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Abstract—With the assistance of a domain expert, active learning can often select or construct fewer examples to request their labels
to build an accurate classifier. However, previous works of active learning can only generate and ask specific queries. In real-world
applications, the domain experts (or oracles) are often more readily to answer “generalized queries” with don’t-care attributes. The
power of such generalized queries is that one generalized query is often equivalent to many specific ones. However, overly general
queries are not good as answers from the domain experts (or oracles) can be highly uncertain, and this makes learning difficult.
In this paper, we propose a novel active learning algorithm that asks good generalized queries. We then extend our algorithm to
construct new, hierarchical features for both nominal and numeric attributes. We demonstrate experimentally that, our new method
asks significantly fewer queries compared with the previous works of active learning, even when the initial labeled dataset is very
small, and the oracle is inaccurate in class probability estimations. Our method can be readily deployed in real-world data mining tasks
where obtaining labeled examples is costly.

This is an extension of the paper published in IEEE ICDM 2009 [16].
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1 INTRODUCTION
In recent years, domain-driven data mining (D3M) [10],
[27], [38], [9] has received extensive attention in data
mining. Unlike the traditional data-driven data mining,
D3M tends to discover actionable knowledge by tightly
integrating the data mining methods with the domain-
specific business processes. However, in most cases, the
domain-specific actionable knowledge cannot be discov-
ered without the support of domain knowledge, mainly
provided by human experts. Thus, the human-machine-
cooperated interactive knowledge discovery process is
widely applied in real world applications [27]. Active
learning, as a typical interactive learning paradigm, can
naturally integrate the automated learning algorithm
with the domain experts. Previous research in active
learning shows, guided by the domain experts, data
mining algorithms can often achieve significantly better
performance than the traditional data-only learning.

Motivated by domain-driven data mining, in this
paper, we attempt to maximize the utility of domain
experts (oracles) in active learning process. Specifically,
traditional active learning algorithms (see Section 2 for
a detailed review) only assume that the domain expert
(oracle) is capable of answering specific queries, with all
attribute value provided. For example, if the task is to
predict osteoarthritis based on a patient dataset with 30
attributes, the previous active learners could only ask the
specific queries as: does this patient have osteoarthritis,
if ID is 32765, name is Jane, age is 35, gender is female,
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weight is 85 kg, blood pressure is 160/90, temperature
is 98F, no pain in the knees, no history of diabetes,
and so on (for all 30 attributes). Many of these 30
attributes may not be relevant to osteoarthritis in this
case. Not only could specific queries like this confuse
the domain experts (oracles), but the answers returned
are also specific: each label given is only for one specific
query.

In real-world situations, the domain experts (oracles)
are often more readily to answer generalized queries,
such as “are people aged over 50 with knee pain likely
to have osteoarthritis?” Here only two relevant attributes
(age and type of pain) are mentioned, and the other 28
are don’t-care. We have discussed with some experts
in heart-disease diagnosis and used-car sale, and they
regard this type of generalized queries intuitive and easy
to comprehend. Thus, in this paper, we assume that the
domain expert (oracle) is more powerful; it can answer
generalized queries by returning probabilistic labels. Not
only are such generalized queries more natural and
relevant, answers from the oracle also provide much
more information, as one generalized query is often
equivalent to many specific queries. In this example, the
answer for this query is for all people over 50 with knee
pain. This allows the active learner to improve learning
effectively and quickly.

The difficulty of the generalized queries is that the
answers from the oracle can often be uncertain.1 For
example, the answer to the above generalized query

1. This is true even if we assume that answers for specific queries
are always 100% certain. However, in some real-world applications,
answers for specific queries may also be uncertain. We will study this
issue in our future work.
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can be “Yes with a 90% probability”. An overly general
query, such as “are people aged over 50 likely to have
osteoarthritis?” (age only), might receive yes with only
a 60% probability. Indeed, the experts in the heart-
disease diagnosis and used-car sale also sometimes have
to reply with low certainties in their answers. Highly
uncertain answers can make learning difficult as they
may introduce noise into the training data; or, they waste
the effort of the domain experts (or oracles) if these
answers are directly discarded.

In general, the more general a query is (with more
don’t-care attributes), the more powerful it is (repre-
senting more specific instances), but usually the more
uncertain the answer is from the oracle. Our task is to
design an active learner that attempts to ask generalized
queries with highly certain answers from the oracle. The
task is not trivial. As far as we know, no previous work
of active learning can deal with such generalized queries.
See Section 2 for details.

In this paper we assume that the oracle is capable
of answering generalized queries, and we propose a
novel active learning paradigm in which such gener-
alized queries can be asked and answered. We design
a new algorithm called AGQ, for Active learner with
Generalized Queries. AGQ can construct generalized
queries with don’t-care attributes, for either the pool-
based or the membership-query active learner. See Sec-
tion 3 for details. However, AGQ can only generalize
specific attribute values to don’t-care. We then extend
AGQ to AGQ+, which can generalize specific attribute
values to meaningful new features for both nominal and
numeric attributes. For example, AGQ+ can ask such
queries as “are people aged between 50 and 65, with
moderate or severe knee pain, likely to have osteoarthri-
tis?” Here, age (a numeric attribute) is generalized to
a range, and knee pain (a nominal attribute) is gener-
alized to a subset of values. These newly constructed
features can form hierarchical structures, and are often
meaningful in real-world applications. See Section 4
for the detailed description of AGQ+. Experiments on
synthetic and real-world datasets show that AGQ and
AGQ+ ask significantly fewer queries compared with
the traditional active leaner. See Sections 5 for details. In
addition, AGQ+ can also automatically produce subsets
for nominal attributes and ranges for numeric attributes,
which can be used in further learning. To the best of
our knowledge, this is the first work proposing active
learning with generalized queries, and showing that it
is highly effective.

One might argue that it may be difficult for the oracle
or human expert to provide accurate probabilities of the
labels for the generalized queries. As we will show in
Section 6.1, when the probabilities of labels are contami-
nated with low noise, AGQ still learns quite well. That is,
AGQ is robust with estimated probabilities of the labels.
In addition, Section 6.2 studies the difference between
AGQ (AGQ+) and active learning with feature selection.
We will show that active learning with feature selection

performs significantly worse than the proposed AGQ
methods, due to the overly general queries it produces.
In Section 6.3, we will discuss the behaviour of AGQ
(AGQ+) with only few initial labeled examples, and
propose an additional heuristic to handle this issue.

2 RELATED WORK

Involving domain experts into learning is a common and
often necessary step in domain-driven data mining [10].
It has been shown that, in many real-world applications,
domain experts can play an important role in the entire
knowledge discovery and data mining process [2], [5].
Specifically, the learning algorithms guided by domain
experts can achieve significantly better performance than
the automated data-only learning. Thus, active learning
has been intensively studied, due to its natural capability
of integrating domain experts into the learning process.

Most previous works of active learning can be di-
vided into two paradigms: the pool-based active learning
and the membership query.2 In the pool-based active
learning, a pool of unlabeled examples is given, and
the learner can only choose examples to label from
the pool [21]. Briefly speaking, the pool-based active
leaner first evaluates each example in the pool, to decide
which one can maximumly improve the performance of
the current model. Then the learner acquires its label
from oracle to update the labeled training set and the
learning model, and the process repeats. On the other
hand, active learning with membership queries (or direct
query construction) can construct examples (without the
need of the pool) and request labels [4], [23]. Previous
experiments show that both of these active learning
methods reduce the number of labeled examples needed,
compared with labeling examples randomly.

The essence of active learning lies in the “goodness”
measurement of the unlabeled examples with respect to
the current model. Many criteria have been proposed
in the literatures. Uncertainty sampling [21] considers the
most uncertain example as the most valuable one, and
has been thoroughly studied and widely used in many
previous researches [36], [32], [7], [22], [28]. Query-by-
committee (QBC) [33] is a more theory-based approach,
and considers the example minimizing the version space
as optimal. [1] implements QBC by constructing commit-
tees from ensemble methods (bagging, boosting, etc.),
thus essentially transforms it to a variant of uncertain
sampling. Besides, other criteria, such as variance reduc-
tion [12], Fisher information ratio [39], and estimated error
reduction [31], are also elaborately designed and well
accepted in active learning research area. In this paper,
the proposed AGQ algorithm can be integrated with any
of the above criteria, and the most widely used uncertain
sampling is chosen for illustration and empirical study in
the rest of the paper.

2. Stream-based active learning [11] is considered as another
paradigm in some literatures. In essence, it could be viewed as an
online version of the pool-based active learning [7].



All previous works of active learning assume that
the oracle could only answer specific queries, with all
attribute values provided. To the best of our knowl-
edge, our AGQ algorithm in this paper is the first
work proposing active learning with generalized queries.
Again, the main advantage of AGQ is that one general-
ized query is usually equivalent to many specific ones.
Thus, the answer from the oracle is also for all of the
specific queries.

Even though one generalized query is equivalent to
multiple specific queries, our AGQ method is still quite
different from batch-mode active learning [20], [18]. In
batch-mode active learning, the learning model requests
labels for a batch of examples (i.e., multiple specific
queries) in each iteration, thus the oracle is required to
provide multiple answers for all these queries (i.e., with
multiple costs). On the other hand, in AGQ, the oracle
answers only one generalized query in each iteration
(i.e., with one cost). Thus, AGQ costs much less than
the batch-mode active learning, for answering queries
in the learning process.

[15] proposed active learning with feature labeling,
which queries the label for one specific feature (for
example, “puck” −→ “hockey”), and is mainly used in
natural language precessing. Although feature labeling
is considered similar to the generalized query, our AGQ
algorithm is significantly different in the following three
aspects. First, instead of querying label for one specific
feature, our AGQ could query the labels for multi-feature
combinations (for example, “puck”+“ice”+“player” −→
“hockey”). Thus, feature labeling is essentially a special
case of our AGQ. In other words, our generalized query
is a generic paradigm for both instance-based queries
and feature-based queries. Second, AGQ always finds
the most uncertain example (when integrated with un-
certain sampling) and generalizes it to a query. Labeling
such uncertain examples has been proved to be very
effective in improving predictive accuracy (see Section
5.2 for details). On the other hand, feature labeling
generally finds the most predictive (or most frequent)
feature for querying, thus the answer from the oracle
may not provide much new information to improve the
model. Third, and most importantly, as feature labeling
always queries label for only one feature, the answer
from the oracle could be very uncertain. To deal with
this problem, it is assumed in [15] that the oracle could
“skip” the uncertain queries. But in fact, the oracle has
“worked” on those queries, and the oracle’s effort is
wasted. On the other hand, AGQ makes a minimal
generalization of a specific query, thus the answers from
the oracle tend to be certain. Our experiments show that
the average certainty of the replies is 90% (see Section 5.2
for details). In any case, every query of AGQ is counted,
regardless of the certainty of the reply.

One major step of AGQ is to find irrelevant features
and substitute them with the don’t care (i.e. “∗”) (see
Section 3.2). However, our algorithm is very different
from, and much better than, combining feature selection

and the traditional active learning. We will discuss this
in detail in Section 6.2.

3 AGQ: ACTIVE LEARNING WITH GENERAL-
IZED QUERIES

Domain-driven data mining actively involves human
experts in the learning process. Active learning naturally
put human experts in the process. In this paper we
propose a new active learning paradigm in which the
learner can ask generalized queries, and we assume that
the domain expert or oracle can answer such generalized
queries. In this section, we will describe a novel active
learning algorithm called AGQ (Active learning with
Generalized Queries). AGQ can generalize attributes
(nominal or numeric) with specific values to don’t-care
attributes. In Section 4, we extend AGQ to AGQ+, which
generalizes from specific attribute values to subsets of
values for nominal attributes, or to ranges for numeric
attributes. These newly constructed attributes can form
meaningful hierarchies for further learning.

As most previous works of active learning are pool-
based, and use uncertain sampling to choose the most
valuable unlabeled examples, in this paper, we will also
describe AGQ using uncertain sampling in pool-based
paradigm. However, as our AGQ is a meta-learning
method, it can be equally applied to the membership
query active learning, or integrated with any other query
strategy. We assume that examples are described by n
nominal or numeric attributes X1, X2, ..., Xn and the
label Y of examples is binary, with values positive (1)
and negative (0). The active learner is given an initial
labeled training set R, and an unlabeled set U , from
which the learner may choose examples to query for
their labels from an oracle. A test set T is given but set
aside to evaluate the accuracy of the learner during label
acquisition.

The AGQ algorithm can be broken down into the
following four major steps:

1) The first step is the same as in the previous pool-
based active learning algorithms [36], [14], [28]. An
initial learner L is built using the current labeled
training dataset R. Then, L is used to predict each
example in the pool U . The most uncertain example
from the pool is chosen. (If the membership active
learning is used, then the most uncertain example
would be constructed in this step.)
As an example, the specific example from the pool
could be [1, 0, 1, 1, 0, 1], with the predicted probabil-
ity of 52% for the class 1 (and 48% for the class 0),
according to the current model L. This is the most
uncertain (the probability of the majority class is
closest to 50%) among all examples in the pool.

2) AGQ then finds irrelevant attributes in the most
uncertain example above, and substitute them with



“∗” (representing don’t-care values).3

For example, the generalized query based on the
example [1, 0, 1, 1, 0, 1] could be [1, ∗, 1, ∗, 0, 1].

3) AGQ submits this generalized query to the oracle,
which will return a label with a probability distri-
bution.
For example, the oracle may return a probability
of 0.9 for positive (and 0.1 for negative) for the
generalized query [1, ∗, 1, ∗, 0, 1].

4) AGQ will utilize the label and the probability dis-
tribution to update the training data, and iterate to
Step 1 (to continue learning actively).
For example, from the generalized query
[1, ∗, 1, ∗, 0, 1] and the probability distribution for
the class (0.9 for class 1 and 0.1 for class 0), four
specific examples, [1, 0, 1, 0, 0, 1], [1, 0, 1, 1, 0, 1],
[1, 1, 1, 0, 0, 1], and [1, 1, 1, 1, 0, 1], each with a
probability label (0.9 for 1 and 0.1 for 0), could
be added into the training set. This represents the
power of generalized queries: each can represent
effectively a set of specific queries. This would be
useful if the probability of the majority class is
high (close to 1). Otherwise, noise is introduced
into the training set, and as we will show later,
accuracy can even worsen. (We will study other
strategies of utilizing the probabilistic labels in our
future work.)

We will discuss each step in detail in the following
subsections.

3.1 Finding the Most Uncertain Example

Similar to the previous works of the pool-based active
learning, AGQ first builds a predictive model based
on the current set of labeled examples, and uses it to
predict each example in the pool. The most uncertain
example from the pool, the one with the probability of
the majority class closest to 50%, is chosen as the result
of this first step.4

As the probability of the prediction is crucial in choos-
ing the most uncertain example, we use an ensemble
of decision trees in AGQ. Specifically, the bagging [8]
of 100 j48 decision trees (implemented in Weka [37])
is used. The probability distribution of the prediction
is estimated by the prediction of the 100 trees in the
ensemble. Such an ensemble of many trees improves the
probability estimation, compared with a single tree [29].
The standard decision tree algorithm is chosen because
it tends to build small trees; this facilitates us to find
irrelevant attributes in the next step.

3. Although feature selection [19], [25] can also discover irrelevant
features, as we will show in Section 6.2, the AGQ method is signifi-
cantly better than feature selection.

4. For highly imbalanced and cost-sensitive data, an optimal thresh-
old for classification can be calculated [17], or found via cross-
validation [34], and the example with the probability closest to the
threshold is chosen as the most uncertain one. Thus, our algorithm
can also deal with imbalanced and cost-sensitive data.

3.2 Constructing the Generalized Query
After finding the most uncertain (specific) example from
the pool in the first step, AGQ needs to discover the
irrelevant attributes (don’t-care attributes).

If the set of m attributes are irrelevant, then the exam-
ples with any combination of their values would have
the same prediction with similar probability estimation.
The reverse may not be true, but it can be used as a
heuristic to find the set of irrelevant attributes. However,
there are

(
n
m

)
subsets of m attributes (given a total of n

attributes), and for each subset, 2m value combinations
(for binary attributes) must be tested. The task is clearly
computationally expensive.

A heuristic, similar to the process of finding the largest
itemsets in mining association rules [3], [24], is designed.
More specifically, let D be the current don’t-care attribute
list, and let xu be the current most uncertain example. We
gradually expand D by adding more irrelevant attributes
via greedy search, as follows. For each attribute Xi not
currently in D, we generate a fixed number (100 in
our experiments) of examples with randomly assigned
values for attributes in D and Xi, all based on xu. The
number of examples is fixed to prevent combinatorial ex-
plosion of attribute values when D grows. The attribute
value is randomly chosen according to the distribution
of that attribute values in the original data set. This
most accurately reflects the distribution of examples in
the domain.5 The attribute Xi with the smallest change
in the probability distribution of all 100 examples is
then regarded as irrelevant, and added into D if the
smallest change is less than a pre-defined threshold. The
process continues until D cannot be grown further. The
generalized query is the one with don’t-care (i.e., “∗”)
for all attributes in D. This process is depicted with the
pseudo code in Algorithm 1.

Clearly, this can generate most general queries (i.e.,
queries with most don’t-care attributes) based on the
current learning model. However, queries with too many
don’t-care attributes can be overly general, and labels
from the oracle can be highly uncertain. Thus, we de-
mand the threshold θ in Algorithm 1 to be a very small
number (0.0001 in our case). This would allow AGQ
to find the most general queries that, hopefully, also
include all relevant attributes. Still, as the initial labeled
training set can be very small, the current learning model
can be inaccurate. Thus, AGQ may produce generalized
queries with don’t-care for relevant attributes (see Table
1 in Section 5.1). This will be especially true when the
initial labeled training set is very small. In Section 6.3
we study AGQ when there are only two initial labeled
examples.

3.3 Asking Generalized Queries to Oracle
In our work, we assume that the oracle can answer
generalized queries with don’t-care attributes just as

5. The same random sampling method is used in Sections 3.3 and
3.4.



Algorithm 1: find don’t-care attributes
Input: M , the current learning model; xu, the most

uncertain example; θ, the predefined threshold.
Output: D, the don’t-care attribute list.

pu = probability of majority class for xu (estimated by
M );
D = ∅;
noChange = true;
repeat

foreach Xi 6∈ D do
for n = 1 to 100 do

begin // Generate xn
xn = xu;
Randomly assign Xj for all Xj ∈ D;
Randomly assign Xi;

end
pn = probability of majority class for xn

(estimated by M );
end
Si =

∑100

n=1
(pn − pu)2/100;

end
Choose Xi with the smallest Si;
if Si < θ then

Add Xi in D;
else

noChange = false;
end

until noChange is false ;

easily as specific queries (without don’t-care attributes).
We believe that in most real-world situations, human
experts can easily answer such generalized queries with
an estimated probability. As we will also show in
Section 6.1, our AGQ performs well with a small error
in probability estimation. Thus it is quite robust.

In Section 5.2 we will test AGQ on the UCI datasets
[6], comparing it with the traditional pool-based active
learner. An interesting question arises: as we do not
know the target functions of the UCI datasets, nor do we
have human oracles for them, how can such generalized
queries be answered?

We design the following method to simulate human
oracles to answer the generalized queries. We first train
a model based on the original dataset to represent the
target function. This is the best model we can get as it
is built from the whole dataset. Specifically, we use the
bagging of 100 j48 decision trees on the whole dataset to
represent the target model. But still, this target model, as
a black-box, cannot answer generalized queries directly.
Since each generalized query effectively represents a set
of specific queries, a set of such specific queries (in which
the don’t-care attributes are replaced with specific values
sampled randomly) are generated. To avoid combinato-
rial explosion when the generalized query has too many
don’t-care attributes, the size of the set is fixed at 100.
The target model then returns the predicted probability
distribution of these 100 examples in the set.

One may argue that the generalized queries could be
unrealistic thus hard to be answered by oracle (as in
membership query). In the pool-based paradigm, AGQ

chooses a specific example from the pool and generalizes
it to a query. If the example is realistic, the generalized
query is always realistic as well, so the oracle should be
able to answer. For example, if the specific example is
[name = Jane, gentle = female, pregnant = yes, age =
30, . . .], then the generalized query could be [name =
∗, gentle = ∗, pregnant = yes, age = ∗, . . .]. Unrealis-
tic generalized queries (such as [name = ∗, gentle =
male, pregnant = yes, age = ∗, . . .]) will never be con-
structed.

The next key step of AGQ is to utilize the general-
ized queries and their labels from the oracle to further
improve learning.

3.4 Updating the Training Dataset

Given the probability distribution to the generalized
query from the oracle, we need to utilize it to expand
the training dataset and to build a better classifier. Again,
because each generalized query effectively represents a
set of specific queries, more than one specific example
can be added into the original labeled training set. There
are two issues to be resolved, however. One is how large
the set of specific queries should be; the second is how
to label those examples in the set.

The first question is relatively easy to answer. Again
to avoid combinatorial explosion, a set with a fixed
size (100 in our experiments) of specific examples is
generated first, in which each don’t-care attribute is
replaced randomly by a specific value of that attribute.
However, experiments (Section 5.2) indicate that the
number of new examples added may influence adversely
the distribution of the initial training set. If the ini-
tial training set is too small, then the new examples
added may be overwhelming, and thus changing the
distribution of examples in the training set. Thus, the
number of examples added into the training set is the
minimum of 100, half of the size of the initial training
set, and the number of value combinations of all don’t-
care attributes.6

How should each specific query be labeled? As the
oracle returns probability distribution of labels (such as
0.9 for positive, 0.1 for negative) for the generalized
queries, specific examples can simply carry weighted
labels if the learning model (bagging of 100 j48 trees
here) can take weighted examples directly. Most learning
algorithms (such as decision trees, naive Bayes, instance-
based learning) can indeed take weighted examples
naturally. Thus, in the above situation, every specific
example carries a positive label with weight 0.9, and a
negative label with weight 0.1.

Thus in AGQ, the labeled training set is usually
increased by adding multiple labeled examples (with
probability labels), rather than by adding just one labeled

6. Note that, as the generalized queries are constructed from the
most uncertain examples, when updating the training set, these most
uncertain examples are always added into the training set. Thus, AGQ
always outperforms the traditional uncertain sampling method.



example in the traditional pool-based active learning. If
examples added are mostly valid, and the probability of
the majority class is near 1 (a highly certain label), the
learning can be improved dramatically, as we will show
in the experiments.

4 AGQ+

In the previous section, we propose a novel algorithm
AGQ that is composed of four steps to implement active
learning with generalized queries. However, the AGQ
algorithm in Section 3.2 can produce generalized queries
with attributes that are either entirely irrelevant (i.e.,
generalized as “∗”), or entirely specific (i.e., keeping the
original specific value). That is, as long as the attribute
is relevant, it could be represented by only one specific
value in the generalized queries. This is clearly very
restrictive. In most real-world applications, however,
nominal attributes can form subsets (of values), and
numeric attributes can form ranges. What we hope is
that the active learner can automatically form such new,
high-level features when it asks generalized queries.

For example, to predict “osteoarthritis”, “knee pain”
could be a relevant nominal attribute with values
“none”, “moderate” and “severe”, and “age” could be
another relevant attribute with numeric values. Then, in
addition to generalizing the irrelevant attributes as “∗”,
we may also generalize the relevant attributes to several
nominal values (such as, “knee pain” being “moderate”
or “severe”) or a numeric interval (such as, “age” being
[50, 65] ). We can then construct generalized queries, such
as “are people aged between 50 and 65, with moderate
or severe knee pain, likely to have osteoarthritis?”.

Not only are these generalized queries more natural
and flexible to represent queries with difference degrees
of generalization, the new features constructed can also
form hierarchical structures, and can be meaningful for
further learning. For example, if a subset of nominal
attribute values or a range of a numeric attribute is
repeatedly generated by the active learner, then they can
be meaningful high-level concepts, to be used in future
learning, or transfer learning [13], [30]. See Section 5.3
for more discussions. We call this extension “AGQ+”,
due to its powerful generalization ability.

AGQ+ has different strategies in the second step of
AGQ in constructing the generalized queries; the other
three steps (i.e., finding the most uncertain example,
asking generalized queries to oracle, and updating the
training dataset) are the same as AGQ (see Section 3).
An additional fifth step is added. In this step, subsets
of nominal attributes and ranges of numeric attributes
generated by AGQ+ are consolidated, and hierarchies
may be formed. In this section, we will mainly describe
how AGQ+ generates subsets of nominal attributes and
ranges of numeric attributes.

4.1 Nominal Attributes
For nominal attributes, we first still find all the strong-
irrelevant attributes (i.e., the don’t-care attributes) as in

Section 3.2. Then, we check all the remaining attributes
by greedy search to identify the weak-irrelevant attributes
(i.e., the attributes that can be generalized with several,
but not all, nominal values). The main idea is that
the class probability of examples with combinations of
weak-irrelevant attribute values should be the very sim-
ilar from the current learning model. Our heuristic strat-
egy is to use this property to discover which attributes
should be weak-irrelevant with corresponding values.
More specifically, we still denote by xu and D the current
most uncertain example and the strong-irrelevant at-
tribute list (don’t-care attribute list) respectively. We also
denote by W the weak-irrelevant attribute list (with the
corresponding attribute values). Given xu found by the
current learning model, D constructed by Algorithm 1,
and an initially empty W , we gradually expand W with
the weak-irrelevant attributes (and the corresponding
attribute values), as follows. For each attribute Xi not
currently in D and W , and for each of its attribute
value Xi = aij , we generate a fixed number (100 in
our experiments) of examples with randomly assigned
values for the attributes in D and W , all based on xu.7

The current learning model then makes predictions on
the class probabilities of these examples. If the model
produces exactly the same class probabilities for all these
examples and xu, we add the current attribute Xi (and
the corresponding attribute value aij) into W . Therefore,
after checking all the rest attributes (together with the
corresponding attribute values), we can identify all the
weak-irrelevant attributes and include them into W .
Furthermore, we can construct the generalized query, by
substitute all attributes in D with ∗ and all attributes in
W with their corresponding values in W . This process
is depicted with the pseudo code in Algorithm 2.

4.2 Numeric Attributes

For numeric attributes, we apply a similar strategy
to identifying weak-irrelevant attributes after obtain-
ing all the strong-irrelevant ones. Roughly speaking,
given a strong-irrelevant attribute list D, an initially
empty weak-irrelevant attribute list W , and the current
most uncertain example xu, we gradually expand W
with weak-irrelevant attributes (and their corresponding
values). However, unlike nominal attributes, there are
infinite valid values for numeric attributes, and we need
find a numeric range (instead of several nominal values)
for each weak-irrelevant attribute (such as, [50, 65] for
age). Thus, Algorithm 2 cannot be applied here. Instead,
for each attribute Xi not currently in D and W , we
construct a numeric range [ai − δ, ai + δ] based on
the current attribute value ai and a pre-defined small
number δ.8 Then, we generate a fixed number (100 in
our experiments) of examples with randomly assigned

7. For the attributes in D, we randomly assign any attribute values;
whereas for the attributes in W , we only randomly assign the corre-
sponding attribute values previously identified.

8. In our experiments, we set δ as 1/20 of entire valid attribute range.



Algorithm 2: find weak-irrelevant attributes (nomi-
nal)

Input: M , the current learning model; xu, the most
uncertain example; D, the strong-irrelevant
attribute list (don’t-care attribute list).

Output: W , the weak-irrelevant attribute list (nominal).

pu = probability of majority class for xu (estimated by
M );
W = ∅;
foreach Xi 6∈ (D ∪W ) do

foreach Xi = aij do
for n = 1 to 100 do

begin // Generate xn
xn = xu;
Randomly assign Xj for all Xj ∈ D;
Randomly assign Xk (with available
nominal values) for all Xk ∈ W ;

end
pn = probability of majority class for xn

(estimated by M );
end
Sij =

∑100

n=1
(pn − pu);

end
if Sij = 0 then

Add Xi (with aij) in W ;
end

end

values for the attributes in D, W and the current at-
tribute, all based on xu.9 Again, the current learning
model makes predictions on the class probabilities of
these examples. If the model produces exactly the same
class probabilities for all of these examples and xu, the
numeric range will be again expanded by δ. Otherwise,
it stops. Then, the current attribute (and its final numeric
range) is included into W as a weak-irrelevant attribute.
Therefore, after checking all the remaining attributes, we
can identify all the weak-irrelevant attributes, and con-
struct the generalized query by substitute all attributes in
D with ∗ and all attributes in W with their corresponding
numeric ranges. This process is depicted with the pseudo
code in Algorithm 3.

In the next section, we will perform extensive experi-
ments with AGQ and AGQ+.

5 EXPERIMENTS WITH GENERALIZED
QUERIES
In this section, we conduct experiments on a synthetic
dataset and 14 UCI [6] datasets to compare AGQ with
the previous active learning algorithm that asks specific
queries. We then apply AGQ+ on the same UCI datasets
to see its advantages over AGQ.

5.1 AGQ on Synthetic Dataset
In this subsection, we use synthetic data to empirically
study the performance of AGQ, compared with the

9. For the attributes in D, we randomly assign any attribute values;
for the attributes in W , we randomly assign the values within the
previously identified numeric range; whereas for the current attribute,
we randomly assign value within [ai − δ, ai + δ].

Algorithm 3: find weak-irrelevant attributes (nu-
meric)

Input: M , the current learning model; xu, the most
uncertain example; D, the strong-irrelevant
attribute list (don’t-care attribute list); δ, the
pre-defined small number.

Output: W , the weak-irrelevant attribute list (numeric).

pu = probability of majority class for xu (estimated by
M );
W = ∅;
foreach Xi 6∈ (D ∪W ) do

UB = LB = ai (current attribute value);
repeat

UB = ai + δ;
LB = ai − δ;
for n = 1 to 100 do

begin // Generate xn
xn = xu;
Randomly assign Xj for all Xj ∈ D;
Randomly assign Xk for all Xk ∈ W
(within available numeric range);
Randomly assign Xi within [LB, UB];

end
pn = probability of majority class for xn

(estimated by M );
end
Sij =

∑100

n=1
(pn − pu);

until Sij > 0 ;
Add Xi (with numeric range [LB, UB]) in W ;

end

traditional pool-based active learning with uncertain
sampling.10

In addition, we also present the performance of the
optimal AGQ, which represents the best performance that
AGQ could possibly achieve. Specifically, for each gen-
eralized query, the optimal AGQ gradually specifies the
original attribute values for the don’t-care attributes, till
the oracle provides a certain answer (P (Y = 1|X) ≥ 0.95
or P (Y = 0|X) ≥ 0.95 in our experiments). The training
set is thereafter expanded according to this query and the
answer. That is, the training set is only updated when the
oracle returns highly certain labels (≥ 0.95). However,
some extra queries may still be asked to the oracle when
the answer is not highly certain, which makes optimal
AGQ not realistic. Here, we simply do not count those
extra queries, and only count the “effective” ones —
those with certainty great than (or equal to) 0.95. Thus,
it could reflect the fewest number of queries that AGQ
can ask, which indicates the best performance AGQ can
ever achieve.

We choose the target function as a decision tree with
five relevant attributes, X1 - X5, and six leaves, L1 -
L6, as in Figure 1. To simulate the real-world dataset,
we add another five irrelevant attributes, X6 - X10, to

10. Note that, as we also use a bagging of 100 decision trees for
the traditional pool-based active learning (as same as for AGQ), the
most uncertain example can also be considered as the example with
the maximum disagreement for the current committee (constructed by
the current 100 decision trees). Thus, uncertain sampling in this case
can also be regarded as an implementation of QBC.



generate the synthetic data. We assume that all these
attributes are binary, so is the class label. Therefore, with
10 binary attributes, we can generate 210 = 1024 different
examples, and label them with the target function. With
this synthetic data, we know what the target function
is and what the irrelevant attributes are. We can also
directly use the target function as the oracle to answer
the generalized queries.

X3
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X2 X1
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1

1
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1

0
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0

0
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Fig. 1. Target tree used to generate synthetic data.

The experiment is repeated on the synthetic dataset
20 times. Each time, the whole dataset is randomly split
into three disjoint subsets: the training set, the unlabeled
set, and the test set. The training set and the test set are
always 2% and 25% of the whole dataset respectively,
and the rest is the unlabeled set.

Figure 2 plots the average error rates of the optimal
AGQ (“AGQ-Opt” in short), AGQ and the traditional
pool-based active learning (“Pool” in short). We can see
clearly from Figure 2 that, AGQ’s performance is quite
close to the (unrealistic) optimal AGQ, and is much
better than “Pool”. This indicates that the strategies we
designed for AGQ (Section 3) is quite effective — AGQ
asks generalized queries with certain labels; that is, they
are not overly general. Overly general queries would
receive uncertain labels, and would negatively affect
learning. This can happen especially when the initial
training set is very small. See Section 6.3.
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Fig. 2. Comparison of the average error rate among
“AGQ-Opt”, AGQ and “Pool” on the synthetic data.

To further compare AGQ and “Pool”, we extract a
typical series of queries from them during the active

learning process. Table 1 tabulates these queries (Query
in the table), as well as leaf(ves) in the target tree
that these queries fall into (Classified by Leaf(ves)),
ideal query according to the target tree (Ideal Query),
answer from the oracle (Answer), number of specific
examples generated to update the training set (No. of
Examples), and error rate of the updated classifier (Er-
ror Rate). We can see from Table 1 that AGQ always
constructs generalized queries with don’t-care attributes
while “Pool” can only choose the most specific queries.
These generalized queries from AGQ may not be as
general as the ideal queries (constructed directly from
the target tree; see Figure 1), but they still contain most
irrelevant attributes. Only one query (Query 2) is overly
general (falling into two leaves), thus the answer to this
query is highly uncertain (54%). However, such overly
general queries rarely occur in AGQ learning. (Thus,
the performance of AGQ is quite similar to the optimal
AGQ, as we showed earlier.) In this case, answers for
the other four queries from the oracle are highly certain
(100%). Thus, AGQ can often include more examples
with correct labels into the training set in each iteration,
and obtain significantly lower error rates (compared
with “Pool”).

To summarize from the experiment on the synthetic
data, AGQ can often identify correctly the irrelevant
attributes and construct correctly the generalized queries
with highly certain answers from the oracle. Thus the
performance of the classifier is significantly improved
when the corresponding multiple specific examples
(with correct labels) are included into the training set.
This yields the outstanding performance of AGQ (similar
to the optimal AGQ) on the synthetic dataset, compared
with the traditional pool-based active learning.

5.2 AGQ on UCI Datasets

In this subsection, we use 14 real-world datasets from the
UCI Machine Learning Repository [6] to compare AGQ
with the optimal AGQ and the pool-based active learn-
ing algorithm. All of these datasets have binary class
and no missing values. Information on these datasets is
tabulated in Table 2.

Each whole dataset (D) is first split randomly into
three disjoint subsets: the training set (R), the unlabeled
set (U ), and the test set (T ). The test set T is always
25% of D. To make sure that active learning can possibly
show improvement when the unlabeled data are labeled
and included into the training set, we choose a small
training set for each dataset such that the “maximum
reduction” of the error rate11 is large enough (greater
than 10%). The training sizes of the 14 UCI datasets
range from 1/200 to 1/5 of the whole datasets, also listed

11. The “maximum reduction” of the error rate is the error rate on
the initial training set R alone (without any benefit of the unlabeled
examples) subtracts the error rate on R plus all the unlabeled data
in U with correct labels. Thus, the “maximum reduction” reflects the
upper bound on error reduction that active learning can achieve.



AGQ Pool
Query 1 [1, 1, 1, 0, *, *, *, *, *, *] [1, 1, 1, 0, 1, 1, 1, 1, 0, 0]
Classified by Leaf(ves) L2 L2
Ideal Query [*, 1, 1, 0, *, *, *, *, *, *] [*, 1, 1, 0, *, *, *, *, *, *]
Answer 0, 100% 0
No. of Examples 10 1
Error Rate 0.18 0.27
Query 2 [0, *, 0, 1, *, *, *, *, *, *] [1, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Classified by Leaf(ves) L5, L6 L3
Ideal Query - [*, 0, 1, *, *, *, *, *, *, *]
Answer 0, 54% 0
No. of Examples 10 1
Error Rate 0.21 0.22
Query 3 [0, 1, 0, 1, 1, 0, 0, *, 1, *] [1, 1, 1, 1, 0, 1, 1, 1, 0, 1]
Classified by Leaf(ves) L5 L1
Ideal Query [0, *, 0, *, 1, *, *, *, *, *] [*, 1, 1, 1, *, *, *, *, *, *]
Answer 1, 100% 1
No. of Examples 8 1
Error Rate 0.16 0.26
Query 4 [0, 1, 0, 1, 0, 1, *, *, 0, *] [1, 0, 1, 1, 0, 1, 0, 0, 1, 1]
Classified by Leaf(ves) L6 L3
Ideal Query [0, *, 0, *, 0, *, *, *, *, *] [*, 0, 1, *, *, *, *, *, *, *]
Answer 0, 100% 0
No. of Examples 8 1
Error Rate 0.17 0.26
Query 5 [1, *, 0, *, 0, *, 1, *, *, *] [1, 1, 1, 0, 0, 1, 0, 0, 1, 1]
Classified by Leaf(ves) L4 L2
Ideal Query [1, *, 0, *, *, *, *, *, *, *] [*, 1, 1, 0, *, *, *, *, *, *]
Answer 1, 100% 0
No. of Examples 10 1
Error Rate 0.13 0.2

TABLE 1
Comparison of five consecutive queries between AGQ and “Pool” on synthetic data.

Dataset Type of Attributes No. of Attributes No. of Examples Class Distribution Training Size
breast-cancer nominal 9 277 196/81 1/5
breast-w numeric 9 699 458/241 1/10
colic nominal/numeric 22 368 232/136 1/5
credit-a nominal/numeric 15 690 307/383 1/20
credit-g nominal/numeric 20 1000 700/300 1/100
diabetes numeric 8 768 500/268 1/10
heart-statlog numeric 13 270 150/120 1/10
hepatitis nominal/numeric 19 155 32/123 1/5
ionosphere numeric 33 351 126/225 1/20
kr-vs-kp nominal 36 3196 1669/1527 1/100
mushroom nominal 22 8124 4208/3916 1/200
sonar numeric 60 208 97/111 1/5
tic-tac-toe nominal 9 958 332/626 1/10
vote nominal 16 435 267/168 1/20

TABLE 2
The 14 UCI datasets used in the experiments.

in Table 2. The unlabeled set (U ) is the whole dataset (D)
taking away the test set (T ) and the training set (R).

The experiment is repeated on each dataset 20 times
(i.e., each dataset is randomly split 20 times), when com-
paring “AGQ-Opt”, AGQ and “Pool”. We stop training
when the error rate of “Pool” is reduced by 3/4 of the
“maximum reduction”.

Figure 3 plots the average error rates of “AGQ-Opt”,
AGQ and “Pool” on a typical UCI datasets (“Hepati-
tis”), and the comparison on all the 14 datasets will be
presented later. We can see from Figure 3 that, AGQ
performs only slightly worse than “AGQ-Opt” but sig-
nificantly better than “Pool”, similar to the result on the

synthetic dataset. This again clearly demonstrates the
advantage of AGQ: AGQ performs almost as well as
“AGQ-Opt”, and significantly outperforms “Pool”.

In addition, the t-test (the paired two-tailed t-test with
a 95% confidence level) on the average error rates based
on the 14 UCI datasets shows that, AGQ wins on 9, ties
on 4, and loses on 1 dataset, compared with “Pool”.
This clearly indicates that, with the same number of
queries (same number of iterations), the error rate of
AGQ decreases much faster than “Pool”.

To further analyse the performance of AGQ and
“Pool”, we extract some important statistics during the
active learning process. They include the average num-
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Fig. 3. Comparison of average error rate among “AGQ-
Opt”, AGQ, and “Pool” on “Hepatitis”.

ber of don’t-care attributes (and its percentage of the
total attributes) in each query (Don’t-care Attributes in
the table), the average certainty of the oracle (Certainty
of Oracle)12, average number of specific examples gener-
ated to update the training set in each iteration (Number
of Examples), the average number of iterations of AGQ
and “Pool” when their error rates are reduced by 3/4
of the “maximum reduction” (Iteration of AGQ and
Iteration of “Pool”), percentage of iteration reduction
between AGQ and “Pool” (% of Iteration Reduction),
and AGQ wins/ties/loses compared with “Pool” (AGQ
w/t/l). Table 3 presents these statistics based on the 14
UCI datasets.

From Table 3 we can see that, on average, AGQ discov-
ers 12.5 don’t-care attributes, and includes 16.5 examples
into the training sets in each iteration. Moreover, the
certainty of the oracle for the constructed generalized
queries is as high as 90.21% on average. This explains
the good performance of AGQ: it can ask generalized
queries, most with certain answers from the oracle. In the
three datasets (“breast-w”, “ionosphere” and “sonar”)
where AGQ ties with “Pool”, we can notice that the
certainties of the oracle are relatively low (87%, 86% and
73% respectively); this probably introduces more noise
in the training sets, thus degrading the performance.
In the dataset “tic-tac-toe” where AGQ also ties with
“Pool”, though the certainty of the oracle is high (100%),
AGQ could only discover 0.07 don’t-care attribute (on
average), and include only 1.3 examples (on average)
in each iteration. This is probably why AGQ is not
much different from the traditional pool-based active
learner. For the dataset “kr-vs-kp” where AGQ loses, the
certainty of the oracle is relatively high (94%), and 39% of
the attributes are discovered as don’t-care in each query.
So why does AGQ still lose to “Pool”? A detailed study
shows that, “kr-vs-kp” is the Chess end-game board-
positions, thus the attributes are highly constrained. As
there are a total of 36 attributes, the dataset (containing

12. The certainty of oracle, calculated from the oracle described in
Section 3, is always about the majority class (which can be either 1 or
0). Thus, the certainty value is between 0.5 and 1.

about 3,000 examples) is very sparse; that is, only a small
fraction of the attribute value combinations is valid.
Thus, the examples generated by AGQ from the gen-
eralized queries and included into training set (Section
3.4) are mostly invalid examples (i.e., meaningless board
positions). These invalid examples may severely change
the distribution of the original dataset thus degrading
the performance of AGQ. We will study this issue further
in our future work.

From Table 3 we can compare the number of iterations
(queries) that AGQ and “Pool” have required to achieve
3/4 of the “maximum reduction” on the error rate. We
notice that, on the four datasets where AGQ ties with
“Pool”, the two methods require almost the same num-
ber of iterations (queries). However, on the nine datasets
where AGQ wins over “Pool”, AGQ asks 61% fewer
queries compared with “Pool”. Over all 14 datasets,
AGQ asks, on average, 36% fewer queries compared
with “Pool”. This clearly shows the advantage of AGQ:
it requires much fewer queries than “Pool” on the tested
UCI datasets.

To summarize, AGQ performs significantly better than
“Pool” on most UCI datasets (9 out of 14). Moreover, on
those datasets where AGQ wins, it requires 61% fewer
queries needed for “Pool” to achieve the same error rate
reduction. This clearly demonstrates the power of the
generalized queries and the advantage of AGQ.

5.3 AGQ+ on UCI Datasets
In this subsection, we conduct the experiments on the
same 14 UCI datasets, to compare the performance of
AGQ+ and AGQ. All the experimental configurations
are the same as in the previous subsection. We perform
the same t-test on the average error rates between AGQ+

and AGQ. The results show that for the 14 UCI datasets,
AGQ+ wins on 3, ties on the rest 11 datasets, compared
with AGQ. This indicates that AGQ+ can predict as well
as AGQ in most datasets, and better than AGQ in some
cases.

The advantage of AGQ+ lies in not only its (slightly)
better performance, but more importantly, its capability
of producing natural and powerful generalized queries
with meaningful new features during the active learning
process. Taking the dataset “Diabetes” as an example.
This dataset was originally used in [35] for predicting
diabetes from eight numeric attributes of the patients.
The meanings and valid range of these attributes can
be found in Table 4. However, in [35], those numeric
attributes were manually discretized into meaningful cat-
egories, in order to train a neural network model. With
our AGQ+ algorithm, in the learning process, the ranges
of numeric attribute are automatically produced, and
the generalized queries are accordingly constructed, all
based directly on the raw numeric attributes.

To illustrate AGQ+’s capability of producing such
numeric ranges and generalized queries on “Diabetes”,
we list several typical attribute ranges and queries con-
structed in the active learning process. Table 5 lists all the



Dataset Don’t-care Attributes Number of Certainty of Iteration Iteration % of Iteration AGQ
(% of Total Attributes) Examples Oracle of “Pool” of AGQ Reduction (w/t/l)

breast-cancer 2.7 (30%) 14.54 95% 35 18 49% W
breast-w 5.35 (59%) 32.31 87% 18 18 0% T
colic 13.15 (60%) 35.68 91% 15 8 47% W
credit-a 6.38 (43%) 16.43 88% 12 5 58% W
credit-g 8.54 (43%) 4.97 87% 50 12 76% W
diabetes 3.02 (38%) 27.31 89% 50 16 68% W
heart-statlog 5.92 (46%) 12.52 89% 50 25 50% W
hepatitis 13.47 (71%) 14.96 96% 24 5 79% W
ionosphere 27.15 (82%) 8 86% 29 29 0% T
kr-vs-kp 14.89 (39%) 14.48 94% 38 50 -32% L
mushroom 17.81 (81%) 20 94% 10 6 40% W
sonar 48.27 (80%) 20 73% 41 34 17% T
tic-tac-toe 0.07 (1%) 1.28 100% 108 108 0% T
vote 7.28 (46%) 8.31 94% 12 5 58% W
Average 12.53 (51.36%) 16.49 90.21% 35.14 24.21 36% 9/4/1

TABLE 3
Important statistics of AGQ and comparison with “Pool” on the 14 UCI datasets.

Att. Name Att. Range Att. Meaning
1 preg {0− 17} Number of times pregnant
2 plas {0− 199} Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3 pres {0− 122} Diastolic blood pressure (mm Hg)
4 skin {0− 99} Triceps skin fold thickness (mm)
5 insu {0− 846} 2-Hour serum insulin (mu U/ml)
6 mass {0− 67.1} Body mass index (weight in kg/(height in m)2)
7 pedi {0.078− 2.42} Diabetes pedigree function
8 age {21− 81} Age (years)

TABLE 4
Attribute ranges and meanings for “Diabetes”.

eight attributes (and class) of the “Diabetes”. The upper
part of Table 5 shows the manually discretized range
for every attribute used in [35]; the middle part shows
several typical attribute ranges formed by AGQ+; and
the lower part shows eight typical generalized queries
and the corresponding probability answers from the
oracle (each row represents one generalized query).

Form the middle part of Table 5, we can see that
AGQ+ automatically produces necessary ranges of the
numeric attributes, some of which are roughly the same
as the manual ones, while others are completely differ-
ent. For example, attribute “skin” is generalized with
range {0 − 29}, which is very close to the manually
discretized category {0 − 25}; attribute “insu” is gener-
alized with range {142 − 227}, also close to the manu-
ally discretized category {151− 240}. In addition, some
numeric ranges of the same attribute can clearly form
hierarchical structures. For example, for attribute “insu”,
the second range {48 − 132} is roughly a subset of the
first range {0 − 133}; and the fourth range {143 − 227}
is also roughly a subset of the fifth range {145 − 399}.
The similar phenomena can also be discovered from
other attributes. Such (hierarchical) ranges can form new
meaningful features without any human interference,
and can be used in further learning.

From the lower part of Table 5, we can see that, AGQ+

can generalize the attributes to numeric ranges in most
queries, and also obtain relatively certain answers from
the oracle. For example, in Query 1, attribute “preg”

is generalized with range {0 − 2}, attribute “plas” is
generalized with range {> 171}, and this query obtains
a 100% certain answer from the oracle (see Column
“class”). This clearly illustrates the behaviour of AGQ+:
it produces meaningful generalized queries (with auto-
matically discretized attribute categories), and obtains
certain answers from the oracle. We can also notice from
Table 5 that Query 8 obtains an uncertain answer from
the oracle (with 60% probability estimation). However,
this type of low certainty queries rarely occur in the
whole learning process, thus would not significantly
affect the performance of AGQ+.

To summarize, AGQ+ performs slightly better than
AGQ. Most importantly, AGQ+ is capable of produc-
ing meaningful intermediate features during the active
learning process.

6 DISCUSSION

In the previous section, we demonstrate the outstanding
performance of AGQ and AGQ+, compared with the
traditional pool-based active learning that only asks
specific queries. However, one may be still concerned
about some other issues of the proposed methods, such
as: What if the oracle cannot provide accurate probabil-
ity estimation for the generalized queries? What is the
difference between AGQ (or AGQ+) and active learn-
ing with feature selection? How does AGQ (or AGQ+)
perform with very few initial labeled examples? We will



preg plas pres skin insu mass pedi age class
Attribute Ranges Manually Discretized by [35]

{0− 2} {0− 89.1} {1− 76.1} {0− 25} {0− 110} {1− 22.814} {0− .244} {21− 24} {0}
{3− 6} {89.2− 107.1} {76.2. − 98.1} {26− 32} {111− 150} {22.815− 26.84} {.245− .525} {25− 30} {1}
{> 7} {107.2− 123.1} {> 98.2} {> 33} {151− 240} {26.841− 33.55} {.526− .805} {31− 40}

{123.2− 143.1} {> 241} {33.551− 36.563} {.806− 1.11} {41− 55}
{143.2− 165.1} {> 36.564} {> 1.11} {> 55}

{> 165.2}
Typical Attribute Ranges for Individual Attributes Formed by AGQ+

{0− 2} {37− 77} {6− 55} {0− 25} {0− 133} {20− 27} {.078− .488} {24− 30}
{3− 5} {47− 53} {12− 22} {16− 26} {48− 132} {25− 32} {.190− 2.064} {27− 33}
{4− 9} {82− 122} {34− 58} {28− 38} {78− 162} {35− 56} {.261− .495} {39− 51}
{7− 11} {144− 184} {48− 60} {34− 44} {143− 227} {> 36} {.579− .813} {42− 54}
{> 7} {151− 190} {74− 87} {40− 80} {145− 399} {> 40} {.736− 1.906} {48− 54}

{9− 13} {160− 199} {87− 100} {44− 63} {190− 360} {45− 65} {> 0.897}
{11− 13} {> 171} {> 94} {> 44} {257− 427} {> .997}

{104− 116}
Eight Typical Queries Produced by AGQ+ (each row represents a query)

1 {0− 2} {> 171} 64 30 180 34.1 0.33 38 1(100%)
2 0 147 85 {> 44} 0 {> 39} 0.38 24 0(100%)
3 7 133 84 0 0 {> 37} {.579− .813} 37 1(85%)
4 0 188 82 {0− 29} {143− 227} 32 0.68 22 1(100%)
5 {> 7} 122 56 0 0 33.3 {> .997} 33 1(100%)
6 {4− 9} 81 78 40 {0− 132} {> 40} 0.26 42 0(100%)
7 6 {> 173} {87− 100} 0 0 40.8 1.46 {39− 51} 0(100%)
8 {> 7} 119 {74− 87} 35 0 {25− 32} 0.26 29 1(60%)

TABLE 5
Typical attribute ranges and queries produced by AGQ+ on “Diabetes”.

answer these questions in this section. Note that, as the
behavior of AGQ and AGQ+ is mostly similar, we only
consider AGQ in this section. All the conclusions are also
applicable to AGQ+.

6.1 Probability Estimation of Oracle
In this paper, we assume that for generalized queries,
the oracle (or human expert) is capable of providing an
accurate probability distribution. However, in real-world
applications, it is common that the oracle or human
experts can only provide “approximate answers” (i.e.,
estimated probability distributions). We speculate that
small perturbations in probability distribution will not
dramatically affect the performance of AGQ. This is
because small perturbations in label probabilities only
represent light noise of examples added in the training
set. These light noises could be cancelled out in the
successive updates of the training set. With a robust
base learning algorithm (such as the bagged decision
trees), such small noises would be insensitive. In this
subsection, we study this issue experimentally.

We conduct experiments to compare the original AGQ
and AGQ with inaccurate probability answers on the
14 UCI datasets (used in Section 5.2). To simulate in-
accurate probability answers, we first calculate the exact
probability answer as described in Section 3.3, and then
randomly alter it with up to 10%, 20% and 50% noise (in-
crease or decrease by up to 10%, 20% and 50% uniformly
distributed random noise). All the other experimental
configurations are the same as in Section 5.2.

Figure 4 plots the average error rates of AGQ, AGQ
with 10% noise, AGQ with 20% noise, and AGQ with

50% noise, on a typical UCI dataset (“Hepatitis”). We
can see that the error rates of AGQ with a low level of
noise (10% and 20%) are similar to AGQ without noise,
but AGQ with a high level of noise (50%) is significantly
worse.
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Fig. 4. Comparison of the average error rate between
AGQ and AGQ with inaccurate probability answers (with
10%, 20%, and 50% noise respectively) on “Hepatitis”.

Table 6 presents a summary of the t-test on the av-
erage error rates based on the 14 UCI datasets. Each
entry in Table 6, w/t/l, means that the algorithm in the
corresponding row wins on w, ties on t, and loses on
l datasets, compared with the algorithm in the corre-
sponding column. We can clearly see from Table 6 that
AGQ with 10% noise is almost indistinguishable from
the original AGQ (it ties with AGQ on 13 out of 14
datasets). AGQ with 20% noise is only slightly worse
than AGQ without noise (it ties on 9 and loses on 5



datasets). However, AGQ with 50% noise is significantly
worse (it loses on 12, and ties on 2 datasets). Clearly, high
noise in the oracle answers will degrade the performance
of AGQ, but low noise will not. Thus, AGQ is quite
robust, and can tolerate a low level of noise in the
probability distribution of oracle answers.

AGQ (10%) AGQ (20%) AGQ (50%)
AGQ 1/13/0 5/9/0 12/2/0

TABLE 6
Summary of the t-test on the average error rates for
comparing AGQ with AGQ (10% noise), AGQ (20%

noise) and AGQ(50% noise).

6.2 AGQ vs. Feature Selection

One may notice that the essence of AGQ is to find
irrelevant attributes, thus, it is closely related to fea-
ture selection. Features selection (e.g., [19], [25], [26])
attempts to discover and discard irrelevant attributes to
improve the predictive accuracy. Thus, would it work if
we simply apply the pool-based active learning (which
only asks specific queries) after irrelevant attributes are
discovered and discarded by feature selection? How
does it compare with our AGQ? We study this issue in
this subsection.

Indeed, a straightforward way to make the traditional
pool-based active learning to ask generalized queries is
to simply apply feature selection as a pre-processing step
in active learning. That is, feature selection is conducted
on the initial labeled training examples, to identify and
eliminate all irrelevant features. Then traditional pool-
based active learning is used to find the most uncertain
specific query. Putting back the irrelevant features as the
don’t care, a generalized query is produced. However,
as we are usually given only a small number of initial
labeled examples in active learning, feature selection is
most likely to be unreliable, thus eliminating too many
relevant features in the pre-processing step.

A more sophisticated and improved method is to
conduct feature selection in each active learning itera-
tion. More specifically, in each iteration, active learning
selects the most uncertain example based on the current
learning model, and at the same time, feature selection
identifies the irrelevant features based on the current
labeled examples. Then, a generalized query can be
constructed by substituting all irrelevant features as ∗ in
the most uncertain example. Such generalized queries
are asked to the oracle, and the labeled training set is
updated, as in AGQ. In essence, irrelevant attributes
are identified by feature selection, instead of using the
method described in AGQ (Section 3.2).

We implement this feature selection active learning
method, and compare its performance with the proposed
AGQ on the same 14 UCI datasets. More specifically, we
use the backward selection method to select irrelevant

features, and use a bagging of 100 decision trees (the
same base learning algorithm used in AGQ) as the
classifier to evaluate them. All the other experimental
configurations are the same as in Section 5.

Figure 5 plots the average error rates of AGQ and
the pool-based active learning with feature selection
(called “Feature Selection”) on a typical UCI dataset
(“Hepatitis”). We can see clearly that AGQ performs
significantly better than “Feature Selection”. We also
perform the t-test on the average error rates on the 14
UCI datasets. AGQ wins on 12, and loses only on 2
datasets, compared with “Feature Selection”. This clearly
indicates that “Feature Selection” performs significantly
worse than the proposed AGQ in most cases.
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Fig. 5. Comparison of the average error rate between
AGQ and Feature Selection on “Hepatitis”.

After looking into the queries produced by “Feature
Selection” and the corresponding oracle answers, we
find the reason. The generalized queries constructed by
“Feature Selection” are often overly general. More specif-
ically, even though “Feature Selection” identifies the
irrelevant attributes (and generalizes them as ∗) in each
iteration, the available labeled training examples in each
iteration are still limited (especially in the first few iter-
ations). Thus “Feature Selection” tends to identify more
attributes as irrelevant, and constructs overly general-
ized queries. Consequently, the oracle could only pro-
vide uncertain answers to these overly general queries,
thus degrading the active learning performance.

On the other hand, AGQ has a more strict criterion
to identify irrelevant attributes, compared with “Feature
Selection”. More specifically, only when all generated
examples with different attribute values have very close
class probability estimation (instead of the same class
prediction in “Feature Selection”), the current attribute
could be regarded as irrelevant. (See Section 3.2 for
details.) Thus, the over general queries would not fre-
quently occur in AGQ (see Table 1 in Section 5.1).

Of course, AGQ+ can ask generalized queries with
subsets of nominal attribute values, or ranges of numeric
attributes. “Feature Selection” will not be able to produce
this type of queries. Thus, AGQ+ is inherently more
powerful than “Feature Selection”.



6.3 AGQ with Very Few Initial Labeled Examples
In the previous sections, we mentioned that when the
initial training set is very small, the constructed learning
model could be unreliable, thus the discovered don’t
attributes could be unreliable as well. Indeed, with the
limited information from few labeled examples, it is
difficult (or even impossible) to correctly identify the
don’t-care attributes. Thus, in this subsection, we study
the performance of AGQ with very few initial labeled
examples.

Given very few initial labeled examples, the original
AGQ is more likely to consider many attributes as don’t-
care, and construct overly general queries. With the
uncertain answers from the oracle, these overly general
queries can severely degrade the performance of AGQ.
Here, we design an additional heuristic to deal with this
issue. Roughly speaking, for each query, we bond the
number of don’t-care attributes to the size of the current
training set. When the training set is small, only a small
number of attributes could be considered as don’t-care,
due to the limited information provided by the labeled
examples. On the other hand, when the training set is
relatively large, more don’t-care attributes are allowed to
be discovered, as more reliable information are provided.

Specifically, when constructing the generalized query
(as in Section 3.2), we add the current attribute into the
don’t-care attribute list (when all the other conditions are
satisfied), only if the number of all don’t-care attribute
value combinations is smaller than (or equal to) the
current training set size. For example, given only two
labeled training examples, at most one binary attribute
could be considered as don’t-care; given four labeled
training examples, at most two binary attributes (or one
four-value attribute) could be considered as don’t-care;
and so on.

We implement this heuristic on the base of the origi-
nal AGQ algorithm, and compare its performance with
“Pool” on the same 14 UCI datasets. All the experimental
configurations are the same as in Section 5, except we
only include two labeled examples (one positive and one
negative) in the initial training sets.

Figure 6 plots the average error rates of AGQ and
“Pool” on a typical UCI dataset (“Hepatitis”). We can see
that AGQ still performs significantly better than “Pool”
even with only two initial labeled examples.

In addition, the t-test of the average error rates on all
the 14 UCI datasets shows that, AGQ wins on 8, ties on 6,
and loses on 0 dataset, compared with “Pool”. This also
clearly indicates the similar conclusion as in the previous
subsection: the error rate of AGQ still decreases much
faster than “Pool”, even with only few initial labeled
examples.

7 CONCLUSIONS AND FUTURE WORKS

Domain-driven data mining calls for domain experts
involvement in the data mining process. Active learning
involves domain experts in its need to obtain label
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Fig. 6. Comparison of the average error rate between
AGQ and “Pool” on “Hepatitis”, with two initial labeled
examples.

information for the queries. However, previous active
learning algorithms assume that the oracle can only
answer specific queries that represent single examples.
However, in real-world applications, the domain experts
are often more readily to answer “generalized queries”
with don’t-care attributes and generalized attributes
(such as subsets or ranges of values). Answers to such
generalized queries can provide more information to
improve learning. The difficulty of generalized queries
is that the answers from the oracle can be uncertain,
thus noisy labels might be introduced and performance
might be degraded. This easily happens especially when
the initial labeled training set is small. In this paper, we
propose a novel active learning algorithm (AGQ) to ask
as general queries as possible with still highly certain
labels. AGQ is then extended to AGQ+, which can
produce subsets of nominal attribute values or ranges of
numeric attributes. AGQ thus becomes a special case of
AGQ+. Our experiments show that, compared with the
traditional pool-based active learning, AGQ can achieve
the same error rates with significantly fewer queries
(36% fewer on average). We also show that AGQ’s
performance is similar to the (unrealistic) optimal AGQ.
AGQ works well even with only two labeled examples
in the initial training set. In addition, our experiments
verify the robustness of the proposed algorithm: AGQ
with inaccurate answers from the oracle (up to 20%
perturbation) still performs comparably to the original
AGQ on most tested UCI datasets. AGQ can be readily
deployed in real-world data mining tasks where obtain-
ing labeled examples is costly.

In our future research, we will study the performance
of AGQ with different base learning algorithms (we
only use the bagging of decision trees in this paper).
Strategies for dealing with highly uncertain answers
from the oracle, and for preventing dramatic changes
of data distribution when new examples are included
in the training set are also interesting research issues to
further improve the performance of AGQ.
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