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When Does Co-Training Work in Real Data?
Jun Du, Charles X. Ling, Senior Member, IEEE, and Zhi-Hua Zhou, Senior Member, IEEE

Abstract—Co-training, a paradigm of semi-supervised learning, is promised to alleviate effectively the shortage of labeled examples
in supervised learning. The standard two-view co-training requires the dataset to be described by two views of features, and previous
studies have shown that co-training works well if the two views satisfy the sufficiency and independence assumptions. In practice,
however, these two assumptions are often not known or ensured (even when the two views are given). More commonly, most supervised
datasets are described by one set of attributes (one view). Thus, they need be split into two views in order to apply the standard two-
view co-training. In this paper, we first propose a novel approach to empirically verify the two assumptions of co-training given two
views. Then, we design several methods to split single view datasets into two views, in order to make co-training work reliably well.
Our empirical results show that, given a whole or a large labeled training set, our view verification and splitting methods are quite
effective. Unfortunately, co-training is called for precisely when the labeled training set is small. However, given small labeled training
sets, we show that the two co-training assumptions are difficult to verify, and view splitting is unreliable. Our conclusions for co-training’s
effectiveness are mixed. If two views are given, and known to satisfy the two assumptions, co-training works well. Otherwise, based on
small labeled training sets, verifying the assumptions or splitting single view into two views are unreliable, thus it is uncertain whether
the standard co-training would work or not.

Index Terms—semi-supervised learning, co-training, sufficiency assumption, independence assumption, view splitting, single-view.
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1 INTRODUCTION

Traditional supervised classification learning builds clas-
sifiers based on labeled training examples. As labeled
examples can be expensive to obtain, many semi-
supervised approaches, such as the generative-based
methods, the graph-based methods, and co-training,
tend to utilize unlabeled examples to improve the pre-
dictive accuracy (see Section 6 for a review).

Co-training, a paradigm of semi-supervised learning,
has drawn considerable attentions and interests recently
(see, for example, (Chapelle et al., 2006; Zhu, 2006;
Zhou & Li, in press) for review). The standard two-
view co-training (Blum & Mitchell, 1998) assumes that
the data can be described by two disjoint sets of features
or views.1 The standard co-training utilizes an initial
(small) set of labeled training data and a (large) set
of unlabeled data from the same distribution, and it
works roughly as follows (Blum & Mitchell, 1998). Two
classifiers are first trained on the initial labeled training
set using the two views separately. Then, alternately,
each classifier classifies the unlabeled data, chooses the
few unlabeled examples whose labels it predicts most
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1. Another form of co-training, called single-view co-training in
our paper, generates diverse learners on the single view of features
(Goldman & Zhou, 2000; Zhou & Li, 2005). See Section 6 for a review
of different forms of co-training. In this paper, we mainly study the
standard two-view co-training (Blum & Mitchell, 1998), which will be
referred to as two-view co-training, or simply co-training.

confidently, and adds those examples (with the predicted
labels) to the training set. The classifiers are retrained,
and the process repeats, until some stopping criterion
is met. That is, the two classifiers “teach” each other
with the additional examples whose labels are given by
the other classifier, so as to improve the classification
accuracy.

Two assumptions are proposed for co-training to work
well (Blum & Mitchell, 1998). The first one assumes
that the views are sufficient; that is, each view (thus
also the combined view) is sufficient to predict the class
perfectly. We call it the sufficiency assumption. The second
assumption requires that the two views are conditionally
independent; that is, the two views are independent
given the class. We call it the independence assumption.
Theoretical results have shown that if the sufficiency
and independence assumptions are satisfied, co-training
is guaranteed to work.2 In addition, the two-view co-
training has been applied quite successfully to many
real-world tasks. See Section 6 for a quick review of
successful applications of co-training.

However, the two assumptions that make co-training
always work are usually not known or ensured in real-
world applications. Given a dataset with two views,
how can we judge if the two-view co-training would
work well? How can we verify if the sufficiency and
independence assumptions are satisfied? If the dataset
has only one view as in most real-world situations, can
the two-view co-training still work if we split the single
view into two views?

2. The assumptions can be relaxed for co-training to still work well
(Abney, 2002; Balcan et al., 2005; Wang & Zhou, 2007). Nevertheless, the
sufficiency and independence assumptions are a “sufficient condition”
for co-training to work.



2

In this paper we attempt to answer the following
crucial questions in order to apply the standard two-
view co-training successfully:

1) If a whole (or large) labeled training dataset with
two views is given, how can we verify if the
sufficiency and independence assumptions of co-
training are satisfied?

2) If a whole (or large) labeled training dataset with
only single view (such as most UCI datasets (Asun-
cion & Newman, 2007)) is given, can we split the
single view into two sufficient and independent
views, such that the two-view co-training could be
applied?3

3) The above two questions are both based on the
whole (or large) labeled dataset. If a small training
set is given (as in most real-world applications
where co-training is called for), can we still ver-
ify the sufficiency and independence assumptions?
Can we still split single view into two views to ap-
ply co-training? How is co-training compared with
other popular semi-supervised learning methods
(such as EM with naive Bayes) given small training
sets?

We attempt to answer these important questions re-
garding co-training in this paper. In Section 2 we de-
scribe a simple but novel method to empirically verify
the sufficiency and independence assumptions (answer-
ing question 1 above). In Section 3 we study the em-
pirical relation between the two assumptions and the
performance of co-training, and propose four increas-
ingly sophisticated methods to split single views into
two views, in order to make the standard two-view co-
training work more reliably on single-view datasets (an-
swering question 2 above). In Section 4 we study those
questions again based only on small labeled training sets
(answering question 3 above). In Section 5 we compare
the performance between the proposed view-splitting
co-training and EM with naive Bayes on small training
sets (answering question 3 above). Section 6 relates our
work to previous works, and Section 7 contains discus-
sions and conclusions.

Our conclusions for co-training’s effectiveness are
mixed. If two views are given, and known to satisfy
the two assumptions, co-training works well. Otherwise,
based on small labeled training sets, verifying the as-
sumptions or splitting single view into two views are
unreliable, thus it is uncertain whether the standard co-
training would work or not.

3. Most UCI datasets are given in a single view of features, and
thus, the single-view co-training (Goldman & Zhou, 2000; Zhou & Li,
2005) could be applied directly. However, the single-view co-training
algorithms require some additional control to avoid the accumulation
of the negative influence of unlabeled examples mislabeled by one
learner for the other learner, and the control is often complicated.

2 VERIFYING CO-TRAINING ASSUMPTIONS
EMPIRICALLY

Given a whole (or large) labeled dataset and two views
of features (X = x1, . . . , xm and Y = y1, . . . , yn), how
can we verify if the two assumptions on sufficiency and
independence for the standard co-training are satisfied?
It has been proved (Blum & Mitchell, 1998) that if the
assumptions are satisfied, co-training is guaranteed to
work, and thus can be applied. Note that sometimes
the domain knowledge can ensure the satisfaction of the
two assumptions, but in most real-world applications,
such assumptions are usually unknown, or cannot be
guaranteed. Thus it is important that these assumptions
are empirically verified based on the dataset given. Here
we will use the whole (or large) labeled dataset that
represents the learning task to verify the two assump-
tions. This is because the theoretical assumptions on
sufficiency and independence are based on the whole
domain (for example, it is assumed that there exist target
functions that map from the whole view (X ×Y ), the X
view, and the Y view to the class labels perfectly (Blum
& Mitchell, 1998)). In Section 4 we will only use small
sets of training data to verify the assumptions.

Empirical verification of the co-training assumptions
seems to be a crucial task to determine if co-training can
be successfully applied in real-world applications where
only data is given. However, as far as we know, little
work on empirical verification has been done in the past.

The sufficiency assumption is relatively easy to verify.
Sufficiency means that X × Y can accurately predict
the class, so can X and Y individually. We can build a
classifier to estimate the accuracy on the whole (or large)
dataset D using X×Y with the 10-fold cross-validation.
We denote this accuracy as p. The sufficiency requires
that p should be close to 1. Note that the theoretical
results assume that there exist (target) functions that
map from X × Y , X , and Y to the class labels perfectly.
As we are verifying the assumption empirically, we use
learning algorithms on the whole (or large) dataset to es-
tablish if such functions exist or not. Similarly, we build
two classifiers using features in X and Y individually to
estimate the accuracy of X (call it px) and the accuracy
of Y (call it py).

Thus, the sufficiency assumption of co-training can be
defined as: there exists a small positive number �1 (such
as 0.1) such that
p > 1− �1,
px > 1− �1, and
py > 1− �1.
We call �1 the sufficiency parameter. In Section 3, we

will discover the empirical relation between �1 and the
performance of co-training.

Conditional independence is a bit harder to verify. It
means that given the class, the two views are indepen-
dent. One way to verify this is, for each class label, we
need to verify if each xi is independent of Y , and each
yi is independent of X . To verify if xi is independent of
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Y empirically, we build a classifier (or many classifiers)
to predict xi using Y on the whole (or large) dataset. If
xi is independent of Y , then Y cannot predict xi well —
not better than the default accuracy of xi. Specifically,
assume that the 10-fold cross-validated accuracy of Y
predicting xi on the whole (or large) dataset is pxi

, then
it should not be much greater than the default accuracy
of xi — the accuracy (denoted as p′xi

) of the majority
value of the class. The same is true for using X to predict
yj . Thus, the independence assumption can be defined
as: there exists a small positive number �2 (such as 0.1)
such that for each class value
pxi

< p′xi
+ �2 for all 1 ≤ i ≤ m, and

pyi < p′yi
+ �2 for all 1 ≤ i ≤ n.

We call �2 the independence parameter. We will discover
the empirical relation between �2 and the performance
of co-training in Section 3.

Several natural language datasets (such as WebKB
Course, 20-newsgroups, and Reuters) have been used re-
peatedly in the previous publications to show that the
standard two-view co-training works well (for example,
(Blum & Mitchell, 1998; Nigam & Ghani, 2000)). Here we
verify empirically the two assumptions of co-training on
one of them, the WebKB Course dataset. After calculating
the sufficiency and independence parameters on the
whole dataset of WebKB Course, we obtain �1 = 0.12 and
�2 = 0.15, which are both rather small. According to
the general pattern discovered in Section 3, co-training
is very likely to work when �1 and �2 are both small.
This thus explains why co-training works well on this
dataset in many previous publications.

What about other datasets, especially datasets with
single views?

3 SPLITTING SINGLE VIEWS TO TWO VIEWS

In the previous section we described an empirical ap-
proach to verify, when given the whole (or large) dataset
and two views, if the two views satisfy the sufficiency
and independence assumptions for co-training to work.
However, the standard two-view co-training has lim-
ited success in most real-world datasets with single
views, such as most UCI datasets (Asuncion & Newman,
2007). (One could also directly apply the single-view
co-training to the datasets with single views, but other
complications may be entailed.)

In this section we propose four increasingly sophis-
ticated methods to split single views into two views,
all based on the whole datasets.4 Via these splitting
methods, we study the empirical relation between the
sufficiency and independence parameters and the work-
ing of co-training, and furthermore, make the standard
two-view co-training work reliably well on single-view
real-world datasets.

4. Note that, both sufficiency and independence assumptions are
based on the whole domain (corresponding to the whole dataset),
thus we split single views into two views by verifying these two
assumptions on the whole datasets in this section. See Section 4 for
feature splitting based only on small training sets.

3.1 Configurations
To study the working of co-training on a variety of situa-
tions, we choose 30 UCI datasets coming with the WEKA
package (Hall et al., 2009). The datasets and their basic
properties are listed in Table 1. The continuous features
are discretized into 10 equal-width bins.5 Datasets with
multiple classes are converted to binary by using the
majority class value as one class, and the rest of the other
values as the other class. These datasets are named with
“ new” appended on the end of their original names.
The naive Bayes (Langley et al., 1992) is used to check
the sufficiency and independence assumptions, as well
as construct co-training classifiers, due to its generally
good performance in classification (Langley et al., 1992).

For each feature splitting method, experiments on
these UCI datasets are conducted in the following three
high-level steps. In the first step, all the features of each
dataset are split into two disjoint sets as two views,
according to four different splitting strategies.

In the second step, the standard two-view co-training
is applied to see if it works. Specifically, each whole
dataset D is first split randomly into three disjoint
subsets: the training set (R), the unlabeled set (U ),
and the test set (T ). The test set T is always 25% of
D. To make sure that co-training can possibly show
improvement when the unlabeled data are added, we
choose a small training set for each dataset such that the
“optimal gain”6 is large enough (greater than 10%). The
training sizes of the 30 UCI datasets range from 1/500
to 1/50 of the whole datasets, as shown in Table 1. The
unlabeled set (U ) is the whole dataset (D) taking away
the test set (T ) and the training set (R). The standard
co-training (Blum & Mitchell, 1998) is then applied. The
process is repeated 20 times with different splits of R,
U , and T . A significance test, a paired t-test with 95%
confidence, is then applied to see if co-training works
(i.e., if co-training with the unlabeled data significantly
outperforms the original labeled-data-only-learning).

In the third step, the general relation between the two
parameters and the working of co-training is explored,
and the proposed splitting methods are compared.

3.2 Splitting Methods
In this section, we study four increasingly sophisticated
splitting methods: random split (Section 3.2.1), entropy
split (Section 3.2.2), entropy-start hill climbing (Section
3.2.3), and random-restart hill climbing (Section 3.2.4).
Then we compare the performance of the standard two-
view co-training, as well as the sufficiency and indepen-
dence parameters, among these four methods (Section
3.2.5).

5. As we will use the naive Bayes to implement co-training, features
need to be discretized.

6. The “optimal gain” is the difference between the accuracy on the
initial training set R plus all unlabeled data with correct labels and
the accuracy on R alone (without any benefit of unlabeled examples).
The “optimal gain” may reflect the upper bound that co-training can
achieve in accuracy.
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No. of Features No. of Examples Class Distribution Training Size
breast-cancer 9 277 196/81 1/50
breast-w 9 699 458/241 1/100
colic 22 368 232/136 1/50
credit-a 15 690 307/383 1/50
credit-g 20 1000 700/300 1/100
diabetes 8 768 500/268 1/50
heart-statlog 13 270 150/120 1/50
hepatitis 19 155 32/123 1/50
ionosphere 33 351 126/225 1/50
kr-vs-kp 36 3196 1669/1527 1/200
mushroom 22 8124 4208/3916 1/500
sonar 60 208 97/111 1/50
tic-tac-toe 9 958 332/626 1/100
vote 16 435 267/168 1/100
anneal new 38 898 214/684 1/50
audiology new 69 226 169/57 1/50
autos new 25 205 138/67 1/50
cmc new 9 1473 629/844 1/100
cylinder-bands new 39 540 228/312 1/50
dermatology new 34 366 112/254 1/50
ecoli new 7 336 143/193 1/50
flags new 28 194 125/69 1/50
glass new 9 214 138/76 1/50
heart-c new 13 303 165/138 1/50
heart-h new 12 294 188/106 1/50
primary-tumor new 17 339 84/255 1/50
solar-flare 1 new 12 323 235/88 1/50
solar-flare 2 new 11 1066 735/331 1/100
spambase new 57 4601 2788/1813 1/300
splice new 60 3190 1535/1655 1/200

TABLE 1
The 30 UCI datasets used in the experiments

3.2.1 Random Split
Although random split is the simplest and most straight-
forward method to split single views into two views, it
is a natural way to discover empirical relation between
the sufficiency and independence assumptions and the
working of co-training. It also sets up a baseline to
compare other splitting methods described later in this
section. In our experiments, each dataset is split into
two views randomly for 20 times, thus we can obtain 20
different feature splits for each dataset, and 600 different
splits for the whole 30 datasets.

The experimental results show that the working of
co-training varies dramatically among these 30 UCI
datasets, and Figure 1 plots all the splits on four rep-
resentative datasets of these 30 datasets. We can see
from Figure 1 that, co-training wins with all the 20
splits on “breast-w” and with most splits (17 out of 20)
on “dermatology new”, but loses with all the 20 splits
on “kr-vs-kp”. It shows that, for these three datasets,
co-training either wins or loses, regardless of splits.7

However, for all the rest 27 datasets (such as “credit-a” in
Figure 1), various splits yield various co-training results.

7. We check the predictive ability of every single feature on these
three datasets via naive Bayes. On “breast-w”, every single feature
can build a classifier with higher than 79% accuracy; on “derma-
tology new”, all the accuracies of these single-feature classifiers are
also higher than 70%; however, on “kr-vs-kp”, most single-feature
classifiers have only around 55% accuracy. High predictive ability on
every feature makes co-training win with all (most) splits on “breast-
w” and “dermatology new”, and low predictive ability makes it lose
with all splits on “kr-vs-kp”.

This thus gives us a chance to discover the relation
between the splits and the working of co-training.

To find out the relation in general, we combine all
the splits on the whole 30 datasets together for analysis.
Figure 2 plots all the 600 random splits on the whole
30 datasets. We can see from Figure 2 that, co-training
works (wins) when �1 and �2 are both very small. For
example, when �1 is smaller than 0.08 and �2 is smaller
than 0.22 (as “Winning Area” shown in Figure 2), co-
training always works. This observation coincides well
with the previous theoretical findings on co-training
assumptions, but more importantly, it provides us with
a practical approach to check these assumptions on real-
world datasets. Specifically, given a split (on a dataset),
we could check if �1 and �2 are smaller than the empirical
thresholds (such as, 0.08 and 0.22 respectively) to see
if the sufficiency and independence assumptions are
likely to be satisfied. Note that, all the splits falling
into “Winning Area” in Figure 2 are from only two of
these 30 datasets (“breast-w” and “dermatology new”).
This indicates that, with random split, co-training is
guaranteed to work only on these two datasets.

In addition, Figure 2 also reveals a general pattern
of the working of co-training: the winning cases appear
denser in the lower left part of the figure, while the tying
and losing cases are denser in the upper right part. In
order to make it clearer, Table 3 presents the numbers
of splits where co-training wins, ties and loses, and the
averages of �1 and �2 on these splits. We can clearly
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Datasets Random Entropy ES-HC RR-HC Local-HC EM+naiveBayes
Section 3.1 Section 3.2 Section 3.3 Section 3.4 Section 4 Section 5

breast-cancer T T T W T T
breast-w W W W W W W
colic T T T T W T
credit-a T T W W T W
credit-g L T L T T L
diabetes T T T W T W
heart-statlog W W W W W W
hepatitis T T T T T T
ionosphere T T T W W T
kr-vs-kp L L L L L L
mushroom L T T W L W
sonar T T T T T T
tic-tac-toe T T T T T T
vote T T T T T T
anneal new L L T T L T
audiology new L T T T T L
autos new T T T T T T
cmc new T T T T T T
cylinder-bands new L L L T L L
dermatology new W W W W W W
ecoli new W W W W W W
flags new T T T T T T
glass new T T T T T T
heart-c new T T W W T T
heart-h new T W T W W W
primary-tumor new L T T T T L
solar-flare 1 new T T W T T T
solar-flare 2 new L T W W L T
spambase new W W T T W T
splice new T T T W T T
Average of �1 0.260 0.222 0.205 0.230 0.385 -
Average of �2 0.229 0.243 0.130 0.040 0.001 -
Performance (w/t/l) 5/17/8 6/21/3 8/19/3 13/16/1 8/17/5 8/17/5

TABLE 2
Comparison of all methods on 30 UCI datasets. “Random”, “Entropy”, “ES-HC” and “RR-HC” (Sections 3.2.1 to 3.2.4)

represent co-training with random split, entropy split, entropy-start hill climbing and random-restart hill climbing
(minimizing “�1 + �2”) respectively, all based on the whole dataset. “Local-HC” (Section 4) represents co-training with

random-restart hill climbing, based on only training set. “EM+naiveBayes” (Section 5) represents EM with naive
Bayes, based on only training set. “W”, “T” or “L” in each entry means the method at the corresponding column wins,
ties or loses on the dataset at the corresponding row. The averages of �1 and �2 on the whole 30 datasets are also

presented in the bottom of the table.

see from Table 3 that, �1 and �2 for co-training to win
are both significantly smaller than those for co-training
to tie, and �2 for co-training to tie is also significantly
smaller than that for co-training to lose. It gives us a
clue that, co-training is more likely to work with smaller
�1 and �2, even when the sufficiency and independence
assumptions might not be satisfied.

No. of Splits �1 �2
Win 137 0.194 ± 0.097 0.157 ± 0.089
Tie 331 0.281 ± 0.082 0.230 ± 0.146
Lose 132 0.278 ± 0.079 0.299 ± 0.174

TABLE 3
The numbers of splits where co-trainig wins, ties and
loses, and the averages of �1 and �2 on these splits.

Column “Random” of Table 2 lists the working of
co-training (i.e., if co-training wins, ties or loses) on
each dataset and the averages of �1, �2 on the whole

30 datasets.8 We can see from Column “Random” that,
co-training with random split wins on 5, loses on 8,
and ties on the rest 17 datasets. This can be considered
as a performance baseline of feature splitting methods,
and will be compared with the other heuristic feature
splitting methods in the following sections.

To summarize the observations from the random split
experiments:

1. Co-training always works when �1 and �2 are both
very small (such as, smaller than 0.08 and 0.22 respec-
tively). This observation coincides well with the previous
theoretical findings.

2. When �1 and �2 are greater, co-training may still
work. Overall, with smaller �1 and �2, co-training is more
likely to win; with greater �1 and �2, co-training is more
likely to tie, or even lose.

3. Co-training with random split wins on 5, loses on

8. Since features are randomly split for 20 times on each dataset,
“W”, “T” or “L” in each entry of Column “Random” shows the
majority co-training result of 20 times run on the specific dataset.
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Fig. 1. Random splits on four representative UCI datasets. On each dataset, splits are labeled as “Win”, “Tie” or
“Lose”, which means co-training wins, ties or loses with the split. On “breast-w” and “dermatology new”, co-training
wins with all (or most) splits; on “kr-vs-kp”, co-training loses with all splits; on “credit-a” (and all the other datasets not
shown), various splits yield various co-training results.
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Fig. 2. Random splits on the whole 30 datasets. Each split is labeled as “Win”, “Tie” or “Lose”, which means co-training
wins, ties or loses with the split. Co-training always wins when �1 is smaller than 0.08 and �2 is smaller than 0.22 (as
“Winnining Area” shown in the figure).

8, and ties on the rest 17 datasets, and this is considered
as a performance baseline for feature splitting methods.
Due to winning on only 1/6 single-view datasets, the
splitting method is clearly not very effective.

Motivated by the poor performance of the random
split, we design the following three increasingly sophisti-
cated splitting methods. With these heuristic algorithms,
datasets are split into two views to make �1 and �2 as
small as possible, thus co-training is expected to be more

likely to work.

3.2.2 Entropy Split
In this section we propose a simple heuristic based on
entropy to split single views into two views. The entropy
split works as follows. We first calculate the entropy
of each feature in the single view based on the whole
dataset. This is similar to the entropy calculation when
deciding which feature should be chosen as the root of
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the decision tree (Quinlan, 1993). Intuitively, the larger
the entropy, the more predictive of the class that the
feature would be. We simply assign features with the
first, third, and so on (the odd number of), highest
entropy to the first view. We then assign features with the
second, fourth, and so on (the even number of), highest
entropy to the second view. The rationale is to distribute
the high-entropy features evenly in the two views, and
thus, both views are more likely to be sufficient.

Based on the entropy split, the working of co-training
on each dataset and the averages of �1 and �2 on the
whole 30 datasets are presented in Column “Entropy”
of Table 2. It shows co-training with the entropy split
wins on 6, loses on 3, and ties on the rest 21 datasets.
Compared with the previous random split (Column
“Random”), the entropy split yields significantly smaller
�1, slightly greater �2, and makes co-training win on
more datasets, as well as lose on fewer datasets.

3.2.3 Entropy-Start Hill Climbing
As we mentioned in the previous section, the entropy
split effectively decreases the sufficiency parameter (�1),
but takes little effect on the independence parameter (�2).
In order to minimize both �1 and �2, in this section, we
combine the entropy split with hill climbing to further
improve splitting performance.

Specifically, we first split features into two views based
on the previous entropy split. Then, each feature is
switched to the other view once a time, thus we can
obtain a group of new generated splits. All these new
generated splits are evaluated to check the sufficiency
parameter (�1) and the independence parameter (�2), and
the one that yields minimum �1 + �2 is remained.9 The
whole process repeats, until the split is not altered from
the last iteration. This way, we can find the split that
minimizes �1 + �2, which basically makes �1 and �2 as
small as possible.

Based on the entropy-start hill climbing, the working
of co-training on each dataset and the averages of �1 and
�2 on the whole 30 datasets are presented in Column “ES-
HC” of Table 2. It shows co-training with the entropy-
start hill climbing wins on 8, loses on 3, and ties on the
rest 19 datasets. Compared with the previous entropy
split (Column “Entropy”), the entropy-start hill climbing
yields smaller �1 and �2, and makes co-training win
on two more datasets. Specifically, the entropy-start hill
climbing slightly decreases the average of �1 from 0.22 to
0.21, and dramatically decreases the average of �2 from
0.24 to 0.13 (which is also much smaller than the average
of �2 (0.23) of the random split).

3.2.4 Random-Restart Hill Climbing
The entropy-start hill climbing starts from the entropy
based split, and deterministically ends at the split min-
imizing sum of �1 and �2, thus it might be easy to get

9. Minimizing the sum of �1 and �2 is only one way to minimize
both of them, and there exist many other ways (such as, minimizing
the weighted sum of �1 and �2), see Section 3.2.4 for details.

stuck in local minima. In this section, we utilize random-
restart hill climbing to get better optimization perfor-
mance. The random-restart hill climbing works almost
the same as the entropy-start hill climbing described in
the previous section, except it starts from 20 random
splits instead of only one deterministic entropy split. The
splits obtained from all the 20 hill climbing searches are
compared, and the one yields the minimum sum of �1
and �2 is remained as the best.

Based on the random-restart hill climbing, the working
of co-training on each dataset and the averages of �1
and �2 on the whole 30 datasets are presented in Col-
umn “RR-HC” of Table 2. It shows co-training with the
random-restart hill climbing wins on 13, loses on only 1,
and ties on the rest 16 datasets. Compared with the pre-
vious entropy-start hill climbing, the random-restart hill
climbing yields slightly greater �1, dramatically smaller
�2, and makes co-training win on five more datasets, as
well as lose on two fewer datasets. These comparisons
clearly show that the random-restart hill climbing is
superior to the previous entropy-start hill climbing.

So far, we minimize both �1 and �2 by directly mini-
mizing �1+�2, in order to make co-training work on more
datasets. However, there also exist many other ways to
to minimize �1 and �2, such as, minimizing the weighted
sum of �1 and �2. In order to compare the performance
of different weights, we conduct experiments to check
the change of �1, �2 and the working of co-training by
minimizing various weighted sum of �1 and �2.

Table 4 presents the averages of �1, �2 and the working
of co-training on the 30 UCI datasets. Seven different
weights on �1 and �2 are utilized for comparison, which
are “9�1+�2”, “6�1+�2”, “3�1+�2”, “�1+�2”, “�1+3�2”,
“�1 + 6�2”, and “�1 + 9�2”. It is clear from Table 4 that,
with various weights, the decrease of one of �1 and
�2 is always accompanied by the increase of the other,
which indicates a clear trade-off between them. Thus,
minimizing them equally (i.e., minimizing �1 + �2) is
expected to be a reasonable way to minimizing both
of them. It is confirmed by Column “Ct works?” (i.e.,
the working of co-training) of Table 4 that, directly
minimizing “�1 + �2” makes co-training win on more
datasets and lose on fewer datasets compared with the
other weights.

3.2.5 Comparison of Four Methods
To better compare the four splitting methods, we illus-
trate �1, �2, �1+�2 and the working of co-training on the
30 UCI datasets here.

Figure 3 illustrates the change of �1, �2 and �1 + �2,
and Figure 4 illustrates the working of co-training, where
“Random”, “Entropy”, “ES-HC” and “RR-HC” represent
random split, entropy split, entropy-start hill climbing
and random-restart hill climbing (minimizing “�1 + �2”)
respectively. From Figure 3, we can notice that, both �1
and �2 roughly decrease, and �1 + �2 clearly decreases,
based on the four splitting methods. From Figure 4, we
can see that, these four methods also increasingly make
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Average of �1 Average of �2 Ct works?(w/t/l)
9�1 + �2 0.185 0.159 11/17/2
6�1 + �2 0.186 0.159 10/15/5
3�1 + �2 0.198 0.097 12/16/2
�1 + �2 0.230 0.040 13/16/1
�1 + 3�2 0.260 0.020 12/15/3
�1 + 6�2 0.271 0.017 10/16/4
�1 + 9�2 0.272 0.017 10/16/4

TABLE 4
Comparison on �1, �2 and the working of co-training

between minimizing various weighted sum of �1 and �2,
all based on the 30 UCI datasets. The decrease of one
of �1 and �2 is always accompanied by the increase of

the other. Directly minimizing “�1 + �2” works the best on
making co-training win on more datasets (lose on fewer

datasets).

co-training win on more datasets and lose on fewer
datasets. Thus, the general relation between these two
parameters and the working of co-training can again be
clearly demonstrated: co-training is more likely to work
with smaller �1 and �2.

δ1 δ2 δ1+δ2
0.00

0.10

0.20

0.30

0.40

0.50

0.60
Random
Entropy
ES-HC
RR-HC

A
ve

ra
ge

 v
al

ue
 o

f δ
1,

 δ
2 

an
d 

δ1
+δ

2 

Fig. 3. Comparison on �1, �2 and �1 + �2 between all
four splitting methods. “Random”, “Entropy”, “ES-HC” and
“RR-HC” represent random split, entropy split, entropy-
start hill climbing and random-restart hill climbing respec-
tively. �1 and �2 are both decreased with the four methods.

In addition, the above observations seem to indicate
that the random-restart hill climbing works the best
compared with the other three methods; however, it is
also the most expensive one. The random split is the
simplest and cheapest method; the entropy split requires
calculating entropy on all features; the entropy-start hill
climbing implements one hill climbing search on the
basis of entropy calculation; and the random-restart hill
climbing implements 20 hill climbing searches. The four
methods are increasingly effective, but also increasingly
expensive. Therefore, which method to use in real-world
application depends on the specific scenario.

3.3 Reconstruction of Two Views

Our view splitting methods described previously are
quite effective in discovering sufficient and independent
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Fig. 4. Comparison on the working of co-training between
all the four splitting methods. “Random”, “Entropy”, “ES-
HC” and “RR-HC” represent random split, entropy split,
entropy-start hill climbing and random-restart hill climbing
respectively. The four methods increasingly make co-
training win on more datasets and lose on fewer datasets.

views for the UCI datasets. However, we are not com-
pletely certain if all sufficient and independent views are
discovered, as we do not have domain knowledge on
these real-world datasets. In this subsection, we apply
the four splitting methods to a synthetic dataset with two
sufficient and independent views. As we know exactly
what the true two views are for the synthetic data, we
can verify if these splitting methods can successfully
reconstruct them.

Specifically, we first generate a synthetic dataset with
two groups of sufficient and conditionally independent
features (i.e., two views). We mix these two views to-
gether to construct a single-view dataset. Then, we apply
the splitting methods to see if they can successfully
recover these two views.

We use 10 features in each view to generate the
two-view data (i.e., X = x1, x2, . . . , x10 and Y =
y1, y2, . . . , y10). We use two simple linear functions as the
target functions for the two views: f(X) = x1 − x2 +
x3 − x4 + . . .+ x9 − x10 and f(Y ) = −y1 + y2 − y3 + y4 −
. . . − y9 + y10. For each instance, we randomly assign
an integer ([1, 10]) to each of these 20 features as the
feature value. Then we assign the corresponding label of
the instance as 1 when both target functions are greater
than 0 (i.e., f(X) > 0 and f(Y ) > 0); and assign the label
as -1 when both target functions are smaller than 0 (i.e.,
f(X) < 0 and f(Y ) < 0). If the two target functions are
not consistent with each other, we simply discard the
current instance and generate the next one. As all the
instances are directly generated according to the target
functions f(X) and f(Y ), both the X view and the
Y view are sufficient. Moreover, given labels (denoted
by L), all the feature values of the X view are not at
all affected by the Y view (i.e., P (X∣L) = P (X∣L, Y )),
thus the X view and the Y view are also conditionally
independent. Therefore, we can construct a 20-feature
dataset with the combined two views, both of which are
sufficient and conditionally independent.
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We generate 1,000 such labeled examples in our ex-
periment. We apply the four splitting methods to this
synthetic dataset, to verify if they could successfully
reconstruct the two views. All the experimental configu-
rations are the same as in the previous subsections. Table
5 shows the typical splits generated by the four methods
(Rows “Random”, “Entropy”, “ES-HC” and “RR-HC”),
as well as �1, �2, �1+�2 for each split. The true split (Row
“True Split”) is also presented for comparison.

We can make several interesting observations from
Table 5:

1. The “True Split” (i.e., the true sufficient and con-
ditionally independent split) yields the smallest �1 and
�2 (thus �1 + �2 as well), compared with all the other
splits.10 This confirms the validity of the sufficiency and
independence parameters we proposed in Section 2. In
other words, by decreasing both �1 and �2, it is indeed
more likely to obtain two sufficient and conditionally
independent views.

2. The four proposed splitting methods yield increas-
ingly smaller �1, �2 and �1 + �2. This confirms that more
sophisticated methods can more effectively decrease the
sufficiency and independence parameters.

3. Most importantly, the random-restart hill climbing
method (RR-HC) yields exactly the same �1, �2 and
�1 + �2 as the “True Split”, and generates a very similar
view-split as the true one (only one feature, x1, is mis-
assigned). This clearly demonstrates the extraordinary
splitting performance of RR-HC.11

To conclude, we propose a novel and effective way
to measure the sufficiency and independence with given
two views (Section 2), propose four increasingly sophis-
ticated methods to split single views into two views
(Sections 3.2.1 - 3.2.4), and discover the empirical relation
between the sufficiency and independence assumptions
and the working of co-training (Section 3.2.5).

However, our conclusions so far are all based on the
whole (or large) datasets. Often co-training is needed
when a small set of labeled training data is given, and we
need to decide empirically if co-training can be applied.
In the next section we will study the verification of
the co-training assumptions and the performance of the
splitting methods given only small sets of training data.

4 VERIFYING AND APPLYING CO-TRAINING
ON SMALL TRAINING SETS

The results in Section 3 coincide well with the previous
theoretical findings. In addition, they also reveal that, the
sufficiency and independence assumptions can be reli-
ably verified, and the single views datasets can also be
reliably split into two sufficient and independent views

10. Note that, the sufficiency parameter (�1) is still 0.136 even for the
true split, because we only generate 1,000 instances for the synthetic
data. If we generate all valid instances, �1 naturally approaches to 0.

11. Here random-restart hill climbing method performs reliably well
given the large synthetic data (1,000 instances). In Section 4, we
evaluate its performance again, but given only small synthetic data
(20 instances).

(if they exist) for co-training to work well. However, all
these results are based on the whole (or large) datasets.
In real-world applications, co-training is needed when
the labeled training set is small. Thus we need know if
feature splitting is still reliable, and if co-training can still
be applied in this situation.

We first empirically study the same 30 UCI datasets
to answer these questions. Specifically, for each UCI
dataset, a small training set is randomly sampled. The
size of the training data is the same as the one in Section
3 (Table 1). Then the single view of features is split into
two using the most effective strategy proposed in Section
3 — random-restart hill climbing (minimizing �1 + �2)
based only on the small labeled training set (instead of on
the whole dataset as in the previous section).

For each dataset, we apply the standard co-training
to the training set, and compare the predictive accuracy
after co-training with the one without co-training. The
process is repeated 20 times with different splits of
training set, unlabeled set, and test set.12 The significance
test, as described in Section 3, is then applied to see if
co-training works.

0.00 0.10 0.20 0.30 0.40 0.50 0.60
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70
Lose
Tie
Win
Winning Area

δ1

δ
2

Fig. 5. The splits from random-restart hill climbing that
make co-training “Win”, “Tie” or “Lose” on 30 datasets.
The feature splitting is based on small sets of training
data.

No. of Splits∖Datasets �1 �2
Win 8 0.298 ± 0.113 0.000 ± 0.000
Tie 17 0.455 ± 0.084 0.002 ± 0.008
Lose 5 0.283 ± 0.135 0.002 ± 0.005

TABLE 6
The numbers of splits (datasets) where co-training wins,
ties and loses, and the averages of �1 and �2 on these

splits (datasets), all based on small sets of training data.

Figure 5 plots 30 splits on the 30 UCI datasets, and
Table 6 presents the numbers of splits (datasets) where
co-training wins, ties and loses, and the averages of �1
and �2 on these splits (datasets). We can see no split
in the “Winning Area” (�1 < 0.08 and �2 < 0.22, as

12. The split of the two views is based on the whole dataset in
Section 3, and thus it remains unchanged in multiple runs of co-
training. Here, the feature split changes with different training sets.



10

View X View Y �1 �2 �1 + �2

True Split x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 y1, y2, y3, y4, y5, y6, y7, y8, y9, y10 0.136 0.000 0.136
Random x1, x2, x3, x4, x5, x6, x8, y1, y2, y4, y5, y6, y7, y8 x7, x9, x10, y3, y9, y10 0.293 0.014 0.307
Entropy x2, x3, x7, x8, x9, y1, y3, y5, y6, y7 x1, x4, x5, x6, x10, y2, y4, y8, y9, y10 0.202 0.000 0.202
ES-HC x1, x2, x3, x4, x7, x8, x9, y1, y3, y5, y6 x5, x6, x10, y2, y4, y7, y8, y9, y10 0.184 0.000 0.184
RR-HC x2, x3, x4, x5, x6, x7, x8, x9, x10 x1, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10 0.136 0.000 0.136
Local-HC x2, x3, x4, x5, x8, x9, x10, y2, y4, y5, y7, y8, y10 x1, x6, x7, y1, y3, y6, y9 0.250 0.000 0.250

TABLE 5
Comparison of the two views generated by the splitting methods (as well as the corresponding �1, �2 and �1 + �2) on

the synthetic dataset. “True Split” represent the true two sufficient and independent views; “Random”, “Entropy”,
“ES-HC” and “RR-HC” represent random split, entropy split, entropy-start hill climbing and random-restart hill
climbing respectively, based on the whole dataset (1,000 instances). “Local-HC” (see Section 4) represents

random-restart hill climbing, based on only training set (20 instances).

same as the one in the previous section) from Figure
5, and we can discover no general pattern from Table
6. This observation is inconsistent with what we have
discovered in the previous section when the features are
split based on large training sets. It indicates that, when
only small sets of training data are given, the feature
splitting is unreliable, and thus, difficult to make co-
training work.

In addition, in Figure 5, values of �1 for all the splits
(datasets) spread from 0.01 to 0.56, while most values of
�2 (28 out of 30) are as small as 0. Similar phenomenon
could also be discovered from Table 6 that, the averages
of �1 are relatively great (0.283, 0.455 and 0.298), while
the averages of �2 are very small (0.002, 0.002 and 0.000).
This is again due to the small sets of training data.
On one hand, sufficiency calculation (see Section 2 for
details) on few training examples indicates relatively
low predictive ability on both the whole view and the
split two views, thus yielding greater �1; on the other
hand, independence calculation (see Section 2 for details)
on few training examples is more likely to show the
independence relation between features, thus yielding
smaller �2.

Moreover, even for a specific split (on a specific
dataset), �1 and �2 both vary dramatically with different
sets of training data. All of these indicate unreliable
estimation of �1 and �2 given only small sets of training
data, which makes the sufficiency and independence
assumptions difficult to be verified.

Column “Local-HC” of Table 2 presents the working
of co-training on each of the 30 UCI datasets. We can see
that co-training wins on 8, loses on 5 and ties on the rest
17 datasets, given only small sets of training data. This
result is slightly better than the random split (wins on 5
and loses on 8, as in Column “Random”); however, it is
much worse than the same random-restart hill climbing
on the whole datasets (wins on 13 and loses on 1, as in
Column “RR-HC”). This result simply shows that the
splitting methods do not work well when only given
small sets of labeled training data, due to the unreliable
estimation of �1 and �2.

We further study the co-training assumptions and the
feature splitting on the synthetic data with a small size.

In Section 3.3, we studied these issues on the large
dataset (1,000 instances). Here, we conduct the same
experiments on a small set of 20 instances. Specifically,
we first randomly sample 20 instances from the whole
dataset as the small training set, then we apply the
most effective splitting method — random-restart hill
climbing, to this small training set. The typical two
views generated by the splitting method, as well as the
corresponding �1, �2 and �1 + �2, are recorded in Table 5
(Row “Local-HC”) for comparison.

We can clearly see from Table 5 that, given only lim-
ited training examples, even the most effective splitting
method (random-restrat hill climbing) still cannot suc-
cessfully reconstruct the true two views. It is again due to
the unreliable verification of the co-training assumptions
on the small training set.

To summarize, co-training is often called for in real-
world applications when the labeled training sets are
small. However, the experimental results on both the
UCI datasets and the synthetic dataset reveal that, if only
small training sets with single views are given, neither
verifying the sufficiency and independence assumptions
nor splitting single view into two views is reliable, thus
it is uncertain whether co-training would work or not.
This indicates the limitation of co-training in real-world
applications.

5 COMPARISON BETWEEN CO-TRAINING AND
EM WITH NAIVE BAYES

To further assess the validity of co-training with view
splitting, in this section we compare it with another pop-
ular semi-supervised learning method — EM with naive
Bayes (Nigam et al., 2000). Roughly speaking, EM with
naive Bayes first constructs a naive Bayes classifier based
on the given labeled training data. This classifier is then
used to estimate the class probability of the unlabeled
data. Then, all the unlabeled data (with their estimated
class probabilities) are included into the training set to
construct the second classifier, and their class probability
is again estimated according to this second classifier. The
whole process repeats, till the probability estimation of
all the unlabeled data converges.
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Co-training and EM with naive Bayes have been
previously compared in (Nigam & Ghani, 2000), and
it shows that co-training significantly outperforms EM
with naive Bayes when two sufficient and condition-
ally independent views are given. Here, we make no
assumption about these two views, and only empirically
split single views into two views. Given large training
datasets, we have shown (Section 3) that view splitting
is reliable, thus, co-training should outperform EM with
naive Bayes. However, co-training is often expected
to be applied when small single-view training sets are
given, and it is unknown if co-training still outperforms
EM with naive Bayes in this situation.

We apply EM with naive Bayes to the same 30
UCI datasets, and all the experimental configurations
are the same as in the previous sections. Column
“EM+naiveBayes” of Table 2 presents the working of
EM with naive Bayes on each of the 30 UCI dataset. For
better illustration, Table 7 summarizes the comparison
between view-splitting co-training with whole domain,
view-splitting co-training with small training data, and
EM with naive Bayes with small training data.

View splitting based on the whole domain (whole
dataset) can be considered as a way to discover the
ideal two views such that co-training will be most likely
to work. Indeed, we can clearly see from Table 7 that,
given the whole domain, co-training with view splitting
performs reasonably well on the tested UCI datasets
(wins on 13, loses on 1, and ties on 16 datasets). This
indicates that, if the single-view datasets are appropriately
split into two views, co-training can indeed outperform
EM with naive Bayes. However, this ideal situation is
usually unrealistic in real-world applications, where a
small set of training data is given and view splitting
could only be applied accordingly. In this situation, Table
7 also shows that, both co-training with view splitting
and EM with naive Bayes only work on around 1/4
tested UCI datasets (win on 8, lose on 5, and tie on 17
datasets). Clearly, co-training has no advantage over EM
in this more common real-world situations.

To conclude, if the single-view datasets can be appro-
priately split into two views (based on the whole do-
main), co-training can indeed outperform EM. However,
in common real-world situations where the co-training
assumptions are not ensured and only small sets of
training data are given, co-training with view splitting
has no distinct advantage over EM with naive Bayes, and
performs unreliable on the tested real-world datasets.

6 RELATION TO PREVIOUS WORKS

Current semi-supervised learning approaches can be
roughly categorized into three major paradigms. In the
first paradigm, a generative model is used for the classi-
fier and the EM algorithm is utilized for label estimation
and parameter estimation (Miller & Uyar, 1997; Nigam
et al., 2000; Fujino et al., 2008). In the second paradigm,
unlabeled instances are used to regularize the learning

process, such as in the graph-based methods (Blum
& Chawla, 2001; Zhu et al., 2003; Belkin & Niyogi,
2004; Zhou et al., 2005; Chapelle et al., 2003). The third
paradigm is co-training. We study co-training in our
paper.

The co-training paradigm was first proposed by Blum
and Mitchell’s seminal paper (Blum & Mitchell, 1998).
It has achieved great success in many applications, such
as statistical parsing (Sarkar, 2001; Steedman et al., 2003;
Hwa et al., 2003), noun phrase identification (Pierce &
Cardie, 2001), and image retrieval (Zhou et al., 2004;
Zhou et al., 2006).

In Blum and Mitchell’s paper (Blum & Mitchell, 1998),
the existence of two sufficient and conditionally inde-
pendent views is regarded as the required condition for
co-training. Dasgupta et al. (2002) theoretically showed
that when the requirement of sufficient and independent
views is met, the co-trained classifiers are guaranteed to
make few generalization errors, and some error bounds
are derived. However, the requirement that the two
sufficient views are conditionally independent given the
class label is too rigid to be held in most real-world
cases. Fortunately, Abney (2002) showed that the con-
ditional independence can be relaxed to be weak inde-
pendence. Later, Balcan et al. (2005) theoretically showed
that given appropriately strong PAC-learners on each
view, an assumption of expansion on the underlying data
distribution, which is weaker than the assumption of
sufficient and redundant views, is sufficient. Thus, it is
not strange that even in datasets with two-views that are
not independent, co-training may still be able to work
well.

Most real-world data sets have only single views
instead of two views. To exploit the advantages of
co-training, effective single-view co-training algorithms
are needed. Goldman and Zhou (2000) proposed an
algorithm which does not exploit feature partition. This
algorithm uses two different supervised learning algo-
rithms to train the two classifiers. Zhou and Li (2005)
proposed the tri-training approach, which uses three
classifiers generated from bootstrap samples of the orig-
inal training set. Wang and Zhou (2007) theoretically
showed that given appropriately strong PAC-learners,
the co-training process can improve performance when
there is large difference between the two learners, which
gives theoretical support to the success of single-view
co-training algorithms.

Our work is closely related to the work of Nigam
and Ghani (2000). Nigam and Ghani (2000) reported an
earlier empirical study on splitting single views into two
views. They found that when an independent and redun-
dant feature split exists, co-training algorithms outper-
form many other algorithms using unlabeled data. Even
when there is no natural feature divisions, if there are
sufficient redundancy among the features, and a fairly
reasonable division of the features can be identified, then
co-training algorithms may show similar advantages to
other algorithms. However, they only studied random
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Method Section Setting Performance on UCI (w/t/l)
Co-Training with Section 3 feature splitting on whole domain; co-training on small training sets 13/16/1

View Splitting Section 4 feature splitting on small training sets; co-training on small training sets 8/17/5
EM+naiveBayes Section 5 on small training sets 8/17/5

TABLE 7
Comparison between co-training with view split and EM with naive Bayes.

split of the single views, and did not provide any empir-
ical method for verifying if the two views are sufficient
and independent. In our experiments we have shown
that our feature splitting approaches are quite effective
in producing two views for the standard co-training, and
we have also discovered the general relation between the
sufficiency and independence parameters and the work-
ing of co-training. It is worth noting that their empirical
conclusions were mainly drawn from text data, while
it is well-known that text data have large redundancy
in features. Although there was no careful study on
whether Nigam and Ghani’s conclusions can also apply
to common data (such as UCI data), those results have
inspired many people to use random feature split for co-
training in practice. Our study clearly shows that view
splitting does not always work for co-training on single-
view datasets.

7 CONCLUSIONS

This paper extends our preliminary study (Ling et al.,
2009). Conclusions drawn in Section 3 coincide well with
the previous theoretical findings. Moreover, they show
that, if the whole (or large) training datasets are given,
the feature splitting methods can successfully split single
views into two views, and co-training can be applied,
and expected to work well.

Unfortunately, in real-world situations, co-training is
often called for when only small sets of training data
are given. Conclusions drawn in Sections 4 and 5 show
that, given small training datasets, the sufficiency and
independence assumptions cannot be reliably verified,
thus the splitting methods cannot work reliably either.
In addition, in this situation, co-training with view split-
ting has no advantage over EM with naive Bayes, and
performs unreliably.

To summarize, if the two views and the two corre-
sponding assumptions of co-training can be ensured,
co-training indeed works well. However, on the more
common single-view data, verifying the assumptions or
splitting single view into two views are unreliable given
small labeled training sets, thus it is uncertain whether
the standard co-training would work or not.
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