
Insertion operations: closure properties

Lila Kari

Academy of Finland and Mathematics Department1

Turku University

20 500 Turku, Finland

1 Introduction

The basic notions used for specifying languages are of algorithmic or operational
character: automata (accepting devices) or grammars (generating devices). This
duality reflects the original motivations coming from computer science or linguis-
tics. A deeper theory and more involved proofs called for alternative definitional
devices, where the operations have a classical mathematical character. Early
examples of such definitional devices are the sequential functions for automata
(see [14], pp.48-53) or substitutions and morphisms for grammars.

This paper goes into the fundamentals of the substitution operation, aiming
thus to a better understanding of the mechanisms of generating languages. So
far in the literature a substitution has been defined as an operation on an
alphabet. A substitution is never applied to λ (except for the convention that λ

is always mapped into λ). Our work can be viewed as an attempt to understand
the substitution on the empty word.

Let L1, L2 be two languages over an alphabet Σ. The operation of sequential
insertion of a language L2 into a language L1, can be viewed as a nonstandard
modification of the notion of substitution. It maps all letters of Σ into themselves
and the empty letter into L2, with the following additional convention. For each
word w, only one of the empty words occurring in it is substituted. The result
of applying this ”substitution” to L1 consists of words obtained from words
in L1 in which an arbitrary word from L2 has been inserted. Note that the
sequential insertion is also a generalization of the catenation operation. The
sequential insertion operation can be viewed also as a one-step rewriting rule
of a Thue system (see [4], [3]). Consequently, some closure properties of the
families in the Chomsky hierarchy under iterated sequential insertion can be
obtained using some results about Thue systems.

1The work reported here is part of the project 11281 of the Academy of Finland



The operation of parallel insertion is closer to the classical notion of substi-
tution. It is defined as the substitution above, but with a modified convention:
For each word w, between all the letters and also at the extremities, only one
λ occurs. The effect of the substitution applied to L1 will be the insertion of
words belonging to L2 between all letters and also at the extremities of words
belonging to L1.

The exact effect of the classical substitution that maps all letters into them-
selves and λ into a language L2 would be the insertion of arbitrary many words
of L2 between letters and at the extremities of words in L1. According to the
definitions mentioned above, this would amount to the parallel insertion of L∗

2

into L1.
Another way to look at operations of controlled insertion (each letter deter-

mines what may be inserted after it) is the following. Such an insertion can be
viewed as a production of the form a−→aw, where the word w comes from the
language to be inserted next to a. The mode of controlled insertion determines
how the productions are going to be applied. The controlled parallel insertion
resembles, thus, the rewriting process of OL systems (see [13]). However, it gives
rise to something different from OL systems because the productions are always
of the special form and, on the other hand, there may be infinitely many pro-
ductions. The relation between controlled sequential insertion and OS systems
(see, for instance, [11]) is similar.

Various insertion operations and the dual deletion counterparts, together
with their properties, language equations involving them and connections to
cryptography, have been studied in [6], [9], [10]. In this paper we restrict our-
selves to the study of algebraic and closure properties of some insertion opera-
tions.

In the following, REG, CF, CS will denote the families of regular, context-
free, context-sensitive languages, respectively. For other formal language notions
and notations we refer to [15].

2 Sequential and parallel insertion

The most natural generalization of catenation is the sequential insertion (ab-
breviated SIN) operation. Given two words u and v, instead of catenating v at
the right extremity of u, the new operation inserts it in an arbitrary place in u:

u< v = {u1vu2| u = u1u2, u1, u2 ∈ Σ∗}.

The result of the sequential insertion will be thus a set of words instead of a
single word. The cardinality of the set is at most n+1, where n is the length of
u. The catenation uv is an element of this set, corresponding to the particular
case where the insertion is done at the right extremity of u.

For example, cd< a = {acd, cad, cda}, where a, c, d are letters in Σ.



The sequential insertion operation is not associative. For example, (a< b)
< c 6= a< (b< c). In general the following relation holds:

L1< (L2< L3) ⊆ (L1< L2)< L3,

for any languages L1, L2, L3 over an alphabet Σ.
The sequential insertion is nor commutative. For example, a< bc 6= bc< a.

Theorem 1 Any family of languages closed under λ-free gsm mappings, λ-free
substitutions and union is closed under sequential insertion.

Proof. Let Σ be an alphabet and let # be a letter which does not occur in Σ.
If we consider the λ-free gsm:

g = (Σ, Σ ∪ {#}, {s0, s}, s0, {s}, P ),
P = {s0a−→as0| a ∈ Σ} ∪ {s0a−→a#s| a ∈ Σ}∪

{sa−→as| a ∈ Σ} ∪ {s0a−→#as| a ∈ Σ}

then we obviously have g(L) = L< {#}, for any language L ⊆ Σ+.
If for two languages L1, L2 we define now the λ-free substitution

s′ : (Σ ∪ {#})∗−→2Σ∗

, s′(#) = L2 − {λ}, s′(a) = a, ∀a ∈ Σ,

then the following relations hold:

L1< L2 = s′(g(L1)) ∪ L1 ∪ L2, if λ ∈ L1 ∩ L2,

L1< L2 = s′(g(L1)) ∪ L1, if λ ∈ L2 − L1,

L1< L2 = s′(g(L1)) ∪ L2, if λ ∈ L1 − L2,

L1< L2 = s′(g(L1)), if λ 6∈ L1 ∪ L2.

A parallel variant of the sequential insertion will be defined in the following.
The parallel insertion (shortly PIN) of a word v into a word u is the word
obtained after inserting v between all the letters of u and at the right and left
extremities of u. The definition can be easily transferred to languages.

L1< L2 =
⋃

u∈L1

(u< L2), where

u< L2 = {v0a1v1a2v2 . . . akvk| k ≥ 0, aj ∈ Σ, 1 ≤ j ≤ k,

vi ∈ L2, 0 ≤ i ≤ k, and u = a1a2 . . . ak}.

The case k = 0 corresponds to the situation u = λ when only one word
v0 ∈ L2 is inserted.

The parallel insertion operation induces a monoid structure on P(Σ∗). In-
deed, the operation is associative and the neutral element of the monoid is {λ}.
The monoid (P(Σ∗), < ) is not commutative. For example, a< b = {bab},
whereas b< a = {aba}.



Theorem 2 Any family of languages closed under catenation and λ-free sub-
stitution is closed under parallel insertion.

Proof. The theorem follows as for any two languages over Σ we have L1< L2 =
L2s(L1) where s is the λ-free substitution defined by:

s : Σ∗−→2Σ∗

, s(a) = aL2, for every a ∈ Σ.

3 Iterated insertion

In the same way as the sequential and parallel insertion are generalizations of
the catenation operation, the iterated sequential and iterated parallel insertion
are generalizations of the catenation closure. However, the iterated SIN and
PIN prove to be more powerful than the iterated catenation. Indeed, the family
of regular (context-free) languages is closed under catenation closure, whereas
it is not closed under iterated SIN (iterated PIN) of a language into itself.

Definition 1 Let L1, L2 be languages over the alphabet Σ.The insertion of order
n of L2 into L1 is inductively defined by the equations:

L1<
0L2 = L1, L1<

i+1L2 = (L1<
iL2)< L2, i ≥ 0.

The iterated sequential insertion (iterated SIN) of L2 into L1 is then defined as:

L1<
∗L2 =

⋃∞

n=0
(L1<

nL2).

The iterated SIN is not a commutative operation. For example, λ<
∗b =

b∗, whereas b<
∗λ = b. The operation is not associative either. In general, for

L1, L2, L3 arbitrary languages, the sets L1<
∗(L2<

∗L3) and (L1<
∗L2)<

∗L3

are incomparable.

Proposition 1 There exist a finite language L1 and a word w such that L1<
∗w

is not a regular language.

Proof. The iterated SIN of {()} into {λ, ()} is the Dyck language of order one,
which is a non-regular context-free language.

The following lemma shows that adding the empty word to a λ-free language
to be inserted does not change the result of the iterated SIN. The result can be
proved by induction on the number of iterations.

Lemma 1 If L1, L2 are languages over an alphabet Σ then:

L1<
∗L2 = L1<

∗(L2 − {λ}).



The fact that the family of context-free languages is closed under iterated
sequential insertion has been shown in [4], [3] in the context of Thue system
theory and can be also directly obtained by using the closure of CF under
nested iterated substitution (see [5]). For the closure of CS under iterated SIN,
we give bellow the following constructive proof.

Theorem 3 The family of context-sensitive languages is closed under iterated
sequential insertion.

Proof. Let L1 = L(G1), L2 = L(G2) be two languages generated by the context-
sensitive grammars Gi = (Ni, Σi, Si, Pi), i = 1, 2. Assume that N1 ∩ N2 = ∅.
Assume further that Gi , i = 1, 2 satisfy the conditions (see, for example, [15],
pp.19-20): (i)Si does not occur on the right side of any production of Pi ; (ii) if
λ ∈ L(Gi) then the only rule which has the right side equal with λ is Si −→ λ;
(iii) every rule of Pi containing a terminal letter is of the form A −→ a where
A ∈ Ni and a ∈ Σi.

According to Lemma 1 we can also assume that λ does not belong to L2.
Let # be a new symbol which does not occur in any of the considered

alphabets. Consider the context-sensitive grammar G = (N1 ∪ N2, Σ1 ∪ Σ2 ∪
{#}, S1, P ) whose rules are:

P = P1 ∪ P2 ∪ {S1−→S2| S1−→λ ∈ P1}∪
{A−→#S2#a, A−→a#S2#| A−→a ∈ P1 ∪ P2}.

Define now the morphism h : Σ∗−→(Σ1 ∪ Σ2)
∗ by h(#) = λ, h(a) = a, ∀a ∈

Σ1∪Σ2. The role of the morphism h being obvious, it can be easily proved that
h(L(G)) = L1<

∗L2.
From the form of the rules of P we notice that the number of markers #

in a word u ∈ L(G), denoted N#(u), depends on the number of terminals.
More precisely, if by lg(w) we denote the length of a word w, we have N#(u) ≤
2 × lg(h(u)), for every word u ∈ L(G). Consequently, lg(u) ≤ 3 × lg(h(u)),
∀u ∈ L(G), that is, h is a 3-linear erasing with respect to L(G).

The theorem now follows as the family of context-sensitive languages is closed
under linear erasing.

The iterated parallel insertion of a language L2 into a language L1 is defined
by replacing in the definition of iterated SIN ”< ” with ”< ”. The iterated
PIN is neither a commutative nor an associative operation.

The next result shows that the iterated PIN is more powerful than the iter-
ated SIN: starting only with two one-letter words, the iterated PIN can produce
a non-context-free language. However the family of context-sensitive languages
is still closed under iterated PIN.

Proposition 2 There exists a singleton language L such that L<
∗L is not a

context-free language.



Proof. If b is a singleton letter, the result of iterated PIN of b into itself is

b<
∗b = {b2k

−1| k > 0}.

Theorem 4 The family of context-sensitive languages is closed under iterated
parallel insertion.

Proof. Let L1, L2 be languages generated by the context-sensitive grammars
Gi = (Ni, Σi, Si, Pi), i = 1, 2. Assume that the grammars satisfy the conditions
stated in Theorem 3. Assume further that λ does not belong to L2.

Let G = (N, Σ, S, P ) be the context-sensitive grammar whose components
are:

N = N1 ∪ N2 ∪ {S, X},
Σ = Σ1 ∪ Σ2 ∪ {$, #},
P = (P1 − {S1−→λ}) ∪ P2∪

{S−→XS, S−→$S1#}∪
{X$−→$S2X} ∪ {X$#−→$S2#| S1−→λ ∈ P1}∪
{Xa−→aS2X | a ∈ Σ1 ∪ Σ2}∪
{Xa#−→aS2#| a ∈ Σ1 ∪ Σ2}∪
{S−→$#| S1−→λ ∈ P1},

where S, X, $, #, are new symbols which do not occur in any of the given vocab-
ularies. Intuitively, the grammar works as follows. Xn represents the number
of iterations, $ and # are markers. After a sentential form of the type Xn$u#,
u ∈ L1 is reached, X starts to move to the right, producing an S2 at the left
extremity of u, and after every letter in u. When it reaches the right extermity
of the sentential form, X dissapears. The introduced S2’s produce words of L2.
Thus, a word from L1<

∗L2 is obtained. After n iterations of the process, we
obtain a word in $(L1<

nL2)#.
Consequently, we have $(L1<

∗L2)# = L(G).
If we consider now the morphism h : Σ∗−→Σ∗ defined by h($) = h(#) = λ

and h(a) = a, ∀a ∈ Σ1 ∪ Σ2, it is easy to see that,

L1<
∗L2 =

{

h(L(G) − {$#}) ∪ {λ}, if $# ∈ L(G),
h(L(G)), if $# 6∈ L(G).

It is obvious that h is a 3-linear erasing with respect to L(G)−{$#}. As the
family of context-sensitive languages is closed under linear erasing and union,
it follows that L1<

∗L2 is context-sensitive.
We have assumed until now that the language L2 is λ-free. However, the

theorem holds also if λ belongs to L2 because in this case, L1<
∗L2 = L1<

∗L2.

4 Permuted and controlled insertion

A more exotic variant of insertion is obtained if we combine the ordinary inser-
tion with the commutative variant. The commutative variant com(v) of a word



v is the set of all words obtained by arbitrarily permuting the letters of v. The
permuted insertion of v into u will then consist of inserting into u all the words
from the commutative variant of v:

u< v = u< com(v).

The permuted SIN is not a commutative operation. For example, a< bc 6=
bc< a. The operation is not associative either. The permuted PIN is neither
commutative nor associative.

It follows from the definition that any family of languages which is closed
under SIN (respectively PIN) and commutative closure is closed under permuted
SIN (respectively permuted PIN). REG and CF are not closed under these
operations, as shown by the following result.

Proposition 3 There exist two regular languages L1, L2 such that L1< L2 and
L1< L2 are not context-free.

Proof. Let L1 = {λ} and L2 = (abc)∗. The permuted sequential insertion of L2

into L1 is:

L1< L2 = L1< L2 = L1< (com(L2)) = com(L2) =

{w ∈ {a, b, c}∗| Na(w) = Nb(w) = Nc(w)}

which is a non-context-free language.

We have dealt so far with operations where the insertion took place in arbi-
trary places of a word. As a consequence, catenation is not a particular case of
any of these operations, because one cannot fix the position where the insertion
takes place. A natural idea of controlling the position where the insertion is
performed is that every letter determines what can be inserted after it. The
catenation operation will then be obtained by using a particular case of con-
trolled sequential insertion (shortly, controlled SIN).

Definition 2 Let L be a language over the alphabet Σ. For each letter a of
the alphabet, let ∆(a) be a language over an alphabet Σa. The ∆-controlled
sequential insertion into L (shortly, controlled SIN), is defined as:

L< ∆ =
⋃

u∈L

(u< ∆), where

u< ∆ = {u1avau2| u = u1au2, va ∈ ∆(a)}.

The function ∆ : Σ−→2Σ′∗

, where Σ′ =
⋃

a∈ΣΣa is called a control function.

Example 1 Let L = {a3b, bc, λ, d2} and let ∆ be the control function defined
by ∆(a) = {e, λ}, ∆(b) = {f}, ∆(c) = ∅, ∆(d) = {d}. Then,

L< ∆ = {a3b, aea2b, a2eab, a3eb, a3bf, bfc, d3}.



All the insertion operations defined before have been binary operations be-
tween languages. The controlled insertion is an (n + 1)-ary operation, where n

is the cardinality of Σ, the domain of the control function.
If we impose the restriction that for a distinguished letter b ∈ Σ, ∆(b) = L2,

and ∆(a) = ∅ for any letter a 6= b, we obtain a special case of controlled SIN,

the sequential insertion next to the letter b, denoted L
b

< L2. The SIN next
to a letter is a binary operation. The words from L which do not contain the

letter b do not contribute to the result. A word in L
b

< L2 is obtained from
u ∈ L which contains b, by inserting a word of L2 after one of the occurrences
of b in it.

In general, the following relation holds: L< ∆ =
⋃

a∈Σ(L
a

< ∆(a)).

Example 2 Let L1, L2 be the languages L1 = {ancn| n ≥ 1}, L2 = {dm| m ≥
1}. The sequential insertion of L2 into L1, next to c, is:

L1

c
< L2 = {ancpdmcq| n, m, p ≥ 1, p + q = n}

whereas the uncontrolled sequential insertion between L1 and L2 is:

L1< L2 = (L1

c
< L2) ∪ (L1

a
< L2) ∪ L2L1.

In general, if L1, L2 are languages over an alphabet Σ, then the sequential
insertion of L2 into L1 can be expressed as:

L1< L2 =
⋃

a∈Σ
(L1

a
< L2) ∪ L2L1.

Note that the sequential insertion L1< L2 can be obtained from the con-
trolled SIN by using a marker # and a control function ∆ which has the value
L2 for every letter of Σ ∪ {#}. Indeed,

L1< L2 = h(#L1< ∆),

where ∆(#) = ∆(a) = L2, ∀a ∈ Σ and h is the morphism defined by h(#) =
λ, h(a) = a, ∀a ∈ Σ.

The catenation of the languages L1 and L2 can be obtained using a marker
and the sequential insertion next to the marker. Indeed,

L1L2 = h(L1#
#

< L2),

where h is the morphism that erases the marker.
Note that in both the controlled SIN and the SIN next to a letter, the empty

word does not occur in the result of the operation. Indeed, the notion of control
implies the presence of at least one letter in the word in which the insertion is



performed. Therefore, even if the word to be inserted is λ, the result contains
at least the ”control” letters. As it does not contain any control letter, the
presence of λ in L1 does not affect the result of the controlled SIN,

(L1< ∆) = (L1 − {λ})< ∆.

The parallel variant of controlled insertion is defined similarily with the
parallel insertion, but in the controlled case every letter defines the language
that may be inserted after it.

In the case of controlled SIN or PIN, we cannot talk about commutativity or
associativity. However, these notions can be studied in case of SIN (respectively
PIN) next to a letter. Both operations are neither commutative nor associative.

Theorem 5 Any family of languages closed under λ-free gsm and λ-free sub-
stitutions is closed under controlled sequential insertion.

Proof. The proof is similar to the one of Theorem 1. One constructs the λ-free
gsm g which inserts after each letter a ∈ Σ a different marker #a. Then a
substitution σ replacing each marker #a with the language which corresponds
to the control letter a is used.

The theorem follows as for any language L and control function ∆ we have
σ(g(L)) = L< ∆.

Theorem 6 Any family of languages closed under λ-free substitution is closed
under controlled parallel insertion.

Proof. Similar to the one of Theorem 2. In this case, the substitution is defined
as s(a) = a∆(a) for each control letter a in Σ and the corresponding language
∆(a).

5 Scattered insertion

All the previously defined types of insertion were ”compact”. The word to be
inserted was treated ”as a whole”. A ”scattered ” type of insertion can be
considered as well. Instead of inserting a word, we sparsely insert its letters.
If the inserted letters are in the same order as in the original, we obtain the
well-known shuffle operation (see [12], p.156):

u ∐ v = {u1v1u2v2 . . . ukvk| u = u1 . . . uk, v = v1 . . . vk, k ≥ 1}.

Else, the permuted scattered insertion is obtained:

u< v = u ∐ com(v).

The permuted scattered insertion induces a monoid structure on P(Σ∗).
As in the case of permuted sequential insertion, the mixture with the commu-

tative closure implies the nonclosure of REG and CF under the new operation.



Proposition 4 The family of regular and the family of context-free languages
are not closed under permuted scattered SIN with regular languages.

Proof. Let L1, L2 be two languages over an alphabet Σ. If L1 = λ, then the
permuted scattered SIN amounts to permuted SIN, therefore we can use the
proof of Proposition 3.

The closure of CS under both commutative closure and shuffle implies its
closure under permuted scattered SIN.

6 Conclusions

This note summarizes algebraic and closure properties of various families of
languages under insertion operations. Contrary to the customary style of column
writing we have provided detailed proofs for the results, in order to point out
interconnections with classical language theory.

The insertion operations, which generalize the well-known catenation of lan-
guages, can also be viewed as substitutions on the empty word, our work aim-
ing thus to a better understanding of substitution. Various related problems
have recently been investigated. Further generalizations of substitution have
appeared in [2]. The dual deletion operations corresponding to the insertion
ones (which generalize the left/right quotients on languages), their properties
and several notions connected with them have been studied in [7], [9], [10]. In
[8] the decidability of the existence of solutions to language equations involving
insertion and deletion operations have been considered.

Moreover, the fact that insertion and deletion are in some sense inverse to
each other has led to several non-language-theoretic applications, for example
in cryptography. The connections to cryptography arised from variations of the
garbage-in-between method, where encryption is realized by inserting in certain
ways ”garbage letters” in the original message, whereas decryption is made by
deleting them (see [1]). The study of suitable pairs of insertion/deletion oper-
ations having the properties requested by practical cryptographical purposes is
in progress.

Acknowledgements
We would like to thank Professor Arto Salomaa, Professor Grzegorz Rozen-

berg and Dr.Jarkko Kari for extended discussions and valuable suggestions.

References

[1] M.Andrasiu, J.Dassow, G.Paun, A.Salomaa. Language-theoretic problems
arising from Richelieu cryptosystems. To appear in Theoretical Computer
Science.



[2] A.Atanasiu, V.Mitrana. Substitutions on words and languages. To appear in
Proceedings of ”Developments in language theory”, Turku University, Fin-
land, July 12-15, 1993.

[3] R.Book, M.Jantzen, C.Wrathall. Monadic Thue systems. Theoretical Com-
puter Science, 19 (1982), pp.231-251.

[4] R.Book, M.Jantzen, C.Wrathall. Erasing strings. Lecture Notes in Computer
Science, 104 (1981), pp.252-260.

[5] S.Greibach. Full AFL’s and nested iterated substitution. Information and
Control, 16 (1970), pp.7-35.

[6] L.Kari. On insertion and deletion in formal languages. Ph.D. Thesis, Uni-
versity of Turku, 1991.

[7] L.Kari. Deletion operations: closure properties. Submitted.

[8] L.Kari. On some language equations. Submitted.

[9] L.Kari, A.Mateescu, Gh.Paun, A.Salomaa. Deletion sets. To appear in Fun-
damenta Informaticae.

[10] L.Kari, A.Mateescu, Gh.Paun, A.Salomaa. On parallel deletions applied to
a word. Submitted.

[11] H.C.M.Kleijn, G.Rozenberg. Context-free like restrictions on selective
rewriting. Theoretical Computer Science, vol.16, 3 (1981), pp.237-269.

[12] W.Kuich, A.Salomaa. Semirings, Automata, Languages. Springer Verlag,
Berlin, 1986.

[13] G.Rozenberg, A.Salomaa. The Mathematical Theory of L Systems. Aca-
demic Press, London, 1980.

[14] A.Salomaa. Theory of Automata. Pergamon Press, Oxford, 1969.

[15] A.Salomaa. Formal Languages. Academic Press, London, 1973.


