
Active Learning with Direct Query Construction

Charles X. Ling
Department of Computer Science
The University of Western Ontario
London, Ontario N6A 5B7, Canada

cling@csd.uwo.ca

Jun Du
Department of Computer Science
The University of Western Ontario
London, Ontario N6A 5B7, Canada

jdu42@csd.uwo.ca

ABSTRACT
Active learning may hold the key for solving the data scarcity

problem in supervised learning, i.e., the lack of labeled data.

Indeed, labeling data is a costly process, yet an active learner

may request labels of only selected instances, thus reducing

labeling work dramatically. Most previous works of active

learning are, however, pool-based; that is, a pool of unla-

belled examples is given and the learner can only select ex-

amples from the pool to query for their labels. This type

of active learning has several weaknesses. In this paper we

propose novel active learning algorithms that construct ex-

amples directly to query for labels. We study both a specific

active learner based on the decision tree algorithm, and a

general active learner that can work with any base learning

algorithm. As there is no restriction on what examples to be

queried, our methods are shown to often query fewer exam-

ples to reduce the predictive error quickly. This casts doubt

on the usefulness of the pool in pool-based active learning.

Nevertheless, our methods can be easily adapted to work

with a given pool of unlabeled examples.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—induction, knowl-

edge acquisition

General Terms
Algorithms

Keywords
Active learning, classification, supervised learning

1. INTRODUCTION
Active learning is very important in classification tasks in

machine learning and data mining, as it may hold the key

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

for solving the data scarcity problem, i.e., the lack of labeled

data.1 Indeed, labeling data is a very costly process. For

example, in webpage (or image, movie, news articles, face)

classification, it is crucial to have a set of correctly labeled

examples for supervised learning, yet the labels are often

given by human experts, and thus, it is a costly and time-

consuming process. Active learning, on the other hand, is

able to actively request labels of a small number of examples,

and thus, reducing the labeling cost significantly. However,

most previous work of active learning is “pool-based”; that

is, a pool of unlabeled examples is given, and the learner can

only select examples from the pool to query for their labels.

(See a review of pool-based active learning in Section 2).

The pool-based active learning has several weaknesses.

First of all, the computational time of most previous pool-

based learning algorithms is high. This is because most pool-

based methods must evaluate each example in the pool to

see which one is most “uncertain” or “informative” (see Sec-

tion 2). Sometimes new models for each additional example

in the pool are built. If the pool is relatively large, the time

for deciding which example in the pool to be selected is of-

ten quite significant. Second, as examples to be selected

must be from the pool, they can be quite limited, especially

if the pool is small, and thus, they may not be effective in

reducing the error rate rapidly. Third, the pool of unlabeled

examples themselves must be collected first, which can be a

time-consuming process.

In this paper we propose novel Active learners with Direct

Query construction (called ADQ for short) and query for

their labels. This is also called “membership query” stud-

ied previously but mostly in theoretical setting [1]. More

specifically, we first study a specific active learner based on

the decision tree algorithm (called Tree-ADQ) to construct

its queries. Then we propose a general active learner that

can work with any base learning algorithm (called wrapper-

ADQ, as it is like a wrapper enclosing any base learning

algorithm). As there is no restriction on what examples to

be queried, our ADQ algorithms are shown to often query

fewer examples to reduce the predictive error quickly. Fur-

thermore, our ADQ can also be easily adapted to work with

a given pool of unlabeled examples. Our ADQ algorithms

are also shown to be more time-efficient than the traditional

1Another promising research is semi-supervised learning,
such as co-training.

pool-based methods.

Though our methods of direct query construction can be

regarded as a special case of the pool-based method, when

the pool is assigned to contain all of the rest of the examples

not in the training set, such a method is often dreadfully in-

efficient. This is because with a large number of attributes,

the size of all possible examples is exponentially large (to the

number of attributes). For example, if the training set con-

tains web pages on politics, then the constructed pool would

include all other possible web pages (meaningful or mean-

ingless ones), and this number is huge (if the total number of

words in the page is bounded, the number of possible pages

is finite but huge). Thus, the traditional pool-based meth-

ods would be extremely inefficient to choose which example

to label. Our ADQ can construct examples directly to query,

and does not need a pool of unlabeled examples. Another

potential argument against our work is that the constructed

examples may not be valid. For example, in learning hand-

written digits, the learner may construct an image dissimilar

to any digit. This can be easily handled. In binary classi-

fication, the label of such invalid examples can simply be

labeled as negative. In multi-class cases, a new class, such

as “invalid”, can be created for labeling all invalid exam-

ples. However, sometimes the examples and feature values

are different. For example, webpages are examples, but are

transferred to feature values (a vector of word counts) for

the learning algorithms. The active learner will only con-

struct new feature values (vectors of word counts), which

may be difficult to be labeled by human. We will study this

issue in our future research.

The rest of the paper is organized as follows. Section 2 re-

views previous works on active learning. Section 3 describes

our tree-based active learner Tree-ADQ, and Section 4 de-

scribes our wrapper-based active learner Wrapper-ADQ. In

both cases experimental comparisons are conducted to com-

pare ADQs with the traditional pool-based methods. Sec-

tion 6 presents conclusions and future work.

2. REVIEW OF PREVIOUS WORKS
The most popular type of active learning is called “pool-

based” active learning. A pool of unlabeled examples is

given, and the learner can choose which one(s) to label dur-

ing learning. Many works have been published in recent

years on pool-based active learning, including, for instance,

[18, 20, 15, 16, 2, 9, 10].2 In these previous works, each ex-

ample in the pool is evaluated, sometimes extensively eval-

uated by building new learning models with each example

added in the current training set (e.g., query by committee),

to decide which example is most uncertain [15, 10], or most

informative if the label is known [20]. As there is no restric-

tion on what examples to query, our ADQ can often query

fewer examples to reduce the error rate quickly. Also, pool-

based methods are more time consuming, especially when

the pool is relatively large, than our active learners with

2We have only included several typical works published in
recent years. See [2] for a good review of active learning
approaches.

direct query construction (ADQ). See Sections 3 and 4 for

details.

Active learning with “membership queries” can construct

examples and request labels; however, as far as we know,

very few works have been published. Some are theoretical

study in the PAC learning framework (e.g., [1]). [5] pro-

poses a version-space search algorithm in neural networks

for query construction but the algorithm works only for sim-

ple concepts. As we discussed in Section 1, although it can

be regarded as pool-based learning when the pool contains

all possible examples not in the labeled training set, such

an approach is very inefficient. Last, in the “stream-based”

active learning, the learner is given a stream of unlabeled

examples, and the learner must decide, for each example in

the stream, if or not to request its label ([6, 17, 11]). This

approach can be regarded as an online version of the pool-

based active learning.

Some recent works on active learning turn to a new direc-

tion of feature-value acquisition at cost during learning. In

the work of ([8, 7]), a fixed budget is given, and the cost of

feature value acquisition cannot exceed this hard budget.

3. TREE-ADQ
In this section we propose a specific active learning algo-

rithm with direct query construction based on decision trees

(thus, it is called Tree-ADQ). Though the basic idea can be

modified and applied to other base learners, Tree-ADQ is ap-

plicable to the decision tree learning algorithm specifically;

that is, a different method might be needed if naive Bayes

is used as the base learner. In Section 4 we will describe

a generic method that can be applied to any base learning

algorithm.

3.1 The Algorithm
The general idea of Tree-ADQ is straightforward: it tries

to find the most uncertain examples from the current de-

cision tree (or other learned model), and request labels for

those examples. The most uncertain examples are those

whose predicted probability, either for the positive or nega-

tive examples, is most uncertain, or close to 50%. For exam-

ple, a predicted positive example (or negative example) with

50% probability is most uncertain, and with 100% is most

certain. Given a decision tree constructed from the labeled

examples, we can find, for each leaf, its predicted label and

its probability, and find the most uncertain leaves.

More specifically, Tree-ADQ consists of three general steps.

• Step 1: A decision tree is constructed using the cur-

rently available set of labeled examples.

• Step 2: The uncertainty of each leaf is determined, and

examples are constructed in the most uncertain leaves.

• Step 3: Those most uncertain examples are queried,

and after their labels are obtained, they are added into

the labeled training set. Go to Step 1.

For each iteration, the predictive error rate on the (separate)

test examples is monitored and used to plot the error curves

(see Section 3.2).

Details of each step above are described below.

In Step 1, the standard decision learning algorithm C4.5

[14], implemented as j48 in Weka [19], is used to construct

a pruned decision tree from the current labeled examples.

In Step 2, the uncertainty of each leaf in the tree is de-

termined by its error rate upper bound. More specifically,

the error rate of the each leaf is first calculated as the ratio

of the incorrectly classified examples to the total number of

examples in the leaf. However, the ratio itself is often not a

good indicator of how uncertain the leaf is, especially when

the leaf contains a small number of examples. For example,

if a leaf contains only 5 examples and 1 of them belongs to a

minority class, then 20% is not a reliable estimate of the true

error rate of the leaf, as the number of examples (5) is too

small. Statistically we can put an error bound on the ratio,

and obtain a pessimistic estimation of the true error. We

use the normal distribution to approximate the error rate

distribution, and use 95% confidence to estimate the error

bound. Thus, the error rate upper bound is calculated as

follows to represent the pessimistic uncertainty of the leaf

[12]:

error(h) + 1.96

√
(error(h)(1− error(h)))

n
(1)

where error(h) is the error rate of each leaf, n is the total

number of examples in the leaf, and the constant 1.96 re-

flects a 95% confidence interval in the normal distribution.

Then, new examples can be constructed in the most uncer-

tain leaves. To increase the variety of the newly constructed

examples from different uncertain leaves, new examples are

sampled from leaves with the sampling probability propor-

tional to their error rate upper bounds. This way, more un-

certain leaves have high probabilities to be sampled. When

a leaf is sampled, a new example is constructed in this leaf.

Its attribute values are determined as follows: for attributes

appearing on the path from the root to the leaf, their values

are determined by the attribute values on the path. Other

attributes (not on the path) are assigned random (valid)

attribute values. Clearly, the time complexity of the con-

struction is only linear to the tree depth, and the number

of attributes (thus, linear to the number of attributes). The

Tree-ADQ is thus time-efficient.

In step 3, the constructed examples are queried to obtain

their labels, and then included in the labeled training set for

the next iteration.

As we mentioned in Section 1, Tree-ADQ can also be

adapted easily to work with a pool of given unlabeled ex-

amples effectively (without evaluating each example in the

pool as in the traditional pool-based approaches). We use

the following simple strategy to modify Tree-ADQ when a

pool is given. In each iteration, the most uncertain exam-

ples are still directly constructed following the Steps 1 and 2

of Tree-ADQ described above. Instead of querying the label

of these examples (as the Step 3 in Tree-ADQ without the

pool), we calculate the Euclidean distance between the con-

structed example and all examples in the pool, and choose

the closest (or most similar) one in the pool to be queried.

Attributes # Examples Class dist.

breast-cancer 9 277 196/81

breast-w 9 699 458/241

colic 22 368 232/136

credit-a 15 690 307/383

credit-g 20 1000 700/300

diabetes 9 768 500/268

heart-statlog 13 270 150/120

hepatitis 19 155 32/123

sick 29 3772 3541/231

sonar 60 208 97/111

tic-tac-toe 10 958 332/626

vote 16 435 267/168

Table 1: Datasets used in the experiments

This way, examples to be queried are selected from the pool,

and they are similar to the queries constructed directly by

Tree-ADQ. We call such a method Tree-ADQ-p.

3.2 Experimental Comparisons
In this subsection we experimentally compare Tree-ADQ

and Tree-ADQ-p with the traditional pool-based active learn-

ing algorithm. The traditional pool-based active learner se-

lects the most uncertain examples (using the decision tree)

from the pool to be labeled.

3.2.1 Datasets and Experimental Setup
We conduct experiments to compare Tree-ADQ algorithms

with the traditional pool-based active learning using 12 real-

world datasets from the UCI Machine Learning Repository

[3]. These datasets have discrete attributes and binary class

without missing values. Information on these datasets is

tabulated in Table 1. Each dataset is randomly split into

three (3) disjoint parts: 20% as the initial labeled training

examples, 20% as the testing examples, and the rest (60%)

as the “unlabeled” examples (examples given in the pool).

One problem when using the ADQ algorithms on the UCI

datasets is how queries constructed by ADQ are labeled if

such queries are not in the original dataset. In such cases

the labels are unknown. We use the following approach to

solve this problem. We first construct a pruned decision tree

(using J48) based on the original, whole dataset, and des-

ignate this tree as an approximate target function. Then,

this tree is used to answer queries constructed by Tree-ADQ

(and other active learning algorithms with direct query con-

struction proposed in this paper). Clearly, this tree is the

closest we can get from a given dataset when the true target

function is unknown.

Both Tree-ADQ, Tree-ADQ-p, and the traditional pool-

based active learner (simply called pool) are implemented in

Weka [19] with J48 (i.e., C4.5) as the decision tree algorithm.

For traditional pool-based active learner, a decision tree is

constructed based on the current labeled dataset. Then each

example in the pool is evaluated by the tree, and the most

pessimistic error rate (see Section 3.1) is calculated. The

most uncertain examples are then selected to query for their

pool Tree-ADQ-p

Tree-ADQ 11/0/1 11/0/1

Tree-ADQ-p 2/6/4

Table 2: Summary of the t-test on the average error

rates.

labels, and added into the training set. For each iteration,

1, 5 or 10 examples are queried and added into the training

set, depending on the size the dataset.

The experiment is repeated for 100 times for each dataset,

and the average predictive error rate on the separate test

sets and time of running different algorithms are plotted

and recorded.

3.2.2 Experiment results
Figure 1 plots the curves for the predictive error rate on

the test sets of the 12 UCI datasets for the three methods

(Tree-ADQ, Tree-ADQ-p, pool) in comparison. From these

figures, we can see clearly that for most datasets, Tree-ADQ

has the lowest predictive error rates on the test sets. Only

in one dataset (“tic-tac-toe”), Tree-ADQ performs slightly

worse. To quantitatively compare the learning curves (which

is often difficult if one curve does not dominate another),

we measure the actual values of the error rates in 10 equal-

distance points on the x-axis. The 10 error rates of one curve

are compared with the 10 error rates of another curve using

the two-tailed, paired t-test with a 95% confidence level.

The results are summarized in Table 2. Each entry in the

table, w/t/l, means that the algorithm in the corresponding

row wins in w datasets, ties in t datasets, and loses in l

datasets, compared to the algorithm in the corresponding

column.

From the table, we can see that Tree-ADQ is better than

pool in 11 datasets, ties in 0 dataset, and loses only in

1 dataset (“tic-tac-toe”). This indicates clearly that Tree-

ADQ produces lower predictive errors on the test sets com-

pared to the traditional pool-based active learner in most

datasets. We can also see that Tree-ADQ is much better

than Tree-ADQ-p (wins in 11 datasets, ties in 0, and loses

in 1). Both of these results seem to indicate limitations of

the pool. Tree-ADQ is free to choose whatever examples

best for reducing the predictive error rates, and this is a

major advantage of the ADQ algorithms. Section 5 further

demonstrates that the pool is actually putting a harmful

limitation on the pool-based active learning. We will show

that the larger the pool, the better the pool-based active

learners perform. This casts some doubt on the common

assumption of the pool in the traditional pool-based active

learning.

From Table 2, We can also compare Tree-ADQ-p with the

traditional pool-based active learner (pool), and see that

Tree-ADQ-p is better than pool in 2 datasets, ties in 6

datasets, and loses in 4 datasets. This indicates that Tree-

ADQ-p is comparable to (or only slightly worse than) the

traditional pool-based active learner. This is expected as

both methods choose examples from the same pool.

Tree-ADQ Tree-ADQ-p pool

Time(s) 0.38 0.51 0.55

Table 3: Running time on “sick” for active learning

algorithms in comparison.

The computer time used for these active learners in com-

parison is reported in Table 3 on the largest dataset (the

“sick” dataset which has most examples). The computer

used is a PC with an Intel Core 2 Quad Q6600 (2.67 GHz)

CPU and 4G memory, and the computer time is reported in

seconds. From Table 3, we can see that Tree-ADQ is most

efficient, and Tree-ADQ-p is similar but still faster than the

traditional pool-based active learner (pool).

4. WRAPPER-ADQ
In the previous section we described a specific ADQ based

on the decision tree algorithm. Tree-ADQ is very efficient in

constructing examples to reduce the error rate quickly but

the algorithm only works on decision trees. In this section we

propose a generic ADQ that can work with any base learning

algorithms that can produce the probability estimation for

the prediction. As it can “wrap” around any base learning

algorithm, we call it Wrapper-ADQ.

4.1 The Algorithm
“Wrapper-ADQ”uses the standard hill climbing algorithm

to search for the most uncertain examples outside a learning

algorithm to query their labels. More specifically, it starts

with a randomly generated new example. Then every at-

tribute value of this example is changed to a different value

once a time, and those new examples (with one attribute

value difference) are evaluated by the base learning algo-

rithm (which returns its predicted label and its uncertainty).

The one that is most uncertain is retained (i.e., greedy hill

climbing) and the process repeats, until the example is not

altered from the last iteration. The final unaltered example

is queried for the label and then added into the training set.

Note that, though the greedy hill climbing may only find the

“locally” most uncertain example instead of the “globe” one,

it still works well because it increases the diversity of new

examples constructed.

The Wrapper-ADQ does rely on accurate and more dis-

criminating probability estimates of the prediction. If we

use a single decision tree as the base learner, its probabil-

ity estimates are not fine enough, as examples in the same

leaf are assigned the same probability. Thus, we use an

ensemble of decision trees as the base learner here. We

use the basic process of bagging, as it has been shown to

produce the tree-based classifier with accurate probability

estimates [13]. More specifically, 100 decision trees are first

constructed from the current labeled examples as in the ran-

dom forest [4]. That is, a bootstrapping new training set is

drawn from the original training set (bagging), and a de-

cision tree is grown on the new training set using random

attribute selection (for all attributes with non-negative en-

tropy reduction). This way, a variety of different trees can

0.3

0.29

0.28

0 26

0.27

Ra
te

0 25

0.26

Er
ro
r

0.24

0.25

Tree‐ADQ

0.23 Tree‐ADQ‐p

0.22
pool

0 10 20 30 40 50 60 70 80
Example Number (breast‐cancer)

0.1

0.09

0.08

0 07r
Ra

te

0 06

0.07

Er
ro
r

0.06
Tree‐ADQ

0.05 Tree‐ADQ‐p

l
0.04

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (breast‐w)

0.18

0 170.17

0.16

Ra
te

0.15Er
ro
r

0 14
Tree‐ADQ

0.14
Tree‐ADQ‐p

0.13

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (colic)

0.154

0.152

0.15

0 148

0.15

Ra
te

0.148

Er
ro
r

0.146
Tree‐ADQ

0.144 Tree‐ADQ‐p

0.142
pool

0 10 20 30 40 50 60 70 80
Example Number (credit‐a)

0.32

0.3

0.28

0 26r
Ra

te

0 24

0.26

Er
ro
r

0.24
Tree‐ADQ

0.22 Tree‐ADQ‐p

pool
0.2

0 50 100 150 200 250 300 350 400

pool

0 50 100 150 200 250 300 350 400
Example Number (credit‐g)

0.285

0.28

0.275

0.27

Ra
te

0.265

Er
ro
r

0.26 Tree‐ADQ

0.255 Tree‐ADQ‐p

pool
0.25

0 10 20 30 0 0 60 0 80

pool

0 10 20 30 40 50 60 70 80
Example Number (diabetes)

0.28

0.27

0.26

0 25Ra
te

0 24

0.25

Er
ro
r

0.24
Tree‐ADQ

0.23 Tree‐ADQ‐p

pool
0.22

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (heart‐statlog)

0.24

0.22

0.2

0 18r
Ra

te

0 16

0.18

Er
ro
r

0.16
Tree‐ADQ

0.14 Tree‐ADQ‐p

pool
0.12

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (hepatitis)

0.025

0.024

0.023

0.022

r
Ra

te

0.021

Er
ro
r

0.02 Tree‐ADQ

0.019 Tree‐ADQ‐p

pool
0.018

0 100 200 300 400 500 600 700 800

pool

0 100 200 300 400 500 600 700 800
Example Number (sick)

0.45

0.4

0.35

0 3r
Ra

te

0 25

0.3

Er
ro
r

0.25
Tree‐ADQ

0.2 Tree‐ADQ‐p

pool
0.15

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (sonar)

0.27

0.25

0.23

0 21Ra
te

0 9

0.21

Er
ro
r

0.19
Tree‐ADQ

0.17 Tree‐ADQ‐p

pool
0.15

0 50 100 150 200 250 300 350 400

pool

0 50 100 150 200 250 300 350 400
Example Number (tic‐tac‐toe)

0.06

0.055

0.05

0.045

r
Ra

te

0.04

Er
ro
r

0.035 Tree‐ADQ

0.03 Tree‐ADQ‐p

pool
0.025

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (vote)

Figure 1: Comparing predictive error rates of Tree-ADQ, Tree-ADQ-p, and pool on the test sets. The lower

the curve, the better.

be constructed. For each query evaluated in the hill climb-

ing search, each tree’s prediction (with its own uncertainty

estimation; see Section 3.1) is combined to produce a final

prediction and its uncertainty.

4.2 Experimental Comparisons
We use the same datasets and similar experiment setup

to compare Wrapper-ADQ and pool-based active learning

(called pool, which also uses an ensemble of 100 trees to

choose the most uncertain examples from the pool; it is also

called “query by committee” in active learning). Similarly,

Wrapper-ADQ can be adapted easily to work with a pool of

given labeled examples by first constructing the most uncer-

tain examples, and then finding the one in the pool that is

closest to them. Such a method is called Wrapper-ADQ-p.

All of these three methods (Wrapper-ADQ, Wrapper-ADQ-

p, pool) are compared and the results are reported in Figure

2 and Table 4 (with the same notation as in Table 2).

We can see that Wrapper-ADQ is better than pool in 10

datasets, ties in 2 datasets, and loses in 0 dataset. This indi-

cates clearly that Wrapper-ADQ produces lower predictive

errors on the test sets compared to the traditional pool-

pool Wrapper-ADQ-p

Wrapper-ADQ 10/2/0 11/1/0

Wrapper-ADQ-p 2/6/4

Table 4: Summary of the t-test on the average error

rates

Wrapper-ADQ Wrapper-ADQ-p pool

Time(s) 95 97 108

Table 5: Running time on “sick” for active learning

algorithms in comparison.

based active learner, which is still comparable to Wrapper-

ADQ-p.

The computer time used for these wrapper-based active

learning algorithms in comparison is reported in Table 5.

We also draw the similar conclusion that Wrapper-ADQ is

the most efficient, and Wrapper-ADQ-p still outperforms the

traditional pool-based active learner (pool). The difference

is not as large as the tree-based approaches (Table 3) because

here, a lot of the time is spent on the hill-climbing search.

0.3

0 28

0.29

0.27

0.28

Ra
te

0.25

0.26

Er
ro
r
R

0.23

0.24 Wrapper‐ADQ

Wrapper‐ADQ‐p

0.22

0.23

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (breast‐cancer)

0.1

0.09

0.08

Ra
te

0.06

0.07

Er
ro
r
R

0.05

Wrapper‐ADQ

Wrapper‐ADQ‐p

0.04

0 10 20 30 40 50 60 70 80

pool

Example Number (breast‐w)

0.18

0.17

0.16

Ra
te

0.15Er
ro
r
R

0.14
Wrapper‐ADQ

Wrapper‐ADQ‐p

0.13

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (colic)

0.158

0 154

0.156

0.152

0.154

Ra
te

0.148

0.15

Er
ro
r
R

0.144

0.146 Wrapper‐ADQ

Wrapper‐ADQ‐p

0.142

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (credit‐a)

0.32

0.3

0.31

0.29

0.3

Ra
te

0.27

0.28

Er
ro
r
R

0.25

0.26 Wrapper‐ADQ

Wrapper‐ADQ‐p

0.24

0 50 100 150 200 250 300 350 400

pool

0 50 100 150 200 250 300 350 400
Example Number (credit‐g)

0.285
W ADQ

0.28

Wrapper‐ADQ

Wrapper‐ADQ‐p

l
0.275

Ra
te

pool

0 265

0.27

Er
ro
r
R

0.26

0.265

0.255

0 10 20 30 40 50 60 70 800 10 20 30 40 50 60 70 80
Example Number (diabetes)

0.28
Wrapper ADQ

0.27

Wrapper‐ADQ

Wrapper‐ADQ‐p

pool
0.26

Ra
te

pool

0.24

0.25

Er
ro
r
R

0.23

0.24

0.22

0 10 20 30 40 50 60 70 800 10 20 30 40 50 60 70 80
Example Number (heart‐statlog)

0.24
Wrapper‐ADQ

0.22

Wrapper‐ADQ

Wrapper‐ADQ‐p

pool
0.2

Ra
te

pool

0.16

0.18

Er
ro
r
R

0.14

0.12

0 10 20 30 40 50 60 70 800 10 20 30 40 50 60 70 80
Example Number (hepatitis)

0.025
Wrapper‐ADQ

0 023

0.024

Wrapper ADQ

Wrapper‐ADQ‐p

pool

0.022

0.023

Ra
te

pool

0 02

0.021

Er
ro
r

0.019

0.02

0.018

0 100 200 300 400 500 600 700 800
Example Number (sick)

0.45
Wrapper‐ADQ

0.4

Wrapper‐ADQ

Wrapper‐ADQ‐p

pool

0.35

Ra
te

pool

0.3Er
ro
r
R

0.25

0.2

0 10 20 30 40 50 60 70 80
Example Number (sonar)

0.27
Wrapper ADQ

0.25

Wrapper‐ADQ

Wrapper‐ADQ‐p

pool
0.23

Ra
te

pool

0.19

0.21

Er
ro
r
R

0.17

0.19

0.15

0 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 400
Example Number (tic‐tac‐toe)

0.06

0.055

0.045

0.05

Ra
te

0.04

Er
ro
r
R

0.03

0.035 Wrapper‐ADQ

Wrapper‐ADQ‐p

0.025

0 10 20 30 40 50 60 70 80

pool

0 10 20 30 40 50 60 70 80
Example Number (vote)

Figure 2: Comparing predictive error rates of Wrapper-ADQ, Wrapper-ADQ-p, and pool on the test sets.

The lower the curve, the better.

Wrapper-ADQ

Tree-ADQ 7/4/1

Table 6: Summary of the t-test on the average error

rates

4.3 Comparing Tree-ADQ and Wrapper-ADQ
Table 6 (with the same notation as in Table 2) compares

Tree-ADQ and Wrapper-ADQ on the 12 datasets used in our

experiments. It shows that Tree-ADQ wins in 7 datasets,

ties in 4 datasets, and loses in 1 dataset. Clearly, Tree-ADQ

has a slight advantage over Wrapper-ADQ in terms of the

error rate. However, Tree-ADQ is a specific active learner

based on decision trees, while Wrapper-ADQ is generic; it

can take any base learning algorithm as long as it returns

probability estimates.

5. IS THE POOL REALLY NECESSARY?
Even though we have shown that the proposed active

learning algorithms with direct query construction (ADQ)

do not need a pool of given unlabeled examples to achieve

lower or similar predictive errors, one might still argue that

the pool can provide a useful “boundary” and distribution

on what examples can be queried. We will show in this sec-

tion that such a pool is unnecessary and even harmful to

effective active learning.

More specifically, we will show that when the size of the

pool incrementally increases, active learning algorithms, both

ADQ with the pool and the traditional pool-based learner,

work better. We will consider two cases. In the first case,

the pools of various sizes consist of examples from the real

data (i.e., a part of the UCI dataset). Thus, the distribution

of the examples in the pools is the same as the training and

test sets, and labels of examples in the pools are given by

the original dataset. In the second case, the pools consist

of examples artificially generated, and labels of the artificial

examples are obtained from the decision tree built from the

real data (as in Section 3.2.1).

5.1 Real Data Pools
We use the largest dataset “sick” in this experiment. The

dataset is split into three disjoint subsets: 10% for the la-

beled training set, 10% for the test set, and 80% for the

whole unlabeled set. The whole unlabeled set is larger in this

experiment as it has more real examples for us to manipulate

different pools. We will construct four pools, or unlabeled

sets, U1, U2, U3 and U4, provided to the active learners.

More specifically, the whole unlabeled set is divided into

four equal parts randomly. U1 is equal to one quarter of the

whole unlabeled set, U2 is equal to U1 plus another quarter

of the whole unlabeled set, U3 is U2 plus another quarter,

and U4 is the whole unlabeled set. Thus, these unlabeled

sets (pools) are all from the original real dataset with known

labels. They increase in size, and U1 ⊂ U2 ⊂ U3 ⊂ U4.

Tree-ADQ with the pool (Tree-ADQ-p), Wrapper-ADQ

with the pool (Wrapper-ADQ-p), and the traditional pool-

based learning algorithm (pool) are applied with different

unlabeled sets (U1 to U4). The results are shown in Figure

3. We can see that, overall, active learners with the large

pools perform better. This is particularly evident in the

traditional pool-based algorithm (pool). We can see that

at the beginning of the query process, the algorithm with

different pool sizes has a similar error rate. Then the differ-

ence starts to emerge. The algorithm with U4, the largest

pool, performs the best (the lowest error rate), with U2 and

U3 performs similarly, and with U1 performs the worst (the

highest error rate). For Tree-ADQ-p and Wrapper-ADQ-p,

the results are somewhat mixed but when more and more

examples are queried, we can still see that algorithms with

larger pools have slightly lower error rates in general. Simi-

lar results have been observed in other datasets as well.

5.2 Artificial Data Pools
In this experiment we use a smaller dataset “sonar”. As

“sonar” has the most attributes (60 attributes and 10 at-

tribute values for each attribute), we can easily generate ar-

tificial examples not in the original dataset. This time, the

original real dataset is split into three disjoint subsets: 20%

for the labeled training set, 20% for the test set, and 60%

for the initial pool of unlabeled set (called U1). Artificial

examples are randomly generated (with a uniform distribu-

tion on attribute values) and incrementally inserted into U1,

forming U2, U3, and U4. The size of Ui is i times the size of

U1. Thus, U1 is a part of the original dataset, but U2 to U4

include increasingly more artificial examples. We also have

U1 ⊂ U2 ⊂ U3 ⊂ U4.

Similarly, Tree-ADQ with the pool (Tree-ADQ-p), Wrapper-

ADQ with the pool (Wrapper-ADQ-p), and the traditional

pool-based learning algorithm (pool) are applied with dif-

ferent unlabeled sets (U1 to U4). The results are shown in

Figure 4. These results are somewhat mixed, but we can

still see that algorithms with U1, the smallest pool, perform

the worst (the largest error rates). Algorithms with larger

pools in general perform similarly and better than with U1.

Similar results have also been observed in other datasets.

These experiment results indicate that, indeed, the pool,

especially when it is too small, limits the scope of examples

to be queried for active learners. This casts doubt on the

pool assumed in most previous work of active learning. This

also further confirms the advantage of our ADQ algorithms

(Tree-ADQ and Wrapper-ADQ) — they construct queries

directly without the restriction of the pool, and often reduce

the predictive error rates more quickly, as shown in Sections

3 and 4.

6. CONCLUSIONS
Most previous active learning algorithms are pool-based.

Our work indicates that the pool has several weaknesses. It

may limit the range of examples to be queried for effective

active learning. In our work, we eliminate the pool com-

pletely by allowing the active learners to directly construct

queries and ask for labels. We design a specific Tree-ADQ

algorithm based on decision trees, and a generic Wrapper-

ADQ algorithm that can use any base learning algorithms.

Our experiments show that our ADQ algorithms can con-

struct queries that reduce the predictive error rates more

quickly compared to the traditional pool-based algorithms.

The ADQ algorithms are also more computationally effi-

cient. Our algorithms can also be adapted easily to work

with the pool if examples have to be selected from a given

pool.

Co-training is another promising research for solving the

problem of the lack of labeled data. In co-training, a set

(pool) of unlabeled examples is given, and is used to improve

supervised learning. In our future work, we will study the

usefulness of the pool in co-training.

7. REFERENCES

[1] D. Angluin. Queries and concept learning. Machine

Learning, 2(4):319–342, April 1988.

[2] Y. Baram, R. El-Yaniv, and K. Luz. Online choice of

active learning algorithms. Journal of Machine

Learning Research, 5:255–291, 2004.

[3] C. Blake, E. Keogh, and C. J. Merz. Uci repository of

machine learning databases.

http://www.ics.uci.edu/˜mlearn/MLRepository.html,

1998.

[4] L. Breiman. Random forests. Machine Learning,

V45(1):5–32, October 2001.

[5] D. A. Cohn, L. Atlas, and R. E. Ladner. Improving

generalization with active learning. Machine Learning,

15(2):201–221, 1994.

[6] Y. Freund, S. H. Seung, E. Shamir, and N. Tishby.

Selective sampling using the query by committee

algorithm. Machine Learning, 28(2-3):133–168, 1997.

[7] R. Greiner, A. J. Grove, and D. Roth. Learning

cost-sensitive active classifiers. Artif. Intell.,

139(2):137–174, August 2002.

[8] A. Kapoor and R. Greiner. Learning and classifying

under hard budgets. pages 170–181. 2005.

[9] M. Lindenbaum, S. Markovitch, and D. Rusakov.

Selective sampling for nearest neighbor classifiers.

Machine Learning, 54(2):125–152, February 2004.

[10] D. D. Margineantu. Active cost-sensitive learning. In

the Nineteenth International Joint Conference on

Artificial Intelligence, Edinburgh, Scotland, 2005.

0 027

0.028

0.029

0.03

0.023

0.024

0.025

0.026

0.027

Er
ro
r R

at
e

U1

U2

U3

U4
0.022

0 50 100 150 200 250 300 350 400
Example Number (Tree‐ADQ‐p)

U4

0.027

0.028

0.029

0.023

0.024

0.025

0.026

Er
ro
r R

at
e

U1

U2

U3

U4
0.022

0 50 100 150 200 250 300 350 400
Example Number (Wrapper‐ADQ‐p)

U4

0.026

0.028

0.03

0.02

0.022

0.024

Er
ro
r R

at
e

U1

U2

U3

U4
0.018

0 50 100 150 200 250 300 350 400
Example Number (pool)

U4

Figure 3: Comparing predictive error rates on “sick” with different real-data pools. The lower the curve, the

better.

0.45

0 40.4

0.35

Ra
te

0.3Er
ro
r

U1

0 25

U1

U2
0.25

U3

0.2
U4

0 10 20 30 40 50 60 70 80
Example Number (Tree‐ADQ‐p)

0.45

0 40.4

0.35

Ra
te

0.3Er
ro
r

U1

0 25
U2

0.25
U3

U4
0.2

0 10 20 30 40 50 60 70 80

U4

0 10 20 30 40 50 60 70 80
Example Number (Wrapper‐ADQ‐p)

0.45

0 40.4

0.35

Ra
te

0.3Er
ro
r

U1

0 25

U1

U2
0.25

U3

U4
0.2

0 10 20 30 40 50 60 70 80

U4

0 10 20 30 40 50 60 70 80
Example Number (pool)

Figure 4: Comparing predictive error rates on “sonar” with different artificial pools. The lower the curve,

the better.

[11] A. Mccallum and K. Nigam. Employing em and

pool-based active learning for text classification. In

ICML ’98: Proceedings of the Fifteenth International

Conference on Machine Learning, pages 350–358, San

Francisco, CA, USA, 1998. Morgan Kaufmann

Publishers Inc.

[12] T. M. Mitchell. Machine Learning. McGraw-Hill

Science/Engineering/Math, March 1997.

[13] F. Provost and P. Domingos. Tree induction for

probability-based ranking. Machine Learning,

52(3):199–215, September 2003.

[14] R. R. Quinlan. C4.5: programs for machine learning.

Morgan Kaufmann Publishers Inc., 1993.

[15] N. Roy and A. Mccallum. Toward optimal active

learning through sampling estimation of error

reduction. In Proc. 18th International Conf. on

Machine Learning, pages 441–448. Morgan Kaufmann,

San Francisco, CA, 2001.

[16] M. Saar-Tsechansky and F. Provost. Active sampling

for class probability estimation and ranking. Machine

Learning, 54(2):153–178, February 2004.

[17] H. S. Seung, M. Opper, and H. Sompolinsky. Query by

committee. In COLT ’92: Proceedings of the fifth

annual workshop on Computational learning theory,

pages 287–294, New York, NY, USA, 1992. ACM

Press.

[18] S. Tong and D. Koller. Support vector machine active

learning with applications to text classification.

Journal of Machine Learning Research, 2:45–66, 2002.

[19] I. H. Witten and E. Frank. Data Mining: Practical

Machine Learning Tools and Techniques. Morgan

Kaufmann Series in Data Management Systems.

Morgan Kaufmann, second edition, June 2005.

[20] T. Zhang and F. J. Oles. A probability analysis on the

value of unlabeled data for classification problems. In

Proc. 17th International Conf. on Machine Learning,

pages 1191–1198, 2000.

