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1 Introduction

One of the recently introduced paradigms which promises to have a tremendous influence
on the (theoretical and practical) progress of computer science is DNA computing. The
main step in making it so interesting was the announcement of solving (a small instance
of) the Hamiltonian path problem in a test tube just by handling DNA sequences [1], but
the event has somewhat been prepared by the intensive efforts aiming to draw mappings of
the human genome, and by related developments not only in biology, but also in computer
science - genetic algorithms [8], neural computation [15], etc.

Adleman’s approach raised some exciting problems emerging in the new framework,
concerning the new kind of inputs, the questions about what is a computation, what is an
algorithm designed to compute, etc.; his “algorithm” is based on properties of the so-called
Watson-Crick complements and in some sense able to simulate a Post Correspondence
Problem (PCP): given a set of DNA single stranded strings, x1, x2, ..., xn, Watson-Crick
complements y1, y2, ..., ym are considered which are able to match specified suffixes and pre-
fixes of the strings x1, ..., xn (e. g., if x1 = x′

1x
′′
1, x2 = x′

2x
′′
2, a string yi will be the complement

of x′′
1x

′
2, thus matching it and forcing x1, x2 to be bound, hence to be concatenated). In

this way, all possible desired concatenations of strings x1, ..., xn can be produced, paired
with strings y1, ..., ym, which is similar to finding the solution of a PCP for the two lists of
strings. As PCP is “computationally universal”, every recursively enumerable language is
the morphic image of an “equality set” (the set of all solutions of a Post correspondence
problem). Of course, the remarks above are only a metaphorical “proof” of the fact that
Adleman’s way to compute using DNA is powerful. Actually the universality of this way
for computing still seems to be not yet settled theoretically in a satisfactory way.

“Universal systems require the ability to store and retrieve information, and DNA is
certainly up to the task if one could design appropriate molecular mechanisms to interpret
and update the information in DNA. This ultimate goal remains elusive, but once solved,
it will revolutionize the way we think about both computer science and molecular biology.
A great hope is that as we begin to understand how biological systems compute, we will
identify a naturally occurring universal computational system,” [12].

Another trend in DNA computing is based on the recombinant behaviour of DNA (dou-
ble stranded) sequences under the influence of restriction enzymes and lygases.

This approach starts with [13], where the operation of splicing has been introduced as
a model for this phenomenon.

As formalized in [13], given two strings of symbols x and y, the splicing operation consists
of cutting x and y at certain positions (determined by the splicing rule) and pasting the
resulting prefix of x with the suffix of y, respectively pasting the resulting prefix of y with
the suffix of x. Formally, if the applied splicing rule is (u1, u2; u3, u4), then the results of
splicing x and y are z and w if and only if x = x1u1u2x2, y = y1u3u4y2 and z = x1u1u4y2,
w = y1u3u2x2; all the strings u1, u2, u3, u4, x1, x2, y1, y2 are strings over a given alphabet
V . (In the case of real DNA sequences, the alphabet consists of four letters, i. e. a,
c, g, t, representing the four bases adenine, cytosine, guanine and thymine, the cutting
is realized by restriction enzymes, and the concatenation by lygases. Pairs of the form
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(u1, u2), (u3, u4) as above are intended to specify the places where cutting and pasting
operations are possible.) In [14], [17], and [19] a more general definition for the result of
a splicing operation is considered, i. e. only the string z = x1u1u4y2 is taken as the result
of splicing x = x1u1u2x2 and y = y1u3u4y2, but we will be able to prove the results of
this paper within the framework of the restricted definition given above. (From a practical
point of view, it is important to consider constructions which are as close as possible to the
test tube reality.)

The splicing operation can be used as a basic tool for building a generative mechanism,
called a splicing system or H system, in the following way. Given a set of strings (axioms)
and a set of splicing rules, the generated language will consist of the strings obtained in
an iterative way by applying the rules to the axioms and/or to the strings obtained in
preceeding splicing steps. If we add the restriction that only strings over a designed subset
of the alphabet are accepted in the language, we obtain an extended H system in the sense
of [19].

The power of H systems, extended or not, turned out to be very large, and their be-
haviour to be very interesting. For instance, one of the important results in this area states
that H systems with finite sets of axioms and finite sets of splicing rules can generate only
regular languages. The long proof in [6] is based on dominoes techniques, a shorter one
is provided in [21], in terms of formal language theory. However, if we use a regular set
of splicing rules of a very particular type, surprisingly enough a maximal increase of the
power is obtained: such H systems characterize the family of recursively enumerable lan-
guages. We recall here the construction in the proof of this result in [18], both for the sake
of completeness, as well as because we start from it in order to obtain improved versions
of this specific result. More precisely, working with regular sets of splicing rules is natural
from a mathematical point of view, but unrealistic from a practical point of view (merely
for the reason that the test tubes are finite...) How to obtain H systems with both the set
of axioms and the set of splicing rules being finite, but still being able to equalize the full
power of Turing machines? In view of the results in [6], [21], we have to pay the reduction
of the sets of rules from being regular to being finite, and the way to do this is well-known
in formal language theory [7]: we regulate the use of the splicing rules by suitable control
mechanisms. This idea has been explored in [11], where computationally universal classes
of finite H systems are obtained by associating permitting or forbidding context conditions
to the splicing rules: a splicing rule can be used only when a certain favourizing symbol
(a “catalyst”, a “promotor”) is present in the strings to be spliced, respectively when no
“inhibitor” from a specified finite set of symbols is present.

Another recently developed branch of formal language theory aiming, among others, to
increase the power of grammars, is the theory of grammar systems (see [4]: the main idea
is to put several grammars to work together, according to a specified cooperation protocol,
in order to generate a common language). The H systems mentioned above with permit-
ting/forbidding contexts can be viewed as “cooperating distributed test tube systems”,
similar to the cooperating distributed grammar systems with dynamic start conditions
(checking the presence/absence of the context symbols) in the sense of [4].

A new idea is to consider a “parallel communicating” architecture as introduced in [20]:
several test tubes work in parallel (splicing their contents), communicating by redistributing
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their contents in a way similar to the operation of separating the contents of a tube [2],
[16]: the contents of a tube is redistributed to other tubes according to certain specified
“separation conditions”. The result is, on the one hand expected - the increase in power
again leads to equalizing the power of Turing machines - on the other hand quite impressing
- systems with seven components are sufficient, the hierarchy on the number of used test
tubes collapses. (We do not know whether seven tubes are really necessary or whether only
our proof requests this “magic” number of tubes.)

Another powerful idea able to increase the power of H systems with finite sets of axioms
and finite sets of splicing rules is to count the number of copies of each used string. This
has already been used in [9] and also appears in [11], where it is proved that extended H
systems working in the multiset style are able to characterize the recursively enumerable
languages. Here we extend this theorem and its proof in a way closer to the computing
framework, i. e. we consider Turing machines as devices for computing partial recursive
functions: starting from a tape Z0wq0B

ω the Turing machine halts with Z0f(w)qfB
ω if

and only if w is in the domain of f , where f is the function to be computed, Z0 is the left
marker, B is the blank symbol, q0 is the initial state, and qf is the final state (moreover,
no further action is possible after having introduced qf).

The work of such a Turing machine can be simulated in a natural way by an H system, for
which the string originally written on the Turing machine tape is supposed to appear in only
one copy, whereas all the other strings are available in arbitrary many copies. (Moreover,
in this way the obtained H system need not to be extended, due to the working styles of
the Turing machines we consider.) Hence, we here find interesting details important from
practical points of view.

¿From the proof of all the previously mentioned results and from the existence of uni-
versal Turing machines [22] and correspondingly, universal Chomsky type-0 grammars, we
obtain ways to construct universal H systems. This can be interpreted as a proof for the
(theoretical) possibility to construct universal and programmable DNA computers based
on the splicing operation.

2 Definitions for H systems

We use the following notations: V ∗ is the free monoid generated by the alphabet V , λ is
the empty string, V + = V ∗ − {λ}, |x| is the length of x ∈ V ∗, FIN, REG, RE are the
families of finite, regular, and recursively enumerable languages, respectively. For general
formal language theory prerequisites we refer to [23], for regulated rewriting to [7], and for
grammar systems to [4].

Definition 1. An extended H system is a quadruple

γ = (V, T, A, R),

where V is an alphabet, T ⊆ V , A ⊆ V ∗, and R ⊆ V ∗#V ∗$V ∗#V ∗; #, $ are special
symbols not in V . (V is the alphabet of γ, T is the terminal alphabet, A is the set of
axioms, and R is the set of splicing rules; the symbols in T are called terminals and those
in V − T are called nonterminals.)
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For x, y, z, w ∈ V ∗ and r = u1#u2$u3#u4 in R we define

(x, y) ⊢r (z, w) if and only if x = x1u1u2x2, y = y1u3u4y2, and
z = x1u1u4y2, w = y1u3u2x2,
for some x1, x2, y1, y2 ∈ V ∗.

2

The strings x, y are called the terms of the splicing; u1u2 and u3u4 are called the sites
of the splicing.

Definition 2. For an H system γ = (V, T, A, R) and for any language L ⊆ V ∗, we write

σ(L) = {z ∈ V ∗ | (x, y) ⊢r (z, w) or (x, y) ⊢r (w, z) , for some x, y ∈ L, r ∈ R},

and we define
σ∗(L) =

⋃

i≥0

σi(L),

where
σ0 (L) = L,
σi+1 (L) = σi (L) ∪ σ (σi (L)) for i ≥ 0.

The language generated by the H system γ is defined by

L(γ) = σ∗(A) ∩ T ∗.

Then, for two families of languages, F1, F2, we denote

EH(F1, F2) = {L(γ) | γ = (V, T, A, R), A ∈ F1, R ∈ F2}.

(An H system γ = (V, T, A, R) with A ∈ F1, R ∈ F2, is said to be of type F1, F2.)
2

In the definition above, the rule to be used and the positions where the terms of the
splicing shall be cut are not prescribed, they are chosen in a nondeterministic way. More-
over, after splicing two strings x, y and obtaining two strings z and w, we may use again x
or y (they are not “consumed” by splicing) as a term of a splicing, possibly the second one
being z or w, but also the new strings are supposed to appear in infinitely many copies.
Probably more realistic is the assumption that at least part of the strings are available in
a limited number of copies. This leads to consider multisets, i. e. sets with multiplicities
associated to their elements.

In the style of [10], a multiset over V ∗ is a function M : V ∗ −→ N ∪ {∞}; M(x) is the
number of copies of x ∈ V ∗ in the multiset M . All the multisets we consider are supposed
to be defined by recursive mappings M . The set {w ∈ V ∗ | M(w) > 0} is called the support
of M and it is denoted by supp(M). A usual set S ⊆ V ∗ is interpreted as the multiset
defined by S(x) = 1 for x ∈ S, and S(x) = 0 for x /∈ S.

For two multisets M1, M2 we define their union by (M1 ∪ M2)(x) = M1(x) + M2(x),
and their difference by (M1 −M2)(x) = M1(x)−M2(x), x ∈ V ∗, provided M1 (x) ≥ M2 (x)
for all x ∈ V ∗. Usually, a multiset with finite support, M , is presented as a set of pairs
(x, M(x)), for x ∈ supp(M).
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Definition 3. An extended mH system is a quadruple γ = (V, T, A, R), where V, T, R
are as in an extended H system (Definition 1) and A is a multiset over V ∗.

For such an mH system and two multisets M1, M2 over V ∗ we define

M1 =⇒γ M2 iff there are x, y, z, w ∈ V ∗ such that
(i) M1 (x) ≥ 1, M1 (y) ≥ 1, and if x = y, then M1 (x) ≥ 2,
(ii) x = x1u1u2x2, y = y1u3u4y2,

z = x1u1u4y2, w = y1u3u2x2,
for x1, x2, y1, y2 ∈ V ∗, u1#u2$u3#u4 ∈ R,

(iii) M2 = (((M1 − {(x, 1)}) − {(y, 1)}) ∪ {(z, 1)}) ∪ {(w, 1)}

(At point (iii) we have operations with multisets.)
The language generated by an extended mH system γ is

L(γ) = {w ∈ T ∗ | w ∈ supp(M) for some M such that A =⇒∗
γ M},

where =⇒∗
γ is the reflexive and transitive closure of =⇒γ.

For two families of languages, F1, F2, we denote

EH(mF1, F2) = {L(γ) | γ = (V, T, A, R) is an mH system with supp(A) ∈ F1, R ∈ F2}.

2

An H system as in Definition 1 can be interpreted as an mH system working with
multisets of the form M(x) = ∞ for all x such that M(x) 6= 0. Such multisets are called
ω-multisets and the corresponding H systems are called ωH systems. The corresponding
families will be also denoted by EH(ωF1, F2).

An H system γ = (V, T, A, R) with V = T is called non-extended; the families of
languages generated by such systems, corresponding to EH(mF1, F2) and EH(ωF1, F2) are
denoted by H(mF1, F2) and H(ωF1, F2), respectively.

3 Computational completeness of H systems with

multisets

In this section we elaborate how the use of multisets in connection with extended H systems
allows us to achieve the generative power of type-0 Chomsky grammars; moreover we show
how (even non-extended) H systems with multisets together with suitable strategies for
selecting the final strings can simulate arbitrary computations with Turing machines.

Theorem 1. EH(mFIN, FIN) = EH(mF1, F2) = RE, for all families F1, F2 such
that FIN ⊆ F1 ⊆ RE, FIN ⊆ F2 ⊆ RE.

Proof. We will only prove the inclusion RE ⊆ EH(mFIN, FIN), because the other
inclusions are obvious.

Consider a type-0 Chomsky grammar G = (N, T, S, P ), with the rules in P of the form
u → v with 1 ≤ |u| ≤ 2, 0 ≤ |v| ≤ 2, u 6= v (for instance, we can take G in Kuroda normal
form). Also assume that the rules in P are labelled in an one-to-one manner with elements
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of a set L; we write r : u → v, for r being the label of u → v. By U we denote the set
N ∪ T and we construct the extended mH system γ = (V, T, A, R), where

V = N ∪ T ∪ {X1, X2, Y, Z1, Z2} ∪ {(r), [r] | r ∈ L},

the multiset A contains the string w0 = X2
1Y SX2

2 , with the multiplicity A(w0) = 1, and
the following strings with infinite multiplicity:

wr = (r) v [r] , for r : u → v ∈ P,
wα = Z1αY Z2, for α ∈ U,
w′

α = Z1Y αZ2, for α ∈ U,
wt = Y Y.

The set R contains the following splicing rules:

1. δ1δ2Y u#β1β2$ (r) v# [r] , for r : u → v ∈ P,
β1, β2 ∈ U ∪ {X2} , δ1, δ2 ∈ U ∪ {X1} ,

2. Y #u [r] $ (r) #vα, for r : u → v ∈ P, α ∈ U ∪ {X2} ,
3. δ1δ2Y α#β1β2$Z1αY #Z2, for α ∈ U, β1, β2 ∈ U ∪ {X2} ,

δ1, δ2 ∈ U ∪ {X1} ,
4. δ#Y αZ2$Z1#αY β, for α ∈ U, δ ∈ U ∪ {X1} ,

β ∈ U ∪ {X2} ,
5. δαY #β1β2β3$Z1Y α#Z2, for α ∈ U, β1 ∈ U, β2, β3 ∈ U ∪ {X2} ,

δ ∈ U ∪ {X1} ,
6. δ#αY Z2$Z1#Y αβ, for α ∈ U, δ ∈ U ∪ {X1} ,

β ∈ U ∪ {X2} ,
7. #Y Y $X2

1Y #w, for w ∈ {X2
2} ∪ T {X2

2} ∪ T 2 {X2} ∪ T 3,
8. #X2

2$Y 3#.

The idea behind this construction is the following. The rules in the groups 1 and 2
simulate rules in P , but only in the presence of the symbol Y . The rules in the groups 3
and 4 move the symbol Y to the right, the rules in the groups 5and 6 move the symbol Y
to the left. The ”main axiom” is w0. All rules in the groups 1 – 6 involve a string derived
from w0 and containing such a symbol Y introduced by this axiom, in the sense that they
can use only one axiom different from w0. In any moment, we have two occurrences of X1

at the beginning of a string and two occurrences of X2 at the end of a string (maybe the
same string). The rules in groups 1, 3, and 5 separate strings of the form X2

1zX
2
2 into two

strings X2
1z1, z2X

2
2 , each one with multiplicity one; the rules in groups 2 and 4, 6 bring

together these strings, leading to a string of the form X2
1z

′X2
2 . The rules in the groups 7

and 8 remove the auxiliary symbols X1, X2, Y . If the remaining string is terminal, then it
is an element of L(G). The symbols (r), [r] are associated with labels in L, Z1 and Z2 are
associated with moving operations.

Using these explanations, the reader can easily verify that each derivation in G can be
simulated in γ, hence we have L(G) ⊆ L(γ) (an induction argument on the length of the
derivation can be used, but the details are straightforward and tedious; we shall avoid such
a strategy here).
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Let us consider in some detail the opposite inclusion. We claim that if A =⇒∗
γ M and

w ∈ T ∗, M(w) > 0, then w ∈ L(G).
As we have pointed out above, by a direct check we can see that we cannot splice two of

the axioms wr, wα, w′
α, wt (for instance, the symbols δ, β in rules in the group 4 and 6 prevent

the splicing of w′
α and wα). In the first step, we have to start with w0, w0 = X2

1Y SX2
2 ,

A (w0) = 1. Now assume that we have a string X2
1w1Y w2X

2
2 with multiplicity 1. If w2

starts with the left hand member of a rule in P , then we can apply to it a rule of type 1.
Assume that this is the case, the string is X2

1w1Y uw3X
2
2 for some r : u → v ∈ P . Using

the axiom (r)v[r] from A we obtain the strings

X2
1w1Y u[r], (r)vw3X

2
2 .

No rule from the groups 1 and 3 – 8 can be applied to these strings, because so far no string
containing Y 3 has been derived. From group 2, the rule Y #u[r]$(r)#vα can be applied
involving both these strings, which leads to

X2
1w1Y vw3X

2
2 , (r)u [r] ,

where the string (r)u [r] can never enter a new splicing, because in the rule r : u → v from
P we have assumed u 6= v. The multiplicity of X2

1w1Y u[r] and (r)vw3X
2
1 has been reduced

to 0 again (hence these strings are no more available), the multiplicity of X2
1w1Y vw3X

2
2 is

one. In this way, we have passed from X2
1w1Y uw3X

2
2 to X2

1w1Y vw3X
2
2 , which corresponds

to using the rule r : u → v in P . Moreover we see that at each moment there is only one
string containing X2

1 and only one string (maybe the same) containing X2
2 in the current

multiset.
If to a string X2

1w1Y αw3X
2
2 we apply a rule of type 3, then we get

X2
1w1Y αZ2, Z1αY w3X

2
2 .

No rule form the groups 1 – 3 and 5 – 8 can be applied to these strings. By using a rule
from group 4 we obtain

X2
1w1αY w3X

2
2 , Z1Y αZ2.

The first string has replaced X2
1w1Y αw3X

2
2 (hence we have interchanged Y with α), the

second one is an axiom.
In the same way, one can see that using a rule from group 5 must be followed by using the

corresponding rule of type 6, which results in interchanging Y with its left hand neighbour.
Consequently, in each moment we have a multiset with either one word X2

1w1Y w2X
2
2

or two words X2
1z1, z2X

2
2 , each one with multiplicity 1. Only in the first case, provided

w1 = λ, we can remove X2
1Y by using a rule from group 7; then we can also remove X2

2 by
using the rule in group 8. This is the only way to remove these nonterminal symbols. If
the obtained string is not terminal, then it cannot be further processed any more, because
it does not contain the symbol Y . In conclusion, we can only simulate derivations in G and
move Y freely in the string of multiplicity one, hence L(γ) ⊆ L(G). 2

In the second part of this section we take another look on H systems of the form
Γ = (V, A, R), i. e. we do not specify a terminal alphabet in advance, and look at such
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systems in a slightly different way compared with the notations introduced for generating
devices like grammars we have considered in the first part of this section: In the following
we will assume that the H system “really” starts to work only if one additional single string
is added. In the sense of multisets, we take exactly one copy of this starting string, whereas
all the other strings in A are assumed to be available unboundedly (hence it is sufficient to
specify the strings to appear as axioms without their common multiplicity ∞).

In this model we now can consider different possibilities for selecting the result of the
computation:

1. We take every string w that is contained in a special regular language (i. e. we use
intersection with regular languages, e. g. T ∗ for some T ⊆ V as before).

2. We take every string w that cannot be processed any more (we call such strings
terminating).

3. We take every string w not in A that has reached a “steady state”, i. e. there exist
rules in R that can be applied to w, but still yield w again.

We will use the following model of a deterministic Turing machine, which is equiva-
lent to all the other models appearing in literature as the model of a mechanism defining
computability:

A deterministic Turing machine M is an 8-tuple (Q, q0, qf , V, VT , Z0, B, δ) , where Q is
the (finite) set of states, q0 is the initial state, qf is the finite state, V is the (finite) alphabet
of tape symbols, VT ⊆ V is the set of terminal symbols, Z0 ∈ V is the left boundary symbol,
V0 := V −{Z0}, B ∈ V0 is the blank symbol, δ : Q× V → Q× V ×{L, R} is the transition
function with the following restrictions (the fact (p, Y, D) ∈ δ (q, X) will be expressed by
the relation (q, X, p, Y, D) ∈ δ):

• (q, X, p, Y, L) ∈ δ implies X ∈ V0, i. e. X 6= Z0 (Z0 marks the left boundary of the
semi-infinite tape);

• (q, Z0, p, Y, D) ∈ δ, D ∈ {L, R} , implies Y = Z0 and D = R, i. e. Z0 cannot be
rewritten, and reading Z0 the Turing machine can only go to the right;

• (q, X, p, Z0, R) ∈ δ implies X = Z0, i. e. Z0 cannot be written except at the beginning
of the tape;

• (q, X, p, Y, D) ∈ δ, D ∈ {L, R} , implies q 6= qf , i. e. there is no transition from the
final state qf , whereas

• for all q ∈ Q − {qf} and all X ∈ V there is some transition (q, X, p, Y, D) in δ.

The Turing machine M works on a semi-infinite tape with left boundary marker Z0. An
instantaneous description of that tape during a computation of M is of the form Z0uqvBω

with u, v ∈ V ∗ and q ∈ Q, which describes the situation that M is in state q, the head of
the Turing machine looks at the rightmost symbol of Z0u, and the contents of the tape is
Z0uvBω, where the notation Bω just describes the fact that to the right we find an infinite
number of blank symbols B.

The effect of a transition specified by δ on such a configuration Z0uqvBω is defined as
follows:
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• Applying (q, X, p, Y, L) ∈ δ (remember that we have the restriction X 6= Z0) yields
Z0u

′pY vBω from Z0u
′XqvBω.

• Applying (q, X, p, Y, R) ∈ δ yields Z0u
′Y Upv′Bω from Z0u

′XqUv′Bω.

It is well-known that such a model for (deterministic) Turing machines as defined above
is one of the general models for computability, i. e.

• for every computable (partial) function f : T ∗ → T ∗ there exists a Turing machine
Mf such that

1. if f (w) , w ∈ T ∗, is defined, Mf started with the initial configuration Z0wq0B
ω

computes f(w) by ending up in the final configuration Z0f(w)qfB
ω, and

2. if w ∈ T ∗ is not contained in dom (f), the domain of the function f , then Mf

started with the initial configuration Z0wq0B
ω never halts (i. e. Mf never enters

the final state qf);

• for each alphabet T there exists a universal Turing machine MU,T , i. e. every Turing
machine M with terminal alphabet T can be encoded as a string C(M) ∈ {c1, c2}

+

in such a way that MU,T starting with the initial configuration Z0C(M)c3wq0B
ω,

w ∈ T ∗, halts in the final state qf if and only if fM(w) is defined (where c1, c2, c3 are
new symbols and fM is the partial function induced by the Turing machine M) and
moreover the final configuratoin is Z0fM(w)qfB

ω.

In the following theorem we show how H systems (with multisets) can simulate the
actions of Turing machines; hence we can also construct universal H systems, i. e. H systems
Γ, Γ = (V, A, R), which from a representation of a given partial function f, f : T ∗ → T ∗,
and a representation of the input data w compute a representation of f (w) provided w ∈
dom(f). The final result f(w) can be filtered out by several techniques as they were
considered before, e. g. by taking the intersection with T ∗.

For the proof of the following theorem we choose to select exactly those strings that
cannot be processed any more.

Theorem 2. Let f : T ∗ → T ∗ be a partial recursive function, and let

Mf = (Q, q0, qf , V, T, Z0, B, δ)

be a deterministic Turing machine computing f (i. e. for every w ∈ T ∗, starting with
the initial configuration Z0wq0B

ω, Mf halts with the final configuration Z0f(w)qfB
ω if

w ∈ dom(f), and never halts otherwise). Then we can effectively construct an H system
Γf = (V ′, A, R) which also computes f in the following way:

For an arbitrary w ∈ T ∗, the computation with Γf on w is initialized by the string
Z0wq0Z1; if w ∈ dom(f), then finally the string Z0f(w)qfZ1 will be derivable and also be
terminating (no other string can be obtained from this string any more); if w /∈ dom(f), no
terminating string is derivable.

Proof. From Mf we construct Γf in the following way: Γ = (V ′, A, R) with

V ′ = V ∪ {Z1, Z2, Z3} ∪ {(r) , [r] | r ∈ δ}

10



and A = A1 ∪ A2, where

A1 = {Z0UpZ2 | for some q ∈ Q (q, Z0, p, Z0, R) ∈ δ, U ∈ V0, p ∈ Q}∪
{(r) Y Up [r] | r = (q, X, p, Y, R) ∈ δ, U, X, Y ∈ V0, p, q ∈ Q}∪
{(r) pY [r] | r = (q, X, p, Y, L) ∈ δ, X, Y ∈ V0, p, q ∈ Q}∪
{Z3qBZ1 | q ∈ Q − {qf}} ∪ {Z3qfZ2} ,

A2 = {Z0qUZ2 | for some q ∈ Q (q, Z0, p, Z0, R) ∈ δ, U ∈ V0, p ∈ Q}∪
{(r) XqU [r] | r = (q, X, p, Y, R) ∈ δ, U, X, Y ∈ V0, p, q ∈ Q}∪
{(r) Xq [r] | r = (q, X, p, Y, L) ∈ δ, X, Y ∈ V0, p, q ∈ Q}∪
{Z3qZ1 | q ∈ Q − {qf}} ∪ {Z3qfBZ2} .

The set R contains the following splicing rules:

1. Z0qU#C$Z0Up#Z2 for (q, Z0, p, Z0, R) ∈ δ, U ∈ V0, p, q ∈ Q,
C ∈ V0 ∪ {Z1} ;

2. DXqU#C$(r)Y Up# [r] for r = (q, X, p, Y, R) ∈ δ, U, X, Y ∈ V0, p, q ∈ Q,
C ∈ V0 ∪ {Z1} , D ∈ V ;

3. D#XqU [r] $(r)#Y UpC for r = (q, X, p, Y, R) ∈ δ, U, X, Y ∈ V0, p, q ∈ Q,
C ∈ V0 ∪ {Z1} , D ∈ V ;

4. DXq#C$(r)pY # [r] for r = (q, X, p, Y, L) ∈ δ, X, Y ∈ V0, p, q ∈ Q,
C ∈ V0 ∪ {Z1} , D ∈ V ;

5. D#Xq [r] $(r)#pY C for r = (q, X, p, Y, L) ∈ δ, X, Y ∈ V0, p, q ∈ Q;
C ∈ V0 ∪ {Z1} , D ∈ V ;

6. U#qZ1$Z3#qBZ1 for q ∈ Q − {qf} and U ∈ V ;
7. D#qfB$Z3#qfZ2 for D ∈ V ;
8. Dqf#Z2$Z3qfB#C for D ∈ V, C ∈ {B, Z1} ;
9. w#$#w for all w ∈ A.

Any configuration Z0uqvBω in M is represented by some finite string Z0uqvBmZ1, for
some m ≥ 0, in the H system Γ. By using the rules in group 6 we can add a new blank
symbol at the right-hand side of the string just to the left of the right marker Z1. If some
string Z0f(w)qfB

mZ1 representing the final configuration Z0f(w)qfB
ω has been derived,

the desired terminal finite string Z0f(w)qfZ1 that cannot be derived any more can be
obtained by using the rules in the groups 7 and 8. The rules in the groups 1, 2 and 3 as
well as 4 and 5 allow us to simulate the transitions from δ with the head moving to the
right on Z0, moving to the right on a symbol 6= Z0 and rewriting the symbol, as well as
moving to the left and rewriting the symbol.

The only terminating string not in A obtained by using the rules from R from an initial
string Z0wq0Z1 therefore is the final string Z0f(w)qfZ1 provided w ∈ dom(f); because of
the rules in group 9 this final string even is the only string that cannot be derived any more.
For w /∈ dom(f) no terminating string is derivable from the initial string Z0wq0Z1. 2

If we want to select the final strings via the “steady state” condition, in the proof of
the preceding theorem we only have to replace group 9 by group 9′:

9′. qf#Z1$qf#Z1

11



Moreover, we have to add qfZ1 to A. Then we obtain another method for selecting the
final string (configuration), i. e. by taking exactly those strings not in A that reach a steady
state; obviously, qfZ1 will be the only string in A also fulfilling the steady state condition.

Another way to select the final strings (configurations) is to apply the “filter”
{Z0} T ∗ {qfZ1}.

Finally we have to mention that the proof of the preceding theorem could be extended
in such a way that from the final configuration Z0f(w)qfZ1 we could obtain f(w) itself as
the final string that cannot be processed any more (in fact, similar constructions like in the
proof of Theorem 1 can be used) which also corresponds to using a “filter” T ∗.

The following result proving the universality of H systems (with multisets) with respect
to computability can be proved by using similar techniques as in the proof if the previous
theorem:

Corollary 1. Let T be an arbitrary alphabet. Then we can effectively construct an H
system Γ, Γ = (V, A, R), with T ⊆ V such that Γ can compute every partial recursive
function f in the following way: Started with the initial string Z0C(Mf)c3wq0Z1 where
C (Mf ) is the code of a deterministic Turing machine Mf realizing f , f : T → T ∗, Γ for
w ∈ dom(f) computes the terminating string Z0f(w)qfZ1, whereas for w /∈ dom(f) no
terminating string (not in A) is derivable.

The result above can again be obtained for other selection strategies, too, as already
elaborated after the proof of Theorem 2.

In the following sections we will restrict ourselves to the selection of the terminal strings
by specifying a terminal alphabet for extended H systems.

4 Regular extended H systems

In [6] it is proved that H (FIN, FIN) ⊆ REG (in fact, also H (REG, FIN) ⊆ REG);
the proof has been simplified in [21]. As REG is closed under intersection, it follows that
EH(REG, FIN) ⊆ REG, too. The converse inclusion is proved in [18], hence we can state

Theorem 3. EH (FIN, FIN) = EH(F, FIN) = REG for all FIN ⊆ F ⊆ REG.

Surprisingly enough, the extended H systems of the next complexity level after those
with finite sets of axioms are already powerful enough to equalize the power of Turing
machines (and of any other language describing class of algorithms). We here recall the
construction in the proof of this result in [18], because we shall use its main ideas in
subsequent sections of this paper.

Theorem 4. EH(FIN, REG) = EH(F1, F2) = RE for all FIN ⊆ F1 ⊆ RE, REG ⊆
F2 ⊆ RE.

Proof. The inclusions EH(FIN, REG) ⊆ EH(F1, F2) for F1, F2 as above are obvious,
and because of the Turing/Church thesis EH(F1, F2) ⊆ RE is obvious. Hence it is sufficient
to prove that RE ⊆ EH(FIN, REG):

12



Consider a type-0 Chomsky grammar G = (N, T, S, P ) and construct the extended H
system γ = (V, T, A, R), where

V = N ∪ T ∪ {X, X ′, B, Y, Z} ∪ {Yα | α ∈ N ∪ T ∪ {B}} ,
A = {XBSY, ZY, XZ} ∪ {ZvY | u → v ∈ P} ∪ {ZYα, X ′αZ | α ∈ N ∪ T ∪ {B}} ,

and R contains the following groups of rules:

1. Xw#uY $Z#vY for u → v ∈ P, w ∈ (N ∪ T ∪ {B})∗ ;
2. Xw#αY $Z#Yα for α ∈ N ∪ T ∪ {B} , w ∈ (N ∪ T ∪ {B})∗ ;
3. X#wYα$X ′α#Z for α ∈ N ∪ T ∪ {B} , w ∈ (N ∪ T ∪ {B})∗ ;
4. X ′w#Yα$Z#Y for α ∈ N ∪ T ∪ {B} , w ∈ (N ∪ T ∪ {B})∗ ;
5. X ′#wY $X#Z for w ∈ (N ∪ T ∪ {B})∗ ;
6. XB#wY $#ZY for w ∈ T ∗;
7. #Y $XZ#.

We can show that we obtain L (γ) = L(G). 2

5 H systems with context conditions

A natural way to regulate the application of the splicing rules is to use context conditions as
in random context grammars: associate sets of symbols/strings to rules and use a rule only
when the associated symbols/strings are present in the currently spliced strings (permitting
contexts) or they are not present (forbidden contexts). Formally, we consider

Definition 4. An extended ωH system with permitting contexts is a quadruple γ =
(V, T, A, R), where V, T, A are as in Definition 1 and R is a set of triples (we call them rules
with permitting contexts) of the form

p = (r; C1, C2) with r = u1#u2$u3#u4,

where u1#u2$u3#u4 is a splicing rule over V and C1, C2 are finite subsets of V +.
For x, y, z, w ∈ V ∗ and p ∈ R as above, we define (x, y) ⊢p (z, w) if and only if (x, y) ⊢r

(z, w), every string contained in C1 appears as a substring in x and every string contained
in C2 appears as a substring in y (of course, when C1 = ∅ or C2 = ∅, then this imposes no
restriction on the use of the rule p). 2

The language generated by γ is defined in the natural way, and the family of lan-
guages L(γ), for γ = (V, T, A, R) as above, with A ∈ F1 and R having the set of strings
u1#u2$u3#u4C1C2 in the rules with permitting contexts in a family F2, is denoted by
EH(ωF1, cF2).

Theorem 5. EH(ωFIN, cFIN) = EH(ωF1, cF2) = RE for all families F1, F2 such
that FIN ⊆ F1 ⊆ RE, FIN ⊆ F2 ⊆ RE.

Proof. The inclusions EH(ωFIN, cFIN) ⊆ EH(ωF1, cF2) ⊆ RE are obvious, hence it
is sufficient to prove the inclusion RE ⊆ EH(ωFIN, cFIN).
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Consider a type-0 Chomsky grammar G = (N, T, S, P ) like in the proof of Theorem 1;
let L denote the set of labels of the rules in P and denote U ′ = U ∪ {B}, U = N ∪ T . We
now construct the extended ωH system with permitting contexts γ = (V, T, A, R), where

V = U ∪ {B, E, E ′, F, F ′, X, X ′, Y, Z} ∪ {Yα | α ∈ U ′ ∪ L} ,
A = {F ′Z, XBSY, XZ, ZE, ZE ′, ZF, ZY }∪

{ZYα, X ′αZ | α ∈ U ′} ∪ {ZYr, X
′vZ | r : u → v ∈ P}

and R contains the following rules with permitting contexts:

1. (#uY $Z#Yr; {X} , ∅) , for r : u → v ∈ P,
2. (X#$X ′v#Z; {Yr} , ∅) , for r : u → v ∈ P,
3. (#Yr$Z#Y ; {X ′} , ∅) , for r : u → v ∈ P,
4. (X ′#$X#Z; {Y } , ∅) ,
5. (#αY $Z#Yα; {X} , ∅) , for α ∈ U ′,
6. (X#$X ′α#Z; {Yα} , ∅) , for α ∈ U ′,
7. (#Yα$Z#Yα; {X ′} , ∅) , for α ∈ U ′,
8. (#Y $Z#F ; {X} , ∅) ,
9. (XB#$F ′#Z; {F} , ∅) ,
10. (#F$ZE#; {F ′} , ∅) ,
11. (F ′#$#ZE ′; {F ′} , ∅) .

The idea behind this construction is the following. The rules from the groups 1, 2, 3,
and 4 allow us to simulate rules from P on a suffix of the first term of the splicing. A rule in
group 1 cuts the left-hand side u of the production r : u → v ∈ P from the right-hand end
of the string and the associated symbol Yr memorizes the label of this rule; in the presence
of Yr a rule from group 2 will introduce the right-hand side v of the rule with label r on
the left-hand end of the string together with X ′ instead of X; then Yr is again replaced by
Y (by using the appropriate rule from group 3), and X ′ is again replaced by X (by using
the rule from group 4).

However, we must be able to simulate the application of a rule from P at an arbitrary
position of the underlying sentential form, not only at the right-hand end of the string. To
this aim, the rules in the groups 5, 6, 7, and 4 allow us to ”rotate” the string: A rule in
group 5 cuts a symbol α from the right-hand end of the string, Yα memorizes this symbol,
in its presence a rule from group 6 will introduce α in the left hand end (together with
X ′), then Yα is again replaced by Y (by using the appropriate rule from group 7), and X ′

is again replaced by X (by using the rule from group 4). Any circular permutation can be
obtained in this way.

In a quite similar way, the rules from the groups 8, 9, 10, and 11 finally allow us to
remove the markers X and Y by first replacing Y by F and X by F ′ and then by removing
F and F ′.

We obtain L(γ) = L(G). The detailed proof of this equality can be found in [11]. 2

Instead of controlling the applicability of a splicing rule by using permitting contexts,
i. e. by checking the occurrence of specific substrings (symbols) in the underlying strings,
we can also control the applicability of a splicing rule by using forbidden contexts, i. e. by
forbidding the occurrence of specific substrings (symbols) in the underlying strings.
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These forbidding contexts can be interpreted as inhibitors of the associated rules (and
they can be checked, manually, as in [1]).

Definition 5. An extended ωH system with forbidden contexts is a quadruple γ =
(V, T, A, R), where V, T, A are as in Definition 1 and R is a set of triples (we call them rules
with forbidden contexts) of the form

p = (r; D1, D2) with r = u1#u2$u3#u4,

where u1#u2$u3#u4 is a splicing rule over V and D1, D2 are finite subsets of V +.
For x, y, z, w ∈ V ∗ and p ∈ R as above, we define (x, y) ⊢p (z, w) if and only if (x, y) ⊢r

(z, w), no string contained in D1 appears as a substring in x and no string contained in
D2 appears as a substring in y (of course, when D1 = ∅ or D2 = ∅, then this imposes no
restriction on the use of the rule p). 2

The language generated by γ is defined in the natural way, and the family of lan-
guages L(γ), for γ = (V, T, A, R) as above, with A ∈ F1 and R having the set of strings
u1#u2$u3#u4D1D2 in the rules with forbidden contexts in a family F2 is denoted by
EH(ωF1, fF2).

Theorem 6. EH(ωFIN, fFIN) = EH(ωF1, fF2) = RE, for all families F1, F2 such
that FIN ⊆ F1 ⊆ RE, FIN ⊆ F2 ⊆ RE.

Proof. Again, it is sufficient to prove that RE ⊆ EH(ωFIN, FIN).
Consider a type-0 grammar G = (N, T, S, P ) like in the proof of Theorem 1, let L be

the set of labels of the rules in P , and denote U ′ = N ∪T ∪{B}. We now construct the ωH
system with forbidden contexts γ = (V, T, A, R), where V , T , and A are as in the proof of
the preceding theorem, and R contains the following rules with forbidden contexts:

1. (#uY $Z#Yr; V − (U ′ ∪ {X, Y }) , ∅) , for r : u → v ∈ P,
2. (X#$X ′v#Z; V − (U ′ ∪ {X, Yr}) , ∅) , for r : u → v ∈ P,
3. (#Yr$Z#Y ; V − (U ′ ∪ {X ′, Yr}) , ∅) , for r : u → v ∈ P,
4. (X ′#$X#Z; V − (U ′ ∪ {X ′, Y }) , ∅) ,
5. (#αY $Z#Yα; V − (U ′ ∪ {X, Y }) , ∅) , for α ∈ U ′,
6. (X#$X ′α#Z; V − (U ′ ∪ {X, Yα}) , ∅) , for α ∈ U ′,
7. (#Yα$Z#Yr; V − (U ′ ∪ {X ′, Yα}) , ∅) , for α ∈ U ′,
8. (#Y $Z#F ; V − (T ∪ {B, X, Y }) , ∅) ,
9. (XB#$F ′#Z; V − (T ∪ {B, F, X}) , ∅) ,
10. (#F$ZE#; V − (T ∪ {F, F ′}) , ∅) ,
11. (F ′#$#ZE ′; V − (T ∪ {F ′}) , ∅) .

In an even more restrictive way than the permitting contexts in the rules of the ωH
system with permitting contexts constructed in the proof of Theorem 5, the forbidden
contexts in the ωH system with forbidden contexts constructed above control the derivation
sequences possible in γ. Hence, again we conclude L(γ) = L(G). 2
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6 H systems as universal generating mechanisms

The results in the previous sections prove that finite H systems of the considered types are
computationally complete, but this does not mean that programmable computers based on
splicing can be constructed. To this aim, it is necessary to find universal H systems, i. e.
systems with all components but one (the set of axioms) fixed, able to behave as any given
H system γ, when a code of γ is introduced in the set of axioms of the universal system.

Definition 6. Given an alphabet T and two families of languages, F1, F2, a construct

γU = (VU , T, AU , RU),

where VU is an alphabet, AU ∈ F1, and RU ⊆ V ∗
U#V ∗

U$V ∗
U#V ∗

U , RU ∈ F2, is said to be a
universal H system of type (F1, F2), if for every γ = (V, T, A, R) of any type (F ′

1, F
′
2) there is

a language Aγ such that AU ∪Aγ ∈ F1 and L(γ) = L(γ′
U), where γ′

U = (VU , T, AU ∪Aγ , RU).
2

The particularizations of this definition to mH systems or to ωH systems with permitting
respectively forbidden contexts are obvious.

Note that the type (F1, F2) of the universal system is fixed, but the universal system is
able to simulate systems of any type (F ′

1, F
′
2).

The restriction to a given terminal alphabet cannot be avoided, but this is anyway
imposed by the fact that the DNA alphabet has only four letters. It is perhaps no surprise
why this alphabet has been chosen: it is the smallest one by which we can codify two disjoint
arbitrarily large alphabets (terminal and nonterminal symbols in our terminology), using
two disjoint subsets of it. This is known in language and information theory in general, but
this works also in the H systems area.

Theorem 7. For every given alphabet T there exists an mH system of type
(mFIN, FIN) which is universal for the class of mH systems with the terminal alphabet
T .

Proof. Consider an alphabet T and two different symbols c1, c2 not in T .
For the class of type-0 Chomsky grammars with given terminal alphabet T , there are

universal grammars, i. e. constructs GU = (NU , T,−, PU) such that for any given gram-
mar G = (N, T, S, P ) there is a string w(G) ∈ (NU ∪ T )∗ (the “code” of G) such that
L(G′

U ) = L(G) for G′
U = (NU , T, w(G), PU). (In fact, the set of nonterminals N and the

set of productions P from G can easily be encoded in the alphabet {c1, c2}. The language
L(G′

U ) then consists of all terminal strings z such that w(G) =⇒∗ z using the rules in PU .)
This follows from the existence of universal Turing machines [22] and the way of passing
from Turing machines to type-0 grammars and conversely, or it can be proved directly (an
effective construction of a universal type-0 grammar can be found in [3]).

For a given universal type-0 grammar GU = (NU , T,−, PU), we follow the construction
in the proof of Theorem 1, obtaining an mH system γ̂U = (V̂U , T, ÂU , R̂U), where the axiom
(with multiplicity 1) X2

1Y SX2
2 is not considered. Remark that all other axioms in ÂU (all

having infinite multiplicity) and the rules in R̂U depend on NU , T and PU only, hence they
are fixed.
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All symbols in V̂U −T now can be codified by strings over {c1, c2}; the obtained system,

γU = ({c1, c2} ∪ T, T, AU , RU)

is the universal mH system we are looking for.
Indeed, take an arbitrary mH system γ0 = (V, T, A, R) and construct a type-0 grammar

G0 = (N0, T, S0, P0) such that L(γ0) = L(G0) (the grammar G0 can be constructed directly
and in an effective way; because of the Turing/Church thesis we have left this obvious
construction to the reader). Construct the code of G0, w(G0), as imposed by the definition
of universal type-0 grammars, consider the string X2

1Y w(G0)X
2
2 corresponding to the axiom

X2
1Y SX2

2 in the proof of Theorem 1, then codify X2
1Y w(G0)X

2
2 over {c1, c2}∪T , and denote

the obtained string by w(γ0). Then L(γ′
U) = L(γ0), for γ′

U = ({c1, c2} ∪ T, T, {(w(γ0), 1)}∪
AU , RU). 2

Theorem 8. For every given alphabet T , there is an ωH system of type (ωFIN, FIN)
with permitting respectively forbidden contexts that is universal for the class of ωH systems
with permitting respectively forbidden contexts and with the terminal alphabet T .

Proof. This result can be proved in the same way as in Theorem 7 above. 2

Remark that the universal H systems γU furnished by the previous proofs are enabled
to simulate any given H system γ by adding one more axiom to γU (of multiplicity one in
the case of mH systems). The computers based on γU seem to be quite economical as for
as the way to program them is concerned.

7 Test tube systems

In this section we investigate a new model for biological computers that incorporates basic
ideas of parallel communicating grammar systems.

Definition 7. A test tube (TT for short) system of degree n, n ≥ 1, is a construct

Γ = (V, (A1, R1, V1) , ..., (An, Rn, Vn)) ,

where V is an alphabet, Ai ⊆ V ∗, Ri ⊆ V ∗#V ∗$V ∗#V ∗, and Vi ⊆ V, for each i, 1 ≤ i ≤ n.
Each triple (Ai, Ri, Vi) is called a component of the system, or a tube; Ai is the set of

axioms of the tube i, Ri is the set of splicing rules of the tube i, Vi is the selector of the
tube i.

We denote

B = V ∗ −
n
⋃

i=1

V ∗
i .

The pair σi = (V, Ri) is the underlying H scheme associated to the component i of the
system.

An n-tuple (L1, ..., Ln) , Li ⊆ V ∗, 1 ≤ i ≤ n, is called a configuration of the system; Li

is also called the contents of the i-th tube.
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For two configurations (L1, ..., Ln) , (L′
1, ..., L

′
n) we define

(L1, ..., Ln) =⇒ (L′
1, ..., L

′
n) if and only if for each i, 1 ≤ i ≤ n,

L′
i =

⋃n
j=1

(

σ∗
j (Lj) ∩ V ∗

i

)

∪ (σ∗
i (Li) ∩ B) .

In words, the contents of each tube is spliced according to the associated set of rules
(we pass from Li to σ∗ (Li) , 1 ≤ i ≤ n), and the result is redistributed among the n tubes
according to the selectors V1, ..., Vn; the part which cannot be redistributed, because it does
not belong to some V ∗

i , 1 ≤ i ≤ n, remains in the tube. When a string belongs to several
languages V ∗

i , then copies of it will be distributed to all tubes i with this property.
A computation of length k, k ≥ 1, with respect to Γ is a sequence of configurations

(

L
(0)
1 , ..., L(0)

n

) (

L
(1)
1 , ..., L(1)

n

)

...
(

L
(k)
1 , ..., L(k)

n

)

such that

1.
(

L
(0)
1 , ..., L(0)

n

)

= (A1, ..., An) .

2.
(

L
(t)
1 , ..., L(t)

n

)

=⇒
(

L
(t+1)
1 , ..., L(t+1)

n

)

, with respect to Γ for each t, 0≤ t ≤ k − 1.

We denote by Ck (Γ) the set of all computations of length k, k ≥ 0, of Γ, and by C∗ (Γ)
the set of all possible computations

C∗ (Γ) =
⋃

k≥0

Ck (Γ) ,

where C0 (Γ) = {(A1, ..., An)} .

The i-th result of a computation C =
(

L
(0)
1 , ..., L(0)

n

) (

L
(1)
1 , ..., L(1)

n

)

...
(

L
(k)
1 , ..., L(k)

n

)

is
the set of all strings which were present in the tube i, that is

ρi (Γ) =
⋃

0≤t≤k

L
(t)
i .

By convention, the language generated by a TT system Γ is the result of all computations
in the tube 1, i. e.

L (Γ) =
⋃

C∈C∗(Γ)

ρ1 (C) .

More compactly, we write

L (Γ) =
{

w ∈ V ∗ | w ∈ L
(+)
1 for some

(

L
(t)
1 , ..., L(t)

n

)

, t ≥ 0,

such that (A1, ..., An) =⇒∗
(

L
(t)
1 , ..., L(t)

n

)}

,

where =⇒∗ is the reflexive and transitive closure of the relation =⇒. 2

Definition 8. Given two families of languages, F1, F2, by TTn (F1, F2) we denote the
family of languages L (Γ) , for Γ = (V, (A1, R1, V1) , ..., (Am, Rm, Vm)) , with m ≤ n, Ai ∈ F1,
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Ri ∈ F2, for all i, 1 ≤ i ≤ m. (We say that Γ is of type (F1, F2).) When n is not specified,
we replace it by ∗, that is we write

TT∗(F1, F2) =
⋃

n≥1

TTn (F1, F2) .

2

A TT system as above has a structure very similar to that of a parallel communicat-
ing (PC for short) grammar system. The rewriting steps in a PC grammar system here

correspond to the splicing phases, that is to passing from L
(t)
i to σ∗

(

L
(t)
i

)

, whereas the

communication steps correspond to the redistribution of σ∗
(

L
(t)
i

)

to the n tubes according
to the selectors V1, ..., Vn. However, in a PC grammar system, the communication is done on
request: the receiving component starts the communication by introducing a query symbol.
Here the communication is performed automatically after every splicing step. Moreover,
communication here means a separate operation in the sense of [16], [2].

Theorem 9. TT7 (FIN, FIN) = TT∗ (FIN, FIN) = TT∗ (F1, F2) = RE, for all fami-
lies F1, F2 such that FIN ⊆ Fi ⊆ RE, i = 1, 2.

Proof. The inclusions TT7 (FIN, FIN) ⊆ TT∗ (FIN, FIN) ⊆ TT∗ (F1, F2) are obvious,
TT∗ (F1, F2) ⊆ RE is obvious from the Turing/Church thesis, hence it is sufficient to prove
that RE ⊆ TT7 (FIN, FIN).

Take a type-0 Chomsky grammar G = (N, T, S, P ) , denote U = N ∪ T and construct
the TT system

Γ = (V, (A1, R1, V1) , ..., (A7, R7, V7))

with
V = N ∪ T ∪ {X, X ′, Y, Z, Z ′, B} ∪ {Yα | α ∈ U ∪ {B}}

and

• A1 = ∅,

R1 = ∅,

V1 = T,

• A2 = {XBSY, Z ′Z}∪
{ZvY | u → v ∈ P}∪
{ZYα | α ∈ U ∪ {B}} ,

R2 = {#uY $Z#vY | u → v ∈ P}∪
{#αY $Z#Yα | α ∈ U ∪ {B}}∪
{Z ′#Z$XB#} ,

V2 = U ∪ {B, X, Y } ,

• A3 = {X ′αZ} ,
R3 = {X ′α#$X# | α ∈ U ∪ {B}} ,
V3 = U ∪ {B, X} ∪ {Yα | α ∈ U ∪ {B}} ,
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• A4 = {ZY } ,
R4 = {#Yα$Z#Y | α ∈ U ∪ {B}} ,
V4 = U ∪ {B, X ′} ∪ {Yα | α ∈ U ∪ {B}} ,

• A5 = {XZ} ,
R5 = {X#Z$X ′#} ,
V5 = U ∪ {B, X ′, Y } ,

• A6 = {ZZ} ,
R6 = {#Y $ZZ#} ,
V6 = T ∪ {Y, Z ′} ,

• A7 = {ZZ} ,
R7 = {#ZZ$Z ′#} ,
V7 = T ∪ {Z ′} .

Let us examine the work of Γ:
The first component only selects the strings produced by the other components that are

terminal according to G. No such terminal string can enter a splicing, because all rules in
R2 − R7 involve symbols X, X ′, Y, Z, Yα, for α ∈ U ∪ {B} . Tubes 2, 3, 4 and 5 simulate
derivations of sentential forms of G, while tubes 6 and 7 are for testing if the derivation
has successfully been terminated by yielding a terminal word. In tube 2 applications of
productions of the form u → v ∈ P to sentential forms Xw1Bw2uY are simulated, where
w2uw1 is a sentential form of G, and X, B, Y are special symbols, X and Y indicating the
left respectively the right end of the sentential form in Γ and B specifying the beginning of
the rotated string representing the corresponding sentential form in G. Moreover, tubes 2,
3, 4 and 5, by passing the strings to each other in this order and again to tube 2, by using
a “rewind technique” explained below, guarantee that the applications of productions of G
are simulated at the correct place in the string. The construction works as follows:

In the initial configuration (A1, ..., A7) , only the second component can execute a splic-
ing. There are three possibilities: we can use a rule of the form #uY $Z#vY, for u → v ∈ P
(we say that this is a splicing of type 1), a rule of the form #αY $Z#Yα for α ∈ U ∪ {B}
(a splicing of type 2) or the rule Z ′#Z$XB# (a splicing of type 3).

Consider the general case, of having in tube 2 a string XwY, with w ∈ U∗BU∗; initially,
w = BS. We have three possibilities for splicings (in order to elucidate the effect of
the application of a splicing rule, in the following we will indicate the position where the
underlying strings are cut, by vertical strokes):

1. (Xw1 | uY, Z | vY ) ⊢1 (Xw1vY, ZuY ) for u → v ∈ P and w = w1u,

2. (Xw1 | αY, Z | Yα) ⊢2 (Xw1Yα, ZαY ) for α ∈ U ∪ {B} and w = w1α,

3. (Z ′ | Z, XB | w1Y ) ⊢3 (Z ′w1Y, XBZ) for w = Bw1.

The string Xw1vY is of the same form as the string Xw1uY and therefore it will remain
in tube 2, entering new splicings of one of the three types. Clearly, the passing from Xw1uY
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to Xw1vY corresponds to using the rule u → v ∈ P on a suffix of the string bracketed by
X, Y.

The string ZuY will remain in tube 2, too. Such a string ZuY can enter a splicing in
three cases:

1. if ZuY is an axiom, then nothing new appears;

2. ZuY is used as the first term of a splicing of the form (Zu1 | u′Y, Z | v′Y ) ⊢1

(Zu1v
′Y, Zu′Y ) , for u = u1u

′ and u′ → v′ ∈ P ; we obtain two strings of the same
form, ZxY, which will remain in tube 2;

3. ZuY is used as the first term of a splicing of the form (Zu1 | αY, Z | Yα) ⊢2

(Zu1Yα, ZαY ) , for u = u1α, α ∈ U ∪ {B} ; the string Zu1Yα cannot enter new
splicings and cannot be transmitted to another tube.

After any sequence of such splicings, the obtained strings still will be of the form ZxY,
hence they will remain in tube 2 and will enter other “legal” splicings, when they are
axioms, or they will enter splicings producing “useless” strings ZyY.

Therefore, after a series of splicings of type 1, eventually in tube 2 a splicing of type 2
will be performed, producing strings of the form X1w1Yα and ZαY.

The second string behaves exactly as we discussed above for the string ZuY . If a string
XwYα enters a new splicing in tube 2, this can only be a splicing of type 3, i. e.

(Z ′ | Z, XB | w2Yα) ⊢3 (Z ′w2Yα, XBZ) ,

for w1 = Bw2. The string Z ′w2Yα cannot enter new splicings in tube 2 and cannot be
transmitted to another tube. The case of XBZ will be discussed below.

Any string Xw1Yα is moved from tube 2 to tube 3, where we have to perform

(X ′α | Z, X | w1Yα) ⊢ (X ′αw1Yα, XZ) .

The second string, XZ, remains in tube 3 and it well enter only splicings of the form

(X ′β | Z, X | Z) ⊢ (X ′βZ, XZ) ,

hence producing nothing new. The first string cannot enter new splicings in tube 3, it will
be transmitted to tube 4, where the only possible splicing is

(X ′αw1 | Yα, Z | Y ) ⊢ (X ′αw1Y, ZYα) .

Again the second string remains in the tube and the possible splicings using it will produce
nothing new, whereas the first string will be moved into tube 5. There we obtain

(X | Z, X ′ | αw1Y ) ⊢ (Xαw1Y, X ′Z) .

The second string remains in tube 5, and it produces nothing new, the first one has to
be communicated to tube 2. Having started with the string Xw1αY in tube 2 we have
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returned to tube 2 with the string Xαw1Y . A symbol from the right-hand end of the string
bracketed by X, Y has been moved to the left-hand end. In this way the string bracketed
by X, Y can enter circular permutations as long as we want them to do that. This allows
us to pass from a string Xw1Bw2Y to any string Xw′

1Bw′
2Y such that w2w1 = w′

2w
′
1. In

this way, we can “rewind” the string until its suffix is the left-hand member of any rule
in P we want to simulate by a rule in R2 of the form #uY $Z#vY. As the symbol B is
always present (and exactly one copy of it is present as long as we do not use the rule
Z ′#Z$XB in R2), in every moment we know where the “actual beginning” of the string is
placed. Consequently, using splicings of type 1 and the rewind technique made possible by
the passing through the tubes 2, 3, 4, 5 as described above we can simulate every derivation
in G. Conversely, exactly strings of the form Xw1Bw2Y can be obtained in this way, they
correspond to strings w2w1 that are sentential forms of the grammar G.

Now consider the splicing of type 3 in tube 2. Let us return to the case of XBZ being
in tube 2. If the string XBZ is used in further splicings, these are of the form

(Z ′ | Z, XB | Z) ⊢ (Z ′Z, XBZ) ,

therefore no new string is obtained in this way.
The first string produced by a splicing of type 3, Z ′w1Y , will be transmitted to tube 6,

and here we have only one possibility, i. e.

(Z ′w1 | Y, ZZ) ⊢ (Z ′w1, ZZY ) .

If ZZY will enter new splicings, these are of the forms

(Z ′x | Y, ZZ | Y ) ⊢ (Z ′xY, ZZY ) ,
(ZZ | Y, ZZ | Y ) ⊢ (ZZY, ZZY ) ,

hence no new string is obtained.
The string Z ′w1 cannot enter new splicings in the sixth tube. If w1 ∈ T ∗ (and only in

this case), it will be moved to tube 7, where we perform

(| ZZ, Z ′ | w1) ⊢ (w1, Z
′ZZ) .

The string w1 is terminal. It will be transmitted to all tubes - including the first one. No
splicing can be done on a terminal string. As we have seen above, such a terminal string
w1 is a string in L(G).

If the string Z ′w1Y will enter new splicings in tube 2, they can be of forms 1 and 2:

(Z ′w2 | uY, Z | vY ) ⊢1 (Z ′w2vY, ZuY ) , for u → v ∈ P, w1 = w2u,
(Z ′w2 | αY, Z | Yα) ⊢2 (Z ′w2Yα, ZαY ) , for α ∈ U, w1 = w2α.

The behaviour of ZuY, ZαY, Z ′w2Yα is known, similar strings appeared in the previous
discussion. The string Z ′w2vY can be obtained by performing first

(XBw2 | uY, Z | vY ) ⊢1 (XBw2vY, ZuY )
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and then
(Z ′ | Z, XB | w2vY ) ⊢3 (Z ′w2vY, XBZ) ,

hence also this string is a “legal” one.
No parasitic string can reach the first tube, consequently L (Γ) = L(G). 2

Examining the construction of the TT system Γ in the proof above, we see that this
system depends on the elements of the starting grammar G. If the grammar G is a uni-
versal type-0 grammar, then Γ will be a universal TT system. This suggests the following
definition:

Definition 9. A universal TT system for a given alphabet T is a construct

ΓU = (VU , (A1,U , R1,U , V1,U) , ..., (An,U , Rn,U , Vn,U)) ,

with V1,U = T , with the components as in a TT system, all of them being fixed, and with
the following property: There is a specified i, 1 ≤ i ≤ n, such that if we take an arbitrary
TT system Γ, then there is a set AΓ ⊆ V ∗ such that the system

Γ′
U = (VU , (A1,U , R1,U , V1,U) , ..., (Ai,U ∪ AΓ, Ri,UVi,U) , ..., (An,U , Rn,U , Vn,U))

is equivalent with Γ, hence L(Γ′
U) = L(Γ).

Stated in another way, encoding Γ as new axioms to be added to the i-th component of
ΓU , we obtain a system equivalent with Γ.

Theorem 10. For every given alphabet T , there are universal TT systems of degree 7
and of type (FIN, FIN).

Proof. Start the construction of the system Γ in the proof of Theorem 9 above from
a universal type-0 grammar (for instance, as constructed in [3]). This grammar has the
form GU = ({X1, X2} , T,−, PU) , hence it contains only two nonterminals (and a fixed set
of productions). Therefore, for T being given, the alphabet V of Γ is fixed:

V = T ∪ {X1, X2, X, X ′, Y, Z, B} ∪ {Yα | α ∈ {X1, X2, B} ∪ T} .

In a similar way, all other components of Γ are fixed. Denote the obtained system by ΓU .
As GU has no axiom, the axiom XBSY of the second component of ΓU will be omitted,
and this is the place where we will add the new axioms, encoding a given TT system.

More precisely, given an arbitrary TT system Γ0, in view of the Turing/Church thesis
there is a type-0 grammar G0 = (N, T, S, P ) such that L (Γ0) = L (G0) . Take the code of
G0, a string w (G0) constructed as in [3], and add to A2 the set AΓ0

= {XBw(G0)Y }. We
obtain a system Γ′

U such that L (Γ′
U) = L (G0). From the construction in the previous proof

we have L (G′
U) = L (Γ′

U) . As G0 is equivalent with the arbitrarily given TT system Γ, we
have L (Γ′

U) = L (Γ). This proves that ΓU is universal, indeed. 2

Observe that the “program” of the particular TT system Γ introduced in the universal
TT system (which behaves like a computer) consists of only one string, added as an axiom
to the second component of the universal system.
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8 Concluding remarks

The fact that the splicing operation is very powerful (as a formal operation on strings and
languages) has been proved in various places. The usual way to do this is to character-
ize the family of recursively enumerable languages using the splicing operation and other
“weak” prerequisites (other operations, special forms of splicing rules [17], [19], or addi-
tional languages such as Dyck languages, palindrom languages etc. [24]). Our results in
Sections 3, 5, and 7 are the strongest possible of this type, because we only use the splicing
operation, the intersection with a language of the form T ∗ (which according to [19], cannot
be avoided), and systems with finite sets of axioms and finite sets of splicing rules. While
it is true that we use the additional control mechanism of multiplicity counting or permit-
ting respectively forbidden contexts, respectively the distributed mode of working in TT
systems, such features are essential and cannot be removed; indeed, in view of [6] and [21],
ordinary finite splicing systems can produce regular languages only.

However, as we have already pointed out, the most significant of the results we obtained
is the existence of universal H systems of various types. This theoretically proves the
feasibility of designing universal and programmable DNA computers, where a program
consists of a single string to be added to the axiom set of the universal computer. In
the particular case of mH systems, these program axioms have multiplicity one, while an
unbounded number of copies of all the other axioms is available. The “fixed” axioms of the
computer can be interpreted as a sort of non-erasable stored information available for free
(i. e. a read-only memory).

As a closing remark, note that the proofs of Theorems 7, 8, and 10 rely on one hand
on the specified constructions and on the other hand on the existence of universal type-0
grammars respectively of universal Turing machines and on the possibility of commuting
from an H system to a type-0 grammar respectively to a Turing machine and conversely.
This reduces the problem of the existence of universal H systems to the existence of universal
type-0 grammars respectively of universal Turing machines. However, this quite indirect
way, while theoretically useful, is inconvenient from a practical point of view. The open
problem that remains is the effective construction of an universal H system that is as
simple as possible. As the task seems to be a difficult one, it is perhaps better to look for a
construction which meets at the same time the practical requirements raised by a possible
implementation of such an universal H system. In short, we leave this task to a joint team
of language theorists and practitioners of DNA computing.
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