
and

(
λ
Σ∗

)
, respectively. The family

of languages generated by simple regular sticker systems is denoted by SRSL(n),
where n means “no-restriction”. This variant is the most precise and realistic
model of the annealing/ligation-based hybridization occurring in the Adleman’s
experiment. In fact, since being proposed in [73], this type of sticker system has
been intensively investigated.

A normal form for sticker systems with respect to the relation ρ was intro-
duced in [55] for simple regular variants, and in [77] for general sticker systems.
It says that the identity relation id suffices to generate any sticker language.

Theorem 6.1 ([55], [77]) For a sticker system γ over a relation ρ, one can
construct a sticker system γ′ over the identity relation id such that L(γ) = L(γ′).

Proof. The ideas proposed in [55] and [77] are essentially the same; they work
for arbitrary bidirectional sticker systems. Here we present their proofs applied
to regular (uni-directional) sticker systems to suggest the fact that the identity
relation suffices also for Watson-Crick automata introduced later.

Let γ = (Σ, ρ, A, Pr) be a regular sticker system. We construct a regular
sticker system γ′ = (Σ, id, A′, P ′

r), Figure 17, where

A′ =

{(
x0

z0

) ∣∣∣∣

(
x0

y0

)
∈ A for some y0 such that

[
z0

y0

]

ρ

}
,

P ′
r =

{(
xi

zi

) ∣∣∣∣

(
xi

yi

)
∈ Pr for some yi such that

[
zi

yi

]

ρ

}
.

x0 x1 xn

z0 z1 zm

y0 y1 ym

id

ρ

ρ

Figure 17: The idea of the proof of Theorem 6.1. For any sticker system γ over
a relation ρ, one can construct a sticker system γ′ over the identity relation,
such that L(γ) = L(γ′). The newly-constructed sticker system γ′, based on id,
simulates the process of γ to generate (x, y) ∈ WK+

ρ (Σ) where x = x0x1 · · ·xn

and y = y0y1 · · · ym, by generating (x, z) ∈ WK+
id(Σ), where z = z0z1 · · · zm.

39

Assume that x ∈ L(γ), i.e., there is a word y such that (x, y) ∈ WK+
ρ (Σ),

x = x0x1 · · ·xn and y = y0y1 · · · ym, where (x0, y0) ∈ A, and (xi, yj) ∈ P ′
r

(1 ≤ j ≤ m). Due to the symmetric property of ρ, x can also be written as
the catenation of words z0 and z1, . . . , zm ∈ Σ∗ such that (zk, yk) ∈ WKρ(Σ)
(0 ≤ k ≤ m). According to the definition of A′, (x0, z0) ∈ A′, and (xj, zj) ∈ P ′

r

(1 ≤ j ≤ m). As a result,

[
x0x1 · · ·xn

z0z1 · · · zm

]

id

=

[
x
x

]

id

∈ LM(γ′), and hence

x ∈ L(γ′). The proof that L(γ′) ⊆ L(γ) is similar. 2

As mentioned in the previous proof, this theorem proved to be valid for
general sticker systems in [77]. Moreover, in the paper, the authors show that
an analogous result holds even for Watson-Crick automata, that is, the identity
relation suffices for WK-automata. From a historical viewpoint of theory of
computation, the normal forms for grammars and acceptors have proved useful
tools. Analogously, Theorem 6.1 will be useful for several proofs in the rest of
this section.

The simple regular sticker system is one of the most “natural” computational
models for annealing/ligation-based hybridization. Kari et al. initiated in [73]
an investigation into the generative capacity of general sticker systems, including
the simple regular variant, and the investigation continued in [43], [93]. The
conclusion was that some classes of sticker systems can even characterize the
recursively enumerable languages. On the contrary, the simple regular variant
turned out to be quite weak.

Theorem 6.2 ([73], [94]) SRSL(n) (REG = Cod(SRSL(n)).

Thus, this “natural variant” of sticker systems has no more generative power
than finite automata, even with the aid of encoding.

In [73], the notion of fair computation was proposed. Let γ be a simple
regular sticker system. A complete computation in γ is said to be fair if through
the computation, the number of extensions occurring on the upper strand is
equal to the number of extensions occurring on the lower strand. A language L
is called a fair sticker language if there exists a simple regular sticker system γ
such that L is the set of all words which are generated by fair computations in
γ. The family of fair sticker languages is denoted by SRSL(f).

It is known that REG (Cod(SRSL(f)) and also that we cannot obtain
characterizations of RE starting from languages in SRSL(f) and using an ar-
bitrary generalized sequential machine (gsm) mapping, including a coding (see
[94]). Hence the question of whether SRSL(f) is included in CF (or even in LIN)
arose. The answer to these question was obtained in [55]. Firstly, we introduce
their example to show that SRSL(f) 6⊆ LIN.

Example 1 Let γ = ({a, b, c, d}, ρ, A,Du, Dℓ) be a simple regular sticker sys-

tem, where ρ = {(a, a), (b, b), (b, c), (d, d)}, A =

{[
d
d

]}
, Du =

{(
aa
λ

)
,

(
b
λ

)}
,

and Dℓ =

{(
λ
a

)
,

(
λ
bc

)}
. This is a technical modification of Example

40

2 from [55] in order to make an axiom well-started. Then LMn(γ) =[
d
d

]{[
aa
aa

]
,

[
bb
bc

]}∗

, and hence Ln(γ) = d{aa, bb}∗, Lf (γ) = {x ∈ Ln(γ) |

#a(x) = #b(x)}. The pumping lemma for linear languages can be used to
prove that Lf (γ) is not linear.

Theorem 6.3 ([55]) SRSL(f) (Cod(SRSL(f)) (CF.

Kari et al. imposed an additional constraint on fair computations called
coherence in [73], the use of which leads to a representation of RE. In the rest of
this section, we introduce two new approaches to the problem of how to obtain
characterizations of RE by using sticker systems augmented with more practical
assumptions. Regarding the generative capacity and further topics about sticker
systems, the reader is referred to the thorough summary in Chapter 4 of [94].

6.1.1 Sticker Systems with Complex Structures

Sakakibara and Kobayashi [99] proposed a novel use of stickers, that involved
the formation of DNA hairpins. In Section 5, a hairpin was modelled as a linear
word w1a1 · · ·anw2bn · · · b1w3, where (ai, bi) ∈ ρ, 1 ≤ i ≤ n. Here we represent

the same hairpin vectorially as

(
〈w2〉
w1|w3

)
∈

(
Σ∗

Σ∗

)
as shown in Figure 18. This

hairpin-shaped molecule may stick to other molecules by its two sticky ends
w1 and w3 or by its loop part w2. The sets of this type and inverted type of
hairpins are denoted by Tu(Σ) and Tℓ(Σ), respectively, i.e.,

Tu(Σ) =

{(
〈w2〉
w1|w3

) ∣∣∣∣ w1, w2, w3 ∈ Σ∗

}
, Tℓ(Σ) =

{(
w1|w3

〈w2〉

) ∣∣∣∣ w1, w2, w3 ∈ Σ∗

}
,

w1

w2

w3

y

aa cc
tt gg

x

Figure 18: (Left) A hairpin which the word w1a1 · · ·anw2bn · · · b1w3 may form
if (ai, bi) ∈ ρ, 1 ≤ i ≤ n; the sticky ends w1, w3 or the hairpin loop w2 can
bind to other molecules; (Middle) Two hairpins stick to the lower strand via
their sticky ends, leaving sticky ends at both ends of the lower strand; (Right)
Two “complete” molecules can bind together via their hairpin loops, if they are
matched as shown.

41

The operation of “sticking a hairpin x =

(
〈w2〉
w1|w3

)
onto a single-stranded

molecule y” is defined whenever y = y1y2y3, and y2 is complementary to w1w3

as follows:

µ(y, x) =

〈w2〉(

λ
y1

) [
w1|w3

y2

] (
λ
y3

)

 .

Moreover, this operation µ(y, x) is extended to the general case; for a molecule,

z =

〈u1〉 〈u2〉 · · · 〈un〉(

λ
z0

) [
t1|v1

z1

] [
t2|v2

z2

]
· · ·

[
tn|vn

zn

] (
λ

zn+1zn+2

)

such that w1w3 is complementary to zn+1, µ(z, x) is defined as:

µ(z, x) =

〈u1〉 〈u2〉 · · · 〈un〉 〈w2〉(

λ
z0

) [
t1|v1

z1

] [
t2|v2

z2

]
· · ·

[
tn|vn

zn

] [
w1|w3

zn+1

] (
λ

zn+2

)

Thus, this sticking operation forms “multiple hairpins” structures as illustrated
in Figure 18 (Middle). The set of molecules with this type of structures and the
set of molecules with inverted structures are denoted by TWu(Σ) and TWℓ(Σ),
respectively, that is,

TWu(Σ) =

λ
λ
Σ∗

〈Σ∗〉[
Σ∗

Σ∗

]

∗

λ
λ
Σ∗

 , TWℓ(Σ) =

Σ∗

λ
λ

[
Σ∗

Σ∗

]

〈Σ∗〉

∗

Σ∗

λ
λ

Similarly the hybridization operation µ(z, x) is defined for z ∈ TWℓ(Σ) and

x ∈ Tℓ(Σ). Note that
(

λ
λ
x

)
∈ TWℓ(Σ) or

(
x
λ
λ

)
∈ TWu(Σ) can be regarded as

a word x ∈ Σ∗. Hence we will give also a word as a first argument of µ in the
following. Now we can define another type of “complete” molecules, namely
elements in the set TWK(Σ) = TWKu(Σ) ∪ TWKℓ(Σ), where

TWKu(Σ) =

〈Σ∗〉[
Σ∗

Σ∗

]

∗

, TWKℓ(Σ) =

[
Σ∗

Σ∗

]

〈Σ∗〉

∗

.

Secondly, we consider another sticking operation for the loop (w2 of x) of
a hairpin, which is illustrated in Figure 18 (Right). Consider two complete
molecules x ∈ TWKu(Σ) and y ∈ TWKℓ(Σ) defined as:

x =

〈s1〉 〈s2〉 · · · 〈sn〉[
r1|t1
x1

] [
r2|t2
x2

]
· · ·

[
rn|tn
xn

]

 , y =

[
y1

u1|w1

] [
y2

u2|w2

]
· · ·

[
yn

un|wn

]

〈v1〉 〈v2〉 · · · 〈vn〉

 .

42

When si is complementary to vi (1 ≤ i ≤ n), φ(x, y) is defined as:

φ(x, y) =

[
y1

u1|w1

] [
y2

u2|w2

]
· · ·

[
yn

un|wn

]

[
〈v1〉
〈s1〉

] [
〈v2〉
〈s2〉

]
· · ·

[
〈vn〉
〈sn〉

]

[
r1|t1
x1

] [
r2|t2
x2

]
· · ·

[
rn|tn
xn

]

.

Thus, for two complete molecules x ∈ TWKu(Σ) and y ∈ TWKℓ(Σ), φ(x, y) is
well-defined to be an element of the set

DTWK(Σ) =

[
Σ∗

Σ∗

]

[
〈Σ∗〉
〈Σ∗〉

]

[
Σ∗

Σ∗

]

∗

.

A sticker system with complex structures is a 4-tuple γ = (Σ, ρ, Du, Dℓ),
where Du and Dℓ are finite subsets of Tu(Σ) and Tℓ(Σ), respectively. For
molecules x, y ∈ TWu(Σ), we write x ⇒u y if y = µ(x, v) for some v ∈ Du.
Analogously, for x′, y′ ∈ TWℓ(Σ), we write x′ ⇒ℓ y′ if y′ = µ(x′, v′) for some
v′ ∈ Dℓ. The reflexive and transitive closures of these operations are denoted
by ⇒∗

u and ⇒∗
ℓ .

A sequence x1 ⇒α x2 ⇒α · · · ⇒α xk, with x1 ∈ Σ∗ and α ∈ {u, ℓ}, is called
a computation in γ. (In this context, x1, the start of the computation, can be
regarded as either a word in Σ∗ or an element of TWα(Σ).) A computation
x1 ⇒∗

α xk is said to be complete when xk ∈ TWKα(Σ). Suppose that we have
two complete computations x ⇒∗

u y and x ⇒∗
ℓ z for a word x ∈ Σ∗. When φ(y, z)

becomes a complete matching, that is, φ(y, z) ∈ DTWK(Σ), this computation
process is said to be successful. The following language is associated with γ:

L(γ) = {x ∈ (Σ \ {#})∗ | x# ⇒∗
u y, y ∈ TWKu(Σ),

x# ⇒∗
ℓ z, z ∈ TWKℓ(Σ), and φ(y, z) ∈ DTWK(Σ)}.

Thus, we can consider this system as a language accepting device. The family
of languages accepted by sticker systems with complex structures is denoted by
SLDT.

Now we show that the use of hairpins enables us to characterize RE based
on the following lemma.

Lemma 6.1 ([73]) For each recursively enumerable language L ⊆ Σ∗, there
exist two λ-free morphisms h1, h2 : Σ∗

2 → Σ∗
1, a regular language R ⊆ Σ∗

1, and a
projection prΣ : Σ∗

1 → Σ∗ such that L = prΣ(h1(EQ(h1, h2)) ∩ R).

Theorem 6.4 ([99]) Every recursively enumerable language is the weak coding
of a language in the family SLDT.

43

h2(ai)

h1(ai)

ai

Figure 19: A brief sketch of the proof for Theorem 6.4. Two hairpins, one with
sticky end h1(ai) and the other with sticky end h2(ai), binding together via
their matching loops, can be abstracted as a finite control (square) labelled by
ai, with two heads (bifurcated allows). The control checks for each i, 1 ≤ i ≤ n,
if the single-stranded part of the upper strand begins with h2(ai), and the lower
strand begins with h1(ai); if so, then the corresponding hairpins are sticked.
This process is repeated until either this system cannot proceed in this way any
more or it generates a complete matching of two complete molecules. In fact
this system is essentially equivalent to Watson-Crick automata, which will be
introduced in Section 6.2.

Proof. Let L ∈ RE. Due to Lemma 6.1, L can be obtained from
h1(EQ(h1, h2)) ∩ R by a projection, where h1, h2 : Σ∗

2 → Σ∗
1 are λ-free mor-

phisms, and R ∈ REG. Hence it suffices to construct a sticker system with
complex structures γ which accepts an encoding of h1(EQ(h1, h2)) ∩ R. Con-
sider a complete deterministic finite automaton M = (Q, Σ1, δ, q0, F) for R,
where Q = {q0, q1, . . . , qm}. Any word w = b1b2 · · · bk (bi ∈ Σ1) is encoded
uniquely as ql0b1ql1ql1b2ql2 · · · qlk−1

bkqlkqlk , where ql0 = q0, ql1 , . . . , qlk ∈ Q such
that δ(qlj−1

, bj) = qlj for 1 ≤ j ≤ k. So w ∈ R iff qlk ∈ F .
Let Σ2 = {a1, . . . , an}, and for each ai, let h1(ai) = c1c2 · · · cki

(cj ∈ Σ1).
Note that for an arbitrary state in Q, there is a unique transition on M by h1(a1)
because M is a complete deterministic automaton. Thus, a set of encodings of
all such transitions is defined for each ai ∈ Σ2 as follows:

T1(h1(ai)) =
⋃

ql0
∈Q

{ql0b1ql1 · · · qlki−1
bki

qlki
| δ(qlj−1

, bj) = qlj , 1 ≤ j ≤ ki}.

Following the same idea, T2(h2(ai)) is defined for each ai ∈ Σ2. Now γ is
constructed as (Σ1 ∪ Σ2 ∪ Q ∪ {#}, id, Du ∪ Dℓ), where

Dℓ =

{(
t2
〈ai〉

) ∣∣∣∣ t2 ∈ T2(h2(ai))

}
∪

{(
qf #
〈#〉

) ∣∣∣∣ qf ∈ F

}
,

Du =

{(
〈ai〉
t1

) ∣∣∣∣ t1 ∈ T1(h1(ai))

}
∪

{(
〈#〉
qf #

) ∣∣∣∣ qf ∈ F

}
.

Figure 19 illustrates the idea of how γ recognizes the language h1(EQ(h1, h2))
(the encoding mentioned above for R is omitted for clarity).

44

By this construction, L(γ) is the set of encodings of words u ∈ R for which
there exists a word w ∈ Σ∗

2 with h1(w) = h2(w) = u. Projection being a weak
coding, there exists a weak coding h such that h(L(γ)) = L. 2

6.1.2 Observable Sticker Systems

Another idea to strengthen a computational system is to let someone observe
and report how the system works step by step. This composite system, inspired
by the common practice of observing the progress of a biology or chemistry ex-
periment, has been introduced in [15] to “observe” membrane systems. There,
a finite automaton observed the change of configurations of a “computationally
weak” membrane system (with context-free power). Surprisingly this composite
system proved to be universal. Following this idea, many computations were
“observed”: splicing systems, derivations of grammars and string-rewriting sys-
tems, and also sticker systems. For the details of these observations as well as
the formal definition of computation by observation in general, the readers are
referred to [15], [14], and references thereof.

The idea of observing sticker systems was introduced in [3]. Informally, an
observable sticker system is composed of a “computationally weak” sticker sys-
tem and an external observer. Observing the computation of a sticker system,
starting from an axiom, the observer notes – at each computational step – the
current configuration, and processes it according to its own rules, producing
an output. The catenation of all the outputs thus produced by the observer
during a complete computation, constitutes a word in the language of the ob-
servable sticker system. The collection of all words thus obtained is the language
generated by this observable sticker system.

Formally speaking, configurations of a sticker system, which are elements
of Σ∗

d, are observed so that an observer is implemented as a finite automaton
which works on elements of Σ∗

d. This automaton is defined as a 6-tuple O =
(Q, Σd, ∆, q0, δ, σ), where a finite set of states Q, an input alphabet Σd, the initial
state q0 ∈ Q, and a complete transition function δ : Σd ×Q → Q are defined as
usual for conventional finite automata: whereas ∆ is an output alphabet and σ
is a labelling function Q → ∆ ∪ {⊥, λ}, ⊥ being a special symbol.

An observable (simple regular) sticker system is a pair φ = (γ, O) for
a simple regular sticker system γ and an observer O. For a computa-
tion c : x0 ⇒γ x1 ⇒γ · · · ⇒γ xk (xi ∈ Rρ(Σ)), O(c) is defined as
O(x0)O(x1) · · ·O(xk). The language L(φ) generated by φ is defined as L(φ) =
{O(c) | c is a complete computation by γ}.

Theorem 6.5 ([3]) There exists an observable simple regular sticker system
which generates a non-context-free language.

This theorem shows how stronger very restricted sticker systems can get with
the aid of the observer (cf. Theorem 6.2). A natural question which follows is
of how to get universality within the framework of observable sticker systems.

45

The next theorem proves that observers with the capability to discard any “bad”
evolution endow simple regular sticker systems with universality.

The symbol ⊥ 6∈ ∆ makes it possible for an observer O to distinguish bad
evolutions by a sticker system γ from good ones in a way that the observation
of bad evolutions leads to the output of ⊥. For the observable sticker system
φ = (γ, O), we can weed out any word which contains ⊥ from L(φ) by taking

L̂(φ) = L(φ) ∩ ∆∗.

Theorem 6.6 ([3]) For each L ∈ RE, there exists an observable simple regular

sticker system φ = (γ, O) such that L̂(φ) = L.

Due to the fact that recursive languages are closed under intersection with
regular languages, Theorem 6.6 has the following result as its corollary.

Corollary 6.1 ([3]) There exists an observable simple regular sticker system
φ = (γ, O) such that L(φ) is a non-recursive language.

6.2 Watson-Crick Automata

While sticker systems generate complete double-stranded molecules by using
the sticking operation, their accepting counterparts, the Watson-Crick automata
parse a given complete double-stranded molecule and determine whether the in-
put is accepted or not. A Watson-Crick automaton is equipped with a finite
state machine with two heads. This machine has its heads read the respective
upper and lower strands of a given complete double-stranded molecule simulta-
neously, and changes its state accordingly. The basic idea of how Watson-Crick
automata work was described in Figure 19.

In parallel to the research on sticker systems, these biologically-inspired au-
tomata have been intensively investigated within the last decade. Early stud-
ies including, e.g., [44, 85] investigate variants of WK-automata, relationships
among them with respect to generative capacity, and universal Watson-Crick
automata, topics summarized in Chapter 5 of [94]. A more recent survey [22] in-
cludes results on complexity measures [92] and Watson-Crick automata systems
[21, 20]. Other studies on WK-automata comprise Watson-Crick ω-automata
[90], the role of the complementarity relation [77] (see Theorem 6.1), local testa-
bility and regular reversibility [102, 103], 5’ → 3’ sensing Watson-Crick finite
automata [89], and deterministic Watson-Crick automata [23].

In this section we present recent results in this field, such as studies of
deterministic WK-automata, and the role of the complementarity relation. In
particular, deterministic WK-automata are essential for the design of efficient
molecular parsers.

A (non-deterministic) Watson-Crick (finite) automaton over a symmetric
relation ρ ⊆ Σ × Σ is a 6-tuple M = (Σ, ρ, Q, q0, F, δ), where Σ, Q, q0, and F
are defined in the same manner as for finite automata. The transition function
δ is a mapping δ : Q × Σ∗ × Σ∗ → 2Q such that δ(q, (w1

w2
)) 6= ∅ only for finitely

many pairs (q, w1, w2) ∈ Q×Σ∗×Σ∗. We can replace the transition function by

46

rewriting rules, by denoting q (w1
w2

) → q′ instead of q′ ∈ δ(q, (w1
w2

)). Transitions
in M are defined as follows. For q, q′ ∈ Q and (x1

x2
) , (w1

w2
) , (y1

y2
) ∈

(
Σ∗

Σ∗

)
such that[

x1w1y1

x2w2y2

]
∈ WKρ(Σ), we write

(
x1

x2

)
q

(
w1

w2

) (
y1

y2

)
⇒

(
x1

x2

) (
w1

w2

)
q′

(
y1

y2

)
iff

q′ ∈ δ(q, (w1
w2

)). If ⇒∗ is the reflexive and transitive closure of ⇒, then the
language accepted by M is:

L(M) =

{
w1 ∈ Σ∗

∣∣∣∣ q0

[
w1

w2

]
⇒∗

[
w1

w2

]
qf for some

qf ∈ F and w2 ∈ Σ∗ such that

[
w1

w2

]
∈ WKρ(Σ)

}
.

Other languages are also considered in [44, 94] such as control words associated
to computations - but we do not introduce them here. By convention, as sug-
gested also in [92], in this section we consider two languages differing only by
the empty word λ as identical.

A WK-automaton M = (Σ, ρ, Q, q0, F, δ) is said to be: stateless if Q = F =
{s0}; all-final if Q = F ; simple if for any rewriting rule q (w1

w2
) → q′, either

w1 or w2 is λ; 1-limited if for any transition q (w1
w2

) → q′, we have |w1w2| = 1.
By AWK, NWK, FWK, SWK, and 1WK, we denote the families of languages
accepted by WK-automata which are arbitrary (A), stateless (N, no-state), all-
final (F), simple (S), and 1-limited (1). When two restrictions are imposed
at the same time, both of the corresponding symbols are used to identify the
family.

As customary in automata theory, normal forms for WK-automata are avail-
able. For example, we can convert any WK-automaton into a 1-limited one
without changing the language accepted, or the symmetric relation over which
the original WK-automaton is defined [85]. Another normal form, standardizing
the symmetric relation, is as follows:

Theorem 6.7 ([77]) For any WK-automaton M , we can construct a WK-
automaton Mid over the identity relation id with L(M) = L(Mid).

A 1-limited WK-automaton over the identity relation is equivalent to a two-
head finite automaton. Therefore the next theorem follows, where TH denotes
the family of languages accepted by two-head finite automata.

Theorem 6.8 ([94]) 1WK = SWK = 1SWK = AWK = TH.

In [23], Czeizler et al. have proposed three criteria of determinism. A WK-
automaton M is said to be: weakly deterministic if at any point of computation
by M , there is at most one possibility to continue the computation; and de-
terministic if for any pair of transition rules q (u

v) → q′ and q
(

u′

v′

)
→ q′′, we

have u ≁p u′ or v ≁p v′. Clearly a deterministic WK-automaton is weakly-
deterministic. Moreover, a deterministic WK-automaton over a symmetric re-
lation ρ is said to be strongly deterministic if ρ is the identity. The families of

47

languages accepted by weakly deterministic, deterministic, and strongly deter-
ministic WK-automata are denoted by wdAWK, dAWK, and sdAWK, respec-
tively. The symbol “A” can be replaced with N, F, S, 1, or their combination
as in the non-deterministic case.

Proposition 6.1 ([23]) sdAWK ⊆ dAWK ⊆ wdAWK ⊆ AWK.

The generative power of finite automata or Turing machines remains un-
changed by bringing in determinism, while the determinism strictly weakens
pushdown automata [56]. Thus, a natural question is whether the relation in
Proposition 6.1 includes some strict inclusion or all of the families are the same.

Czeizler et al. [23] proved that dAWK = d1WK using a similar proof tech-
nique for AWK = 1WK. As mentioned above, the technique keeps the sym-
metric relation unchanged. As such, sdAWK = sd1WK follows immediately.
Following the same reasoning to prove AWK = TH (Theorem 6.8), we can see
that sdAWK is equivalent to the family dTH of languages accepted by deter-
ministic two-head finite automata. It is known that there exists a language in
TH \ dTH, e.g., L′ = {w ∈ Σ∗ | w 6= wR}. This means that non-deterministic
WK-automata are strictly more powerful than strongly deterministic ones. In
fact, the following stronger result holds.

Theorem 6.9 ([23]) sdAWK (dAWK.

Proof. It suffices to prove that L′ ∈ dAWK. We prove the statement only for
the case when Σ is binary, but the statement holds for arbitrary finite alphabets.

Let M = (Σ ∪ {c, da, db}, ρ, Q, q0, F, δ) be a WK-automaton, where ρ =
{(a, a), (a, da), (b, b), (b, db), (a, c), (b, c)}, Q = {q0, qf , qa, qb}, F = {qf}, and δ
consists of the following rules:

q0

(
λ
x

)
→ q0, q0

(
λ
dx

)
→ qx, with x ∈ {a, b},

qx

(
y
z

)
→ qx, with x, y, z ∈ {a, b},

qx

(
zy
c

)
→ qf , with x, y, z ∈ {a, b}, x 6= y,

qf

(
x
λ

)
→ qf , with x ∈ {a, b}.

It is clear that M is deterministic. Let w = w1w2 · · ·wn with wi ∈ Σ.
If w 6= wR, then there exists a position k in the first half of w such that
wk 6= wn−k+1. The characters da, db are used as a marker of this position. When

M runs on the input

(
w1 · · ·wk−1wkwk+1 · · ·wn−1wn

w1 · · ·wk−1dwk
wk+1 · · ·wn−1c

)
, it accepts w. On the

other hand, M does not accept any palindrome regardless of what complement
we choose; thus L(M) = {w ∈ {a, b}+ | w 6= wR}. 2

This contrasts with the non-deterministic case where the complementarity
relation does not play any active role (Theorem 6.7). Though it is natural now to

48

ask if dAWK ⊆ wdAWK is strict or not, this question remains open. Note that
there exists a weakly deterministic WK-automaton which is not deterministic.

Proposition 6.1 and Theorem 6.9 conclude that strong determinism strictly
weakens WK-automata. However deterministic WK-automata are still more
powerful than finite automata. Since the construction of a strongly determin-
istic WK-automaton which simulates a given deterministic finite automaton is
straightforward, in the following we include a stronger result.

Theorem 6.10 REG ⊆ sdF1WK.

Proof. In order to simulate a deterministic finite automaton A = (Q, Σ, q0, F, δ)
with Q = {q0, q1, . . . , qn}, we construct a strongly deterministic all-final 1-
limited WK-automaton M = (Σ, id, Q′, q0,0, Q

′, δ′), where Q′ = {qi,j , qi,j | 0 ≤
i, j ≤ n}, and for a ∈ Σ, 0 ≤ i, j ≤ n,

δ′
(

qi,j ,

(
a
λ

))
=

{
qk,j if δ(qi, a) = qk and qk 6∈ F,

qk,j if δ(qi, a) = qk and qk ∈ F,

δ′
(

qi,j ,

(
λ
a

))
=

{
qi,k if δ(qj , a) = qk and qk 6∈ F,

qi,k if δ(qj , a) = qk and qk ∈ F,

The recognition of a sequence

[
w
w

]
consists of two identical simulations of recog-

nition process of w on A over the upper and lower strands. Current states of
the automaton A working on upper and lower strands are recorded as first and
second subscripts of states in Q′. The overline of states indicates that M is now
in the simulation over the lower strand. One switches these two phases every
time the simulated automaton reaches some final state of A. We can see easily
that L(M) = L(A) ∪ {λ}. 2

From Theorem 6.10, it is clear that WK-automata are more powerful than
finite automata. Additional results on the generative capacity of WK-automata
can be found in, e.g., [94]. Moreover, it was shown in [23, 92] that WK-automata
recognize some regular languages in a less space-consuming manner. Usage of
space is measured by the state complexity (for more details, see [92, 111]). It
is well-known that the state complexity of some families of finite languages is
unbounded when we consider the finite automata recognizing them. In other
words, for any k ≥ 1, there is a finite language which cannot be recognized by
any finite automaton with at most k − 1 states. On the contrary, any finite
language can be recognized by a WK-automaton with two states [23].

Determinism is one of the most essential properties for the design of an
efficient parser. Due to the time-space trade-off, the stronger the determinism is,
the more space-consuming WK-automata get. For example, it was shown in [23]
that in order to recognize a finite language Lk = {a, aa, ..., ak−1}, the strongly-
deterministic WK-automaton needs at least k states, while for any k, two states
are enough once the strong determinism is changed to determinism. Little

49

is known about the state complexity with respect to the (strongly-, weakly-)
deterministic WK-automata.

As a final result on this topic, we mention the following undecidability prop-
erty about determinism of WK-automata.

Theorem 6.11 ([23]) It is undecidable whether a given WK-automaton is
weakly deterministic.

7 DNA Complementarity and Combinatorics on

Words

Section 5 and Section 6 described new concepts and results in formal language
theory and automata theory that attest to the influence that the notion of
DNA-based information and its main aspect, the Watson-Crick complementar-
ity, has had on formal language theory, coding theory and automata theory.
This section is devoted to describing some of the ideas, notions and results that
DNA-based information has brought to another area of theoretical computer
science, namely combinatorics on words. Indeed, the “equivalence” from the
informational point of view between a DNA single strand and its Watson-Crick
complement led to several interesting generalizations of fundamental notions
such as bordered word, palindrome, periodicity, conjugacy, and commutativity.
Moreover, these generalizations led to natural extensions of two of the most
fundamental results in combinatorics on words: the Fine and Wilf theorem
and the Lyndon-Schützenberger equation. This section presents some of these
concepts and results in combinatorics of words motivated by the Watson-Crick
complementarity property of DNA-based information.

In the following, θ will denote an antimorphic involution. For further details
on combinatorics on words, the reader is referred to [18].

As mentioned in Section 2, recognition sites of enzymes are often palindromic
in a biological sense. Conventionally speaking, a palindrome is a word that reads
the same way from the left and from the right, such as “racecar” in English. In
contrast, in molecular biology terms, a palindromic DNA sequence is one which
is equal to its WK-complementary sequence. For example, TGGATCCA is
palindromic in this sense. The biological palindromic motif is herein modelled as
θ-palindrome (or, more generally, pseudopalindrome) defined as follows: A word
w is a θ-palindrome if w = θ(w). θ-palindromes were investigated intensively
from a theoretical computer science perspective, see e.g., in [29, 68].

The properties of θ-sticky-freeness and θ-overhang-freeness motivate the gen-
eralization of the notions of border, commutativity and conjugacy of words into
θ-border, θ-commutativity and θ-conjugacy of words. A word w ∈ Σ+ is bordered
if there exists a word v ∈ Σ+ satisfying w = vx = yv for some x, y ∈ Σ+. Kari
and Mahalingam in [69] proposed an extended notion called the θ-borderedness
of words as: w is θ-bordered if w = vx = yθ(v) for some v, x, y ∈ Σ+. Note that
θ-sticky-free languages do not contain any θ-bordered word. The pseudoknot-
bordered-word proposed in [74] is a further extension of the notion of θ-bordered

50

word. A word w ∈ Σ+ is pseudoknot-bordered if w = uvx = yθ(u)θ(v). A
pseudoknot-bordered word models the crossing dependency occurring in DNA
and RNA pseudoknots. A word v ∈ Σ+ is said to be a conjugate of another
word u ∈ Σ+ if v = yx and u = xy for some x, y ∈ Σ∗, that is, ux = xv holds.
This notion was extended in [70] as follows: a word u ∈ Σ+ is a θ-conjugate of
a word v ∈ Σ+ if ux = θ(x)v for some x ∈ Σ+. In this case, either v = θ(u) or
u = θ(x)z, v = zx for some z ∈ Σ+; hence a language which contains both u
and v cannot be strictly θ-sticky-free.

In contrast with the above two notions, the θ-commutativity of words intro-
duced in [70] has a purely theoretical significance, being a mathematical tool for
obtaining results involving WK-complementarity. Two words u, v ∈ Σ+ are said
to commute if uv = vu holds. For two words u, v, we say that u θ-commutes
with v if uv = θ(v)u. This equation is a special case of conjugacy equations.
Thus by applying a known result in combinatorics on words, one can deduce
the following results.

Theorem 7.1 ([70]) For an antimorphic involution θ, and two words u, v ∈
Σ+, if uv = θ(v)u holds, then u = r(tr)i, v = (tr)j for some i ≥ 0, j ≥ 0, and
θ-palindromes r, t ∈ Σ∗ such that rt is primitive.

This theorem relates the three important notions: θ-commutativity of words,
θ-palindrome, and primitivity.

Another interesting perspective is the informational equivalence between the
two strands of a DNA double helix. Indeed, the two constituent single strands
of a DNA double strand are “equivalent” with respect to the information they
encode, and thus we can say that w and θ(w) are equivalent in this sense.
Practical applications of this idea include an extended Lempel-Ziv algorithm
for DNA molecules proposed in [50].

A word w ∈ Σ+ is called primitive if it cannot be written as a power of
another word; that is, w = un implies n = 1 and w = u. For a word w ∈ Σ+, the
shortest u ∈ Σ+ such that w = un for some n ≥ 1 is called the primitive root of
the word w and is denoted by ρ(w). It is well-known that for each word w ∈ Σ∗,
there exists a unique primitive word t ∈ Σ+ such that ρ(w) = t, i.e., w = tn for
some n ≥ 1, see e.g., [18]. In [25], the primitivity was extended to θ-primitivity
for an antimorphic involution θ. A word u ∈ Σ+ is said to be θ-primitive if there
does not exist any word t ∈ Σ+ such that u ∈ {t, θ(t)}≥2. For a word w ∈ Σ+,
we define the θ-primitive root of w, denoted by ρθ(w), as the shortest word
t ∈ Σ+ such that w ∈ t{t, θ(t)}∗. Note that if w is θ-primitive, then ρθ(w) = w.
Note also that θ-primitivity can be defined also for θ being a morphic involution.
However, as it is meant as a model of WK-complementarity, we will continue to
assume that θ is antimorphic. For counterparts of the following results when θ
is a morphic involution see [25].

We start by looking at some basic properties of θ-primitive words.

Proposition 7.1 ([25]) If a word w ∈ Σ+ is θ-primitive, then it is also primi-
tive. Moreover, the converse is not always true.

51

Proof. By definition, it is clear that θ-primitive words are primitive. Remark
that if there exists a ∈ Σ satisfying a 6= θ(a), then the word aθ(a) is not θ-
primitive, but is primitive.

2

If a word w ∈ Σ+ is in {t, θ(t)}+ for some word t ∈ Σ+ and t in turn is in
{s, θ(s)}+ for some word s ∈ Σ+, then we have that w ∈ {s, θ(s)}+. Thus, we
have the following result.

Proposition 7.2 ([25]) The θ-primitive root of a word is θ-primitive, and
hence primitive.

It is a well-known fact that any conjugate of a primitive word is primitive.
This fact is heavily employed in obtaining fundamental results including the
Fine and Wilf theorem and solutions to the Lyndon-Schützenberger equation.
In contrast, a conjugate of a θ-primitive word need not be θ-primitive. For
instance, for the DNA involution τ defined in Section 5, the word w = GCTA
is τ -primitive, while its conjugate w′ = AGCT = AGτ(AG) is not.

Proposition 7.3 ([25]) The class of θ-primitive words is not closed under
circular permutations.

An essential property of primitive words is that a primitive word cannot be
equal to its conjugate. In other words, for a primitive word u, the equation
uu = xuy implies that either x or y is empty. Thus, ui and uj , with i, j ≥ 1,
cannot overlap non-trivially on a sequence longer than |u|. This is not the case
when considering overlap between α(v, θ(v)), β(v, θ(v)) ∈ {v, θ(v)}+ for some
θ-primitive word v ∈ Σ+. For instance, for the DNA involution τ and a τ -
primitive word v = CCGGAT , v2 = CCGG · τ(v) · AT holds. Nevertheless, an
analogous result for θ-primitive words was obtained.

Theorem 7.2 ([72]) Let v ∈ Σ+ be a θ-primitive word. Neither vθ(v) nor
θ(v)v can be a proper infix of a word in {v, θ(v)}3.

Furthermore, Czeizler et al. completely characterized all such nontrivial
overlaps with the set of all solutions of the corresponding equation [24].

Theorem 7.3 ([24]) Let v ∈ Σ+ be a θ-primitive word. The only pos-
sible proper overlaps of the form α(v, θ(v)) · x = y · β(v, θ(v)) with
α(v, θ(v)), β(v, θ(v)) ∈ {v, θ(v)}+, x, y ∈ Σ+ and |x|, |y| < |v| are given in
Table 1 (modulo a substitution of v by θ(v)) together with the characterization
of their sets of solutions.

We now shift our attention to extensions of two essential results in combina-
torics on words. The following theorem is known as the Fine and Wilf theorem
[42], in its form for words, [18, 81]. It illustrates a fundamental periodicity prop-
erty of words. Its concise proof is available, in, e.g., [18]. As usual, gcd(n, m)
denotes the greatest common divisor of n and m.

52

Table 1: Characterization of possible proper overlaps of the form α(v, θ(v)) ·x =
y · β(v, θ(v)). For the last three equations, n ≥ 0, m ≥ 1, r, t ∈ Σ+ such that
r = θ(r), t = θ(t), and rt is primitive. Note that the 4th and 5th equations are
the same up to the antimorphic involution θ

Equation Solution
vix = yθ(v)i, i ≥ 1 v = yp, x = θ(y), p = θ(p),

and whenever i ≥ 2, y = θ(y)
vx = yv v = (pq)j+1p, x = qp, y = pq for some p, q ∈ Σ+, j ≥ 0
vθ(v)x = yvθ(v), v = (pq)j+1p, x = θ(pq), y = pq, with j ≥ 0, qp = θ(qp)

vi+1x = yθ(v)iv, i ≥ 1 v = r(tr)n+mr(tr)n, x = (tr)mr(tr)n, y = r(tr)n+m

vθ(v)ix = yvi+1, i ≥ 1 v = (rt)nr(rt)m+nr, y = (rt)nr(rt)m, x = (rt)m+nr
vθ(v)ix = yviθ(v), i ≥ 2 v = (rt)nr(rt)m+nr, y = (rt)nr(rt)m, x = (tr)mr(tr)n

Theorem 7.4 Let u, v ∈ Σ∗, n = |u|, and m = |v|. If a power of u and a power
of v have a common prefix of length at least n+m−gcd(n, m), then ρ(u) = ρ(v).
Moreover, the bound n + m − gcd(n, m) is optimal.

A natural question is whether one can obtain an extension of this result
when, instead of taking powers of two words u and v, one looks at a word in
u{u, θ(u)}∗ and a word in v{v, θ(v)}∗. The answer is yes. Note that without loss
of generality one can suppose that the two words start with u and v because θ
is an involution. Czeizler, Kari, and Seki provided extensions of Theorem 7.4 in
two forms (Theorems 7.5 and 7.6) [25]. As illustrated in the following example,
the bound given by Theorem 7.4 is not sufficient anymore.

Example 1 ([25]) Let θ : {a, b}∗ → {a, b}∗ be the mirror image mapping
defined as follows: θ(a) = a, θ(b) = b, and θ(w1 . . .wn) = wn . . . w1, where
wi ∈ {a, b} for all 1 ≤ i ≤ n. Obviously, θ is an antimorphic involution on
{a, b}∗. Let u = (ab)kb and v = ab. Then, u2 and vkθ(v)k+1 have a common
prefix of length 2|u| − 1 > |u| + |v| − gcd(|u|, |v|). Nevertheless u and v do not
have the same θ-primitive root, that is ρθ(u) 6= ρθ(v).

In the following, lcm(n, m) denotes the least common multiple of n and m.

Theorem 7.5 ([25]) Let u, v ∈ Σ+, and α(u, θ(u)) ∈ u{u, θ(u)}∗, β(v, θ(v)) ∈
v{v, θ(v)}∗ be two words sharing a common prefix of length at least lcm(|u|, |v|).
Then, there exists a word t ∈ Σ+ such that u, v ∈ t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v).
In particular, if α(u, θ(u)) = β(v, θ(v)), then ρθ(u) = ρθ(v).

This theorem provides us with an alternative definition of the θ-primitive
root of a word.

Corollary 7.1 ([25]) For any word w ∈ Σ+ there exists a unique θ-primitive
word t ∈ Σ+ such that w ∈ t{t, θ(t)}∗, i.e., ρθ(w) = t.

53

Corollary 7.2 ([25]) Let u, v ∈ Σ+ be two words such that ρ(u) = ρ(v) = t.
Then, ρθ(u) = ρθ(v) = ρθ(t).

Next, we provide another bound for this extended Fine and Wilf theorem,
which is in many cases much shorter than the bound given in Theorem 7.5.
As noted before, due to Proposition 7.3, it is intuitive that we cannot use the
concise proof technique based on the fact that a conjugate of a primitive word
is primitive. The proof given in [25] involves rather technical case analyses.

Theorem 7.6 ([25]) Given two words u, v ∈ Σ+ with |u| > |v|, if there exist two
words α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ having a common
prefix of length at least 2|u| + |v| − gcd(|u|, |v|), then ρθ(u) = ρθ(v).

We conclude this section with an extension of another fundamental re-
sult related to the periodicity on words, namely the solution to the Lyndon-
Schützenberger equation. The equation is of the form uℓ = vnwm for some
ℓ, n, m ≥ 2 and u, v, w ∈ Σ+. Lyndon and Schützenberger proved that this
equation implies ρ(u) = ρ(v) = ρ(w) [82]. A concise proof when u, v, w belong
to a free semigroup can be found in, e.g., [52].

Incorporating the idea of θ-periodicity, the Lyndon-Schützenberger equation
has been extended in [24] in the following manner. Let u, v, w ∈ Σ+, θ be an
antimorphic involution over Σ, and ℓ, n, m be integers ≥ 2. Let α(u, θ(u)) ∈
{u, θ(u)}ℓ, β(v, θ(v)) ∈ {v, θ(v)}n, and γ(w, θ(w)) ∈ {w, θ(w)}m. The extended
Lyndon-Schützenberger equation is

α(u, θ(u)) = β(v, θ(v)) γ(w, θ(w)).

In [24], the authors investigated the problem of finding conditions on ℓ, n, m
such that if the equation holds, then u, v, w ∈ {t, θ(t)}+ for some t ∈ Σ+. If
such t exists, we say that (ℓ, n, m) imposes θ-periodicity on u, v, w. The original
condition ℓ, n, m ≥ 2 is not enough for this extension as shown below.

Example 2 ([24]) Let Σ = {a, b} and θ be the mirror image. Take now u =
akb2a2k, v = θ(u)la2kb2 = (a2kb2ak)la2kb2, and w = a2, for some k, l ≥ 1. Then,
although θ(u)l+1ul+1 = v2wk, there is no word t ∈ Σ+ with u, v, w ∈ {t, θ(t)}+.

Example 3 ([24]) Consider again Σ = {a, b} and the mirror image θ, and take
u = b2(aba)k, v = ulb = (b2(aba)k)lb, and w = aba for some k, l ≥ 1. Then,
although u2l+1 = vθ(v)wk, there is no word t ∈ Σ+ with u, v, w ∈ {t, θ(t)}+.

Example 4 Let Σ = {a, b} and θ be the mirror image. Let v = a2mb2j and
w = aa for some m ≥ 1 and j ≥ 1. Then vnwm = (a2mb2j)na2m. This is θ-
palindrome of even length and hence it can be written as uθ(u) for some u ∈ Σ+.
Clearly ρθ(w) = a and ρθ(v) 6= a because v contains b. Hence (2, n, m) is not
enough to impose the θ-periodicity.

Thus, once either n or m is 2, it is not always the case that there exists a
word t ∈ Σ+ such that u, v, w ∈ {t, θ(t)}+. On the other hand, it was proved
that (ℓ, n, m) imposes θ-periodicity on u, v, w if ℓ ≥ 5, n, m ≥ 3.

54

Theorem 7.7 ([24]) For words u, v, w ∈ Σ+ and ℓ, n, m ≥ 2, let α(u, θ(u)) ∈
{u, θ(u)}ℓ, β(v, θ(v)) ∈ {v, θ(v)}n, and γ(w, θ(w)) ∈ {w, θ(w)}m. If
α(u, θ(u)) = β(v, θ(v))γ(w, θ(w)) holds and ℓ ≥ 5, n, m ≥ 3, then u, v, w ∈
{t, θ(t)}+ for some t ∈ Σ+.

This theorem requires rather complex case analyses, too, and hence the proof
is omitted here. However, if ℓ, n, m are “big” enough, we can easily see that there
is much room to employ the extended Fine and Wilf theorem.

We conclude this section with Table 2 which summarizes the results obtained
so far on the extended Lyndon-Schützenberger equation.

Table 2: Summary of the extended Lyndon-Schützenberger equation results.

l n m θ-periodicity proved by
≥ 5 ≥ 3 ≥ 3 YES Theorem 7.7

4 ≥ 3 ≥ 3 ?
3 ≥ 3 ≥ 3 ?

≥ 3 2 ≥ 2 NO Examples 2 and 3
≥ 3 ≥ 2 2 NO

2 ≥ 2 ≥ 2 NO Examples 4

8 Conclusions

In this review we described how information can be encoded on DNA strands and
how bio-operations can be used to perform computational tasks. In addition,
we presented examples of the influence that fundamental properties of DNA-
encoded information, especially the Watson-Crick complementarity, have had
on various areas of theoretical computer science such as formal language theory,
coding theory, automata theory, and combinatorics on words.

A few final remarks are in order regarding DNA-encoded data and the bio-
operations that are used to act on it. The descriptions of DNA structure and
DNA bio-operations point to the fact that DNA-encoded information is very
different from electronically-encoded information, and bio-operations also dif-
fer from electronic computer operations. A fundamental difference arises, for
example, from the fact that in electronic computing data interaction is fully con-
trolled while, in a test-tube DNA-computer, free-floating data-encoding DNA
single strands can interact because of Watson-Crick complementarity. Another
difference is that, in DNA computing, a bio-operation usually consumes both
operands. This implies that, if one of the operands is either involved in an ille-
gal binding or has been consumed by a previous bio-operation, it is unavailable
for the desired computation. Yet another difference is that, while in electronic
computing a bit is a single individual element, in DNA experiments each submi-
croscopic DNA molecule is usually present in millions of identical copies. The
bio-operations operate in a massively parallel fashion on all identical strands

55

and this process is governed by the laws of chemistry and thermodynamics,
with the output obeying statistical laws.

Differences like the ones mentioned above point to the fact that a fresh
approach is needed when employing as well as when theoretically investigating
bioinformation and biocomputation, and offer a wealth of problems to explore
at this rich intersection between molecular biology and computer science.

Examples of such fascinating research areas and topics include models and
wet implementations of molecular computing machineries, membrane comput-
ing, DNA computing by splicing and insertion-deletion, bacterial computing and
communication, DNA memory, DNA computing by self-assembly, and compu-
tational aspects of gene asembly in ciliates, as described in, e.g., Chapters ??
of this handbook.

References

[1] L. Adleman. Molecular computation of solutions to combinatorial prob-
lems. Science, 26f6(5187):1021–1024, November 1994.

[2] L. Adleman. Computing with DNA. Scientific American, 279:54–61, 1998.

[3] A. Alhazov and M. Cavaliere. Computing by observing bio-systems: The
case of sticker systems. In Feretti et al. [41], pages 1–13.

[4] M. Amos. Theoretical and Experimental DNA Computation. Springer-
Verlag, Berlin, 2005.

[5] M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A. Condon, B. Cohen,
and S. Skiena. Algorithms for testing that sets of DNA words concatenate
without secondary structure. In Hagiya and Ohuchi [51], pages 182–195.

[6] M. Arita. Writing information into DNA. In N. Jonoska, G. Păun, and
G. Rozenberg, editors, Aspects of Molecular Computing, volume 2950 of
Lecture Notes in Computer Science, pages 23–35. Springer-Verlag, Berlin,
2004.

[7] M. Arita and S. Kobayashi. DNA sequence design using templates. New
Generation Computing, 20:263–277, 2002.

[8] C. Bancroft, T. Bowler, B. Bloom, and C. Clelland. Long-term storage of
information in DNA. Science, 293:1763–1765, 2001.

[9] E. Baum. DNA sequences useful for computation. In L. Landweber and
E. Baum, editors, DNA Based Computers II, volume 44 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, pages 235–
246. American Mathematical Society, 1998.

56

[10] H. Bordihn, M. Holzer, and M. Kutrib. Hairpin finite automata. In
T. Harju, J. Karhumäki, and A. Lepistö, editors, Developments in Lan-
guage Theory, volume 4588 of Lecture Notes in Computer Science, pages
108–119, Berlin, 2007. Springer-Verlag.

[11] R. Braich, N. Chelyapov, C. Johnson, P. Rothemund, and L. Adleman.
Solution of a 20-variable 3-SAT problem on a DNA computer. Science,
296:499–502, 2002.

[12] C. Calladine and H. Drew. Understanding DNA: the molecule and how it
works (2nd edition). Academic Press, 1997.

[13] A. Carbone and N. Pierce, editors. Proc. DNA Computing 11, volume 3892
of Lecture Notes in Computer Science, Berlin, 2006. Springer-Verlag.

[14] M. Cavaliere. Computing by observing: A brief survey. In Logic and
Theory of Algorithms, volume 5028 of Lecture Notes in Computer Science,
pages 110–119. Springer, Berlin Heidelberg, 2008.

[15] M. Cavaliere and P. Leupold. Evolution and observation - a new way
to look at membrane systems. In C. Martin-Vide, G. Mauri, G. Păun,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, volume
2933 of Lecture Notes in Computer Science, pages 70–87. Springer, 2004.

[16] J. Chen, R. Deaton, M. Garzon, J. Kim, D. Wood, H. Bi, D. Carpenter,
and Y.-Z. Wang. Characterization of non-crosshybridizing DNA oligonu-
cleotides manufactured in vitro. Natural Computing, 5(2):165–181, 2006.

[17] J. Chen and J. Reif, editors. Proc. DNA Computing 9, volume 2943 of
Lecture Notes in Computer Science, Berlin, 2004. Springer.

[18] C. Choffrut and J. Karhumäki. Combinatorics of words. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 1, pages
329–438. Springer-Verlag, Berlin-Heidelberg-New York, 1997.

[19] J. Cox. Long-term data storage in DNA. Trends in Biotechnology, 19:247–
250, 2001.

[20] E. Czeizler and E. Czeizler. On the power of parallel communicating
Watson-Crick automata systems. Theoretical Computer Science, 358:142–
147, 2006.

[21] E. Czeizler and E. Czeizler. Parallel communicating Watson-Crick au-
tomata systems. Acta Cybernetica, 17:685–700, 2006.

[22] E. Czeizler and E. Czeizler. A short survey on Watson-Crick automata.
Bulletin of the EATCS, 89:104–119, 2006.

[23] E. Czeizler, E. Czeizler, L. Kari, and K. Salomaa. Watson-Crick automata:
Determinism and state complexity. In Proc. Descriptional Complexity of
Formal Systems DCFS’08, pages 121–133, 2008.

57

[24] E. Czeizler, E. Czeizler, L. Kari, and S. Seki. An extension of the Lyn-
don Schützenberger result to pseudoperiodic words. In V. Diekert and
D. Nowotka, editors, Proc. Developments in Language Theory DLT’09,
volume 5583 of Lecture Notes in Computer Science, Berlin, 2009. Springer-
Verlag.

[25] E. Czeizler, L. Kari, and S. Seki. On a special class of primitive words.
In Proc. of Mathematical Foundations of Theoretical Computer Science
MFCS 2008, volume 5162 of Lecture Notes in Computer Science, pages
265–277, Berlin-Heidelberg, 2008. Springer.

[26] M. Daley, O. Ibarra, and L. Kari. Closure and decidability properties of
some language classes with respect to ciliate bio-operations. Theoretical
Computer Science, 306(1):19–38, 2003.

[27] M. Daley, L. Kari, and I. McQuillan. Families of languages defined by
ciliate bio-operations. Theoretical Computer Science, 320:51–69, 2004.

[28] M. Daley and L.Kari. DNA computing: Models and implementations.
Comments on Theoretical Biology, 7:177–198, 2002.

[29] A. de Luca and A. D. Luca. Pseudopalindrome closure operators in free
monoids. Theoretical Computer Science, 362:282–300, 2006.

[30] R. Deaton, J. Chen, H. Bi, and J. Rose. A software tool for generating
non-crosshybridizing libraries of DNA oligonucleotides. In Hagiya and
Ohuchi [51], pages 252–61.

[31] R. Deaton, J. Chen, J. Kim, M. Garzon, and D. Wood. Test tube selection
of large independent sets of DNA oligonucleotides. In J. Chen, N. Jonoska,
and G. Rozenberg, editors, Nanotechnology: Science and Computation,
pages 147–161. Springer-Verlag, Berlin, 2006.

[32] S. Diaz, J. Esteban, and M. Ogihara. A DNA-based random walk method
for solving k-SAT. In A. Condon and G. Rozenberg, editors, Proc. DNA
Computing 6, volume 2054 of Lecture Notes in Computer Science, pages
209–219, Berlin, 2001. Springer-Verlag.

[33] R. Dirks and N. Pierce. An algorithm for computing nucleic acid base-
pairing probabilities including pseudoknots. Journal of Computational
Chemistry, 25:1295–1304, 2004.

[34] M. Domaratzki. Hairpin structures defined by DNA trajectories. Theory
of Computing Systems, online 2007. DOI 10.1007/s00224-007-9086-6.

[35] K. Drlica. Understanding DNA and gene cloning: a guide for the curious.
Wiley and Sons, 1996.

58

[36] A. Dyachkov, A. Macula, W. Pogozelski, T. Renz, V. Rykov, and D. Tor-
ney. New t-gap insertion-deletion-like metrics for DNA hybridization ther-
modynamic modeling. Journal of Computational Biology, 13(4):866–881,
2006.

[37] A. Dyachkov, A. Macula, V. Rykov, and V. Ufimtsev. DNA codes based
on stem similarities between DNA sequences. In Garzon and Yan [48],
pages 146–151.

[38] A. Ehrenfeucht, T. Harju, I. Petre, D. Prescott, and G. Rozenberg. Com-
putation in Living Cells: Gene Assembly in Ciliates. Natural Computing
Series. Springer-Verlag, Berlin, 2004.

[39] D. Faulhammer, A. Cukras, R. Lipton, and L. Landweber. Molecular
computation: RNA solutions to chess problems. Proc. of the National
Academy of Sciences of the USA, 97:1385–1389, 2000.

[40] U. Feldkamp, S. Saghafi, W. Banzhaf, and H. Rauhe. DNASequenceGen-
erator – a program for the construction of DNA sequences. In Jonoska
and Seeman [61], pages 23–32.

[41] C. Feretti, G. Mauri, and C. Zandron, editors. Proc. DNA Computing 10,
volume 3384 of Lecture Notes in Computer Science, Berlin, 2005. Springer-
Verlag.

[42] N. Fine and H. Wilf. Uniqueness theorem for periodic functions. Pro-
ceedings of the American Mathematical Society, 16(1):109–114, February
1965.

[43] R. Freund, G. Păun, G. Rozenberg, and A. Salomaa. Bidirectional sticker
systems. In R. Altman, A. Dunker, L. Hunter, and T. Klein, editors,
Pacific Symposium on Biocomputing 98, pages 535–546, Singapore, 1998.
World Scientific.

[44] R. Freund, G. Păun, G. Rozenberg, and A. Salomaa. Watson-Crick fi-
nite automata. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 48:297–327, 1999.

[45] A. Frutos, Q. Liu, A. Thiel, A. Sanner, A. Condon, L. Smith, and R. Corn.
Demonstration of a word design strategy for DNA computing on surfaces.
Nucleic Acids Research, 25(23):4748–57, 1997.

[46] M. Garzon, P. Neathery, R. Deaton, R. Murphy, D. Franceschetti, and
S. Stevens Jr. A new metric for DNA computing. In J. Koza, K. Deb,
M. Dorigo, D. Vogel, M. Garzon, H. Iba, and R. Riolo, editors, Proc. Ge-
netic Programming 1997, pages 479–490, San Francisco, CA, 1997. Morgan
Kaufmann.

59

[47] M. Garzon, V. Phan, S. Roy, and A. Neel. In search of optimal codes
for DNA computing. In C. Mao and T. Yokomori, editors, Proc. DNA
Computing 12, volume 4287 of Lecture Notes in Computer Science, pages
143–156, Berlin, 2006. Springer-Verlag.

[48] M. Garzon and H. Yan, editors. Proc. DNA Computing 13, volume 4848
of Lecture Notes in Computer Science, Berlin, 2008. Springer-Verlag.

[49] L. Gonick and M. Wheelis. The Cartoon Guide to Genetics. Collins,
updated edition, 1991.

[50] S. Grumbach and F. Tahi. Compression of DNA sequences. In Proc. IEEE
Symposium on Data Compression, pages 340–350, 1993.

[51] M. Hagiya and A. Ohuchi, editors. Proc. DNA Computing 8, volume 2568
of Lecture Notes in Computer Science, Berlin, 2003. Springer-Verlag.

[52] T. Harju and D. Nowotka. The equation xi = yjzk in a free semigroup.
Semigroup Forum, 68:488–490, 2004.

[53] J. Hartmanis. On the weight of computations. Bulletin of the EATCS,
55:136–138, 1995.

[54] T. Head. Relativised code concepts and multi-tube DNA dictionaries. In
C. Calude and G. Păun, editors, Finite Versus Infinite: Contributions to
an Eternal Dilemma, pages 175–186. Springer-Verlag, London, 2000.

[55] H. Hoogeboom and N. van Vugt. Fair sticker languages. Acta Informatica,
37:213–225, 2000.

[56] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[57] S. Hussini, L. Kari, and S. Konstantinidis. Coding properties of DNA
languages. Theoretical Computer Science, 290(3):1557–1579, 2003.

[58] Z. Ignatova, I. Mart́ınez-Pérez, and K.-H. Zimmermann. DNA Computing
Models. Springer-Verlag, Berlin, 2008.

[59] N. Jonoska, D. Kephart, and K. Mahalingam. Generating DNA code
words. Congressus Numerantium, 156:99–110, 2002.

[60] N. Jonoska and K. Mahalingam. Languages of DNA based code words.
In Chen and Reif [17], pages 61–73.

[61] N. Jonoska and N. Seeman, editors. Proc. DNA Computing 7, volume 2340
of Lecture Notes in Computer Science, Berlin, 2002. Springer-Verlag.

[62] L. Kari. DNA computing: The arrival of biological mathematics. The
Mathematical Intelligencer, 19(2):9–22, 1997.

60

[63] L. Kari, R. Kitto, and G. Thierrin. Codes, involutions and DNA encoding.
In W. Brauer, H. Ehrig, J. Karhumäki, and A. Salomaa, editors, Formal
and Natural Computing, volume 2300 of Lecture Notes in Computer Sci-
ence, pages 376–393. Springer-Verlag, Berlin, 2002.

[64] L. Kari, S. Konstantinidis, and P. S. k. Bond-free languages: formal-
izations, maximality and construction methods. International Journal of
Foundations of Computer Science, 16(5):1039–1070, 2005.

[65] L. Kari, S. Konstantinidis, and P. S. k. On properties of bond-free DNA
languages. Theoretical Computer Science, 334(1–3):131–159, 2005.

[66] L. Kari, S. Konstantinidis, E. Losseva, P. S. k, and G. Thierrin. A formal
language analysis of DNA hairpin structures. Fundamenta Informaticae,
71(4):453–475, 2006.

[67] L. Kari, S. Konstantinidis, E. Losseva, and G. Wozniak. Sticky-free and
overhang-free DNA languages. Acta Informatica, 40:119–157, 2003.

[68] L. Kari and K. Mahalingam. Watson-Crick palindromes in DNA comput-
ing. Natural Computing 2009, to appear.

[69] L. Kari and K. Mahalingam. Involutively bordered words. International
Journal of Foundations of Computer Science, 18(5):1089–1106, 2007.

[70] L. Kari and K. Mahalingam. Watson-Crick conjugate and commutative
words. In Garzon and Yan [48], pages 273–283.

[71] L. Kari, K. Mahalingam, and G. Thierrin. The syntactic monoid of
hairpin-free languages. Acta Informatica, 44(3–4):153–166, 2007.

[72] L. Kari, B. Masson, and S. Seki. Towards a complete characterization of
an extended Lyndon Schützenberger equation. In preparation, 2009.

[73] L. Kari, G. Păun, G. Rozenberg, A. Salomaa, and S. Yu. DNA computing,
sticker systems, and universality. Acta Informatica, 35:401–420, 1998.

[74] L. Kari and S. Seki. On pseudoknot-bordered words and their properties.
Journal of Computer and System Sciences, 75(2):113–121, 2009.

[75] A. Kijima and S. Kobayashi. Efficient algorithm for testing structure
freeness of finite set of biomolecular sequences. In Carbone and Pierce
[13], pages 171–180.

[76] S. Kobayashi. Testing structure-freeness of regular sets of biomolecular
sequences. In Feretti et al. [41], pages 192–201.

[77] D. Kuske and P. Weigel. The role of the complementarity relation in
Watson-Crick automata and sticker systems. In C. Calude, E. Claude, and
M. Dinneen, editors, DLT 2004, volume 3340 of Lecture Notes in Com-
puter Science, pages 272–283, Berlin Heidelberg, 2004. Springer-Verlag.

61

[78] B. Lewin. Genes IX. Johns and Bartlett Publishers, 2007.

[79] R. Lipton. Using DNA to solve NP-complete problems. Science, 268:542–
545, 1995.

[80] W. Liu, L. Gao, Q. Zhang, G. Xu, X. Zhu, X. Liu, and J. Xu. A random
walk DNA algorithm for the 3-SAT problem. Current Nanoscience, 1:85–
90, 2005.

[81] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of
Mathematics and its Applications. Addison-Wesley, 1983.

[82] R. Lyndon and M. Schützenberger. The equation am = bncp in a free
group. Michigan Mathematical Journal, 9:289–298, 1962.

[83] F. Manea, V. Mitrana, and T. Yokomori. Two complementary opera-
tions inspired by the DNA hairpin formation: Completion and reduction.
Theoretical Computer Science, 410(4–5):417–425, 2009.

[84] A. Marathe, A. Condon, and R. Corn. On combinatorial DNA word
design. Journal of Computational Biology, 8(3):201–220, 2001.

[85] C. Martin-Vı́de, G. Păun, G. Rozenberg, and A. Salomaa. Universality
results for finite H systems and for Watson-Crick automata. In G. Păun,
editor, Computing with Bio-Molecules. Theory and Experiments, pages
200–220. Springer, Berlin, 1998.

[86] A. Mateescu, G. Rozenberg, and A. Salomaa. Shuffle on trajectories:
Syntactic constraints. Theoretical Computer Science, 197:1–56, 1998.

[87] G. Mauri and C. Ferretti. Word design for molecular computing: A survey.
In Chen and Reif [17], pages 37–46.

[88] N. Morimoto, M. Arita, and A. Suyama. Stepwise generation of Hamil-
tonian Path with molecules. In D. Lundh, B. Olsson, and A. Narayanan,
editors, Proc. Biocomputing and Emergent Computation, pages 184–192.
World Scientific, 1997.

[89] B. Nagy. On 5’ → 3’ sensing Watson-Crick finite automata. In Garzon
and Yan [48], pages 256–262.

[90] E. Petre. Watson-Crick ω-automata. Journal of Automata, Languages
and Combinatorics, 8:59–70, 2003.

[91] V. Phan and M. Garzon. On codeword design in metric DNA spaces.
Natural Computing, online 2008. DOI 10.1007/s11047-008-9088-6.

[92] A. Păun and M. Păun. State and transition complexity of Watson-Crick
finite automata. In G. Ciobanu and G. Păun, editors, FCT’99, volume
1684 of Lecture Notes in Computer Science, pages 409–420, Berlin Heidel-
berg, 1999. Springer-Verlag.

62

[93] G. Păun and G. Rozenberg. Sticker systems. Theoretical Computer Sci-
ence, 204:183–203, 1998.

[94] G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Com-
puting Paradigms. Springer, 1998.

[95] G. Păun, G. Rozenberg, and T. Yokomori. Hairpin languages. Interna-
tional Journal of Foundations of Computer Science, 12(6):837–847, 2001.

[96] J. Reif, T. LaBean, M. Pirrung, V. Rana, B. Guo, C. Kingsford,
and G. Wickham. Experimental construction of very large scale DNA
databases with associative search capability. In Jonoska and Seeman [61],
pages 231–247.

[97] J. Rose, R. Deaton, M. Hagiya, and A. Suyama. PNA-mediated whiplash
PCR. In Jonoska and Seeman [61], pages 104–116.

[98] J. Sager and D. Stefanovic. Designing nucleotide sequences for computa-
tion: a survey of constraints. In Carbone and Pierce [13], pages 275–289.

[99] Y. Sakakibara and S. Kobayashi. Sticker systems with complex structures.
Soft Computing, 5:114–120, 2001.

[100] A. Salomaa. Formal Languages. Academic Press, 1973.

[101] J. SantaLucia. A unified view of polymer, dumbbell and oligonucleotide
DNA nearest-neighbor thermodynamics. Proc. of the National Academy
of Sciences of the USA, 95(4):1460–1465, 1998.

[102] J. Sempere. On local testability in Watson-Crick finite automata. In
Proc. the International Workshop, Automata for Cellular and Molecular
Computing, pages 120–128, 2007.

[103] J. Sempere. Exploring regular reversibility in Watson-Crick finite au-
tomata. In Proc. 13th International Symposium on Artificial Life and
Robotics (AROB2008), pages 505–509, 2008.

[104] G. Smith, C. Fiddes, J. Hawkins, and J. Cox. Some possible codes for
encrypting data in DNA. Biotechnology Letters, 25:1125–1130, 2003.

[105] W. Stemmer, A. Crameri, K. Ha, T. Brennan, and H. Heyneker. Single-
step assembly of a gene and entire plasmid from large numbers of
oligodeoxyribonucleotides. GENE, 164:49–53, 1995.

[106] D. Tulpan, H. Hoos, and A. Condon. Stochastic local search algorithms
for DNA word design. In Hagiya and Ohuchi [51], pages 229–241.

[107] P. Turner, A. McLennan, A. Bates, and M. White. Instant Notes in
Molecular Biology. Garland Publishing Inc., 2nd edition, 2000.

63

[108] X. Wang, Z. Bao, J. Hu, S. Wang, and A. Zhan. Solving the SAT prob-
lem using a DNA computing algorithm based on ligase chain reaction.
Biosystems, 91:117–125, 2008.

[109] D. Wood. Theory of Computation. Harper & Row, New York, 1987.

[110] H. Yoshida and A. Suyama. Solution to 3-SAT by breadth-first search. In
E. Winfree and D. Gifford, editors, DNA Based Computers V, volume 54
of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 9–22. American Mathematical Society, 2000.

[111] S. Yu. State complexity of finite and infinite regular languages. Bulletin
of the EATCS, 76:142–152, 2002.

64

Index

H-measure, 30
n-mer, 2
3’ end, 2
3-CNF, 14
3-SAT, 14
5’ end, 2

A, 2
adenine, 2
Adleman’s experiment, 11, 12
affinity purification, 7, 9, 13
agarose gel, 6
alphabet, 19

DNA, 19, 20
trajectory, 27

amino acid, 3
amplification, 11
annealing, 5, 6
antimorphism, 20

backbone, 2, 4, 6, 7
base, 2, 4
base pairs, 3, 6
base-pairing, 5, 6
bio-operation, 2, 4, 16, 55
biocomputation, 11, 55
bioinformation, 55
blunt end, 5
bond-free property, 28
bottom DNA strand, 11
bp, 3
breadth-first search for SAT, 16
brute force search for HPP, 14
brute force search for SAT, 16

C, 2
chain terminator in PCR, 11
chromosome, 3
ciliate, 21
code, 20
codeword, 20
coding, 20
coding DNA, 3

codon, 3
computation, 38, 43

coherent, 40
complete, 38, 43
fair, 40

covalent bonds, 2
cutting, 5
cytosine, 2

ddNTP, 11
denaturation, 5
deoxyribonucleic acid, 2
deoxyribonucleoside triphosphate,

10
deoxyribose, 3
dideoxyribonucleoside triphos-

phate, 11
digestion, 5, 7
DNA, 2, 4

alphabet, 19, 20
base, 4
blunt end, 5
code, 19
codeword, 19
computer, 55
computing, 4, 13

first experiment, 12
cutting, 5, 7
double helix, 3, 51
double strand, 3
encoding, 18
hairpin, 20–24, 41
information density, 4
involution, 20, 51
library, 15
ligase, 6
melting, 6
memory, 4
molecule, 2, 6
negative design, 18

optimal, 22, 29, 33
negatively charged, 6, 8
orientation, 4

65

overhang, 5
polymerase enzyme, 8
positive design, 18
probe, 7
RAM, 21
replication, 8, 10
sequencing, 11
single strand, 2
sticky-end, 5
strand orientation, 2
structure, 4
sugar-phosphate backbone, 4
synthesis, 4, 5
trajectory, 24

DNA information, 3
DNA-encoded information, 3, 55
dNTP, 10
double strand, 3
dsDNA, 3

electronically-encoded information,
55

encoding information on DNA, 3
endonuclease digestion, 5, 7
equality set, 20
exon, 3
extraction by pattern, 6, 9

Fine and Wilf theorem, 52
extension, 53

G, 2
gcd, 52
gel, 6, 15
gel electrophoresis, 6, 8, 13, 15
gene, 3
genetic code, 3
genome, 3
guanine, 2

hairpin, 20–24
completion, 24
finite automaton, 24
frame, 23
reduction, 24
scattered, 23

hairpin-free word, 21
hairpins

multiple, 42
Hamiltonian path, 12
Hamiltonian Path Problem, 12
Hamming distance, 30
helical DNA, 3
HPP, 12
hybridization, 5, 6, 31, 33

imperfect, 30
intermolecular, 24
intramolecular, 23
undesired, 18, 24

hydrogen bond, 2, 3

information density, 4
intron, 3
involution, 20

lane, in gel, 8
language, 19

θ-k-code, 25
θ-compliant, 25
θ-free, 25
θ-non-overlapping, 25
θ-overhang-free, 25
θ-sticky-free, 25
k-block, 33
bond-free, 28

(θ, sim), 32
property, 27
solid, 26
strictly θ, 25
strictly θ-sticky-free, 50
θ-overhang-free, 50
θ-sticky-free, 50

lcm, 53
LCR, 16
Levenshtein distance, 31
library, 15
library strands, 15
ligase chain reaction, 16
ligase enzyme, 6, 7
ligation, 6, 7, 13
Lyndon-Schützenberger equation,

53

66

extension, 54

magnetic beads, 7, 8, 13
maximality problem, 22, 29, 33
melting, 5, 6
melting temperature, 5
molecular biology, 2
molecule, 2
monoid, 24
monomer, 2
morphism, 20

nearest-neighbour model, 17, 33
nick, 7
non-coding DNA, 3
nt, 2
nucleoside, 2, 10
nucleotide, 2, 4

observable sticker system, 45
simple regular, 45

oligonucleotide, 2, 8, 18
orientation, 2, 4
overhang, 5, 7

palindrome, 20
PCR, 8, 10, 11, 13, 21
polyacrylamide gel, 6
polymer, 2
polymerase, 10
Polymerase Chain Reaction, 8, 10,

13
polymerase enzyme, 8, 11
polynucleotide, 2
prefix comparable, 19
primer, 8, 10, 13, 16
primitive root, 51
primitivity, 51
probe, 7, 15
projection, 20
protein, 3
pseudoknot, 24, 50
pseudopalindrome, 5
θ-palindrome, 50
purine, 2
pyrimidine, 2

random walk algorithm for SAT, 16
rational relation, 31
read-out, 11, 13
renaturation, 5, 6
replication, 10, 11
restriction endonuclease, 5, 7
restriction enzyme, 5, 7
restriction site, 5, 7
ribonucleic acid, 3
ribose, 3
RNA, 3

SAT problem, 14
satisfiability, 14
secondary structure, 18, 21, 23, 24,

33
separation of DNA by length, 6, 13
separation of DNA by size, 6, 8
sequencing, 11, 13
shuffle, 30

on trajectory, 27
similarity relation, 31
simple complement, 11
single strand, 2
solid support, 7–9
ssDNA, 2
start codon, 3
state complexity, 49
sticker language, 38

fair, 40
sticker system, 38

bidirectional, 38
with complex structures, 43

sticking operation, 36
sticky end, 5, 7
stop codon, 3
subword, 19

proper, 19
sugar-phosphate, 2
symmetric relation, 35
synthesis, 4, 12

T, 2
template, 8
template DNA strand, 10
test tube, 4, 13, 55

67

θ-primitive root, 51
θ-primitivity, 51
thymine, 2
top DNA strand, 11
trajectory, 27–29
transcription, 3
translation, 3
two-head finite automaton, 47

deterministic, 47

U, 3
uracil, 3

Watson-Crick automaton, 46
1-limited, 47
all-final, 46
deterministic, 47
simple, 46
stateless, 46
strongly-deterministic, 47
weakly-deterministic, 47

Watson-Crick complementarity, 2–
4, 7, 9, 16

Watson-Crick domain, 36
weak-coding, 20
well, 6, 8
wet lab, 13
wet-ware, 15
word

bordered, 50
commute, 50
conjugate, 50
pseudoknot-bordered, 50
θ-bordered, 50
θ-commute, 50
θ-conjugate, 50

68

