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Abstract

User logs of a popular search engine keep track of user
activities including user queries, user click-through from
the returned list, and user browsing behaviors.
Knowledge about user queries discovered from user logs
can improve the performance of the search engine. We
propose a data-mining approach that produces
generalized query patterns or templates from the raw
user logs of a popular commercial knowledge-based
search engine that is currently in use. Our simulation
shows that such templates can improve search engine’s
speed and precision, and can cover queries not asked
previously. The templates are also comprehensible so
web editors can easily discover topics in which most
users are interested.

1. Introduction

Data mining is a process of discovering implicit and
useful knowledge from large datasets [Fayyad, et al,
1996]. Knowledge about datasets can be as simple as
statistical information such as means and deviations, but
data mining aims at finding higher level or more
powerful knowledge, such as classifiers, predictive or
descriptive rules, Bayesian networks, cluster descriptions,
and so on. Two most important vertical applications of

data mining nowadays are in the financial industry and
the Internet (World Wide Web).

We study data mining application on the Internet in this
paper. In particular, we apply data mining to discover
useful and implicit knowledge from web logs, which
keep traces of information when users visit web pages on
web servers. The purpose of web-log mining is to
improve web performance (which is defined precisely
later in the paper) by utilizing the mined knowledge.
Indeed, data mining is very promising since popular web
sites get millions of hits each single day, traditional
methods or human would be infeasible to analyze such
logs.

The log we study in this paper is from a popular
commercial knowledge-based search engine that is
currently in use. The web of the search engine allows
users to submit keyword queries to a search engine to
find articles about the queries, and to browse articles
organized under a hierarchical structure of several levels.
The log keeps users’ queries and their clicks, as well as
their browsing activities. The file is quite large: one-day
log would be over several hundreds megabytes in size.

It is well known that queries for web search engines are
often too short to contain sufficient information to
discriminate ambiguous documents. Therefore,
additional knowledge, such as informative search terms
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and their frequency, the corresponding subject categories
and the associated documents, and the history of
previous user queries and users behaviors, are often
helpful to improve the performance of search engines.

The purpose of our project is to find useful “templates”,
rules associating keywords of the queries with the target
articles. If many users keying in similar queries clicked
on the same article, then templates summarizing the
queries will provide a direct answer to the future, similar
queries. This process would be much faster than the
traditional search methods. Since templates are evaluated
by their accuracy (see later), answers provided by the
templates are potentially accurate as well. In addition,
templates with generalized keywords (see later) can
match new queries that were not asked previously,
making templates more general. Therefore, improving
speed and precision is the first goal of our project.

The second goal of the project is to discover
comprehensible descriptions on the topics in which users
are mostly interested. The web editors can study those
topics, adding more articles if necessary. Therefore, we
need to build a user-friendly interface, providing
different and clear views of the templates discovered.

Past work on web-log mining has been done. However,
most has focused on mining to change the web structure
for easier browsing [Craven, et al, 1999; Sundaresan and
Yi, 2000], predicting browsing behaviors for pre-
fetching [Zaine, et al, 1998; Boyan, 1996], or predicting
user preference for active advertising [Pei, et al, 2000;
Perkowitz, 1997]. Some work has been done on mining
user logs for improving search engine’s performance.
The most notable example is the Google search engine
[Google], in which data mining is used to gather
statistical information for better weighting and ranking of
the documents. We design a data mining system that
discovers useful patterns or templates for the web server.
See Section 4 for more reviews of other work and its
relation to ours.

The rest of the paper is organized in the following order:
Section 2 describes our mining algorithm in detail.
Section 3 presents a user interface that shows results of
the mining system. Section 4 relates our mining
algorithm to the previous work. Last, Section 5 discusses
future work and concludes the paper.

2. Mining Generalized Query Templates

In this Section, we describe in detail how data mining is
used to improve search engine’s performance. The web
of the search engine consists of a search engine, with
well-versed articles (written by experts of various
domains) as answers to the user queries, and a well-
organized hierarchy of articles for browsing (but one

cannot use both interchangeably). The users’ activities
are recorded in the raw IIS log files, which keep a lot of
information about each user’s access to the web server.
The log files are large: one-day log files are about 700
megabytes in size.

A log pre-processing program is written to extract user
queries and their corresponding articles clicked. The
search engine is a keyword-based search engine, and
therefore, almost all queries are simply lists of
keyword(s). The results of the log pre-processing
program is as follows:

keyword1, keyword2, …; article1, article2, …

……

Each line indicates that a user query contains keyword1,
keyword2, and so on, and the corresponding user click-
throughs are article1, article2, etc.

We find that most queries have a very small number of
keywords: 52.5% of queries contain only one keyword,
32.5% two, 10% three, and 5% four and above. Also
most users clicked on one article for their queries: only
0.0619% of user session clicked on two or more articles
for a query. We simply convert each of those queries into
several queries, each of which contains the same
keyword(s), and one article that the user clicked. This
would introduce an inherit error rate, since the same
query is linked to different articles as answers.

From two-day log files, we obtained 271,803 queries,
each of which is a list of keyword(s) and one article
clicked. Our data mining starts from this query list, and
produces high-level templates, which summarize similar
queries answered to the same article. That is, templates
are production rules associating similar queries with
articles, functioning like a user-constructed index system
of the search engine.

One important assumption in our work is that from the
limited information returned by the search engine, there
is a larger number of users clicked the relevant and
correct article(s) as the answers. Even though clicks on
other articles are possible due to various user intention
and reasons, there should be a biggest group of users
who clicked on the same, relevant article(s). Our data-
mining algorithm should be able to deal with noise in the
data, and to find rules associating queries and relevant
clicks. Further, we assume that future users posting
similar queries would have similar intention as previous
users in the log files. Of course our mining algorithm
should be applied to recent logs, reflecting recent
interests and the shift of such in users.
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2.1 A Simple Bottom-up Generalization
Algorithm

A template represents a set of user queries with the same
or similar intention, and thus is associated with an article
as the answer. It is difficult to capture the “similar
intention” as semantics of natural language are still an
open problem in natural language understanding.
Therefore, we use both syntactic constraints (such as
same keywords; see below) as well as semantic
constraints (such as generalized concepts and synonyms;
see later) in our definition of queries with “similar
intention”.

The simplest form of templates consists of some
keyword(s), and possibly, a “don’t care” keyword, in the
format of:

article ID ← keyword1, …, keywordi, [any]; accuracy;
coverage

where i ≥ 1 and “any” represents a list of any keyword(s).
It is placed in […] to distinguish it from user-inputted
keywords.

If a template contains a generalized term placed in [ ], it
is called a generalized template; otherwise (if it contains
user-inputted keywords only) it is called a simple
template. Accuracy and coverage are two numbers for
evaluating such a template. Coverage is the number of
original user queries that are correctly covered (or
predicted) by this template, and accuracy is the
percentage of queries that correctly covered. If error is
the number of queries incorrectly covered by a template
(when users clicked a different article), then accuracy =
coverage/(coverage + error).

A bottom-up generalization algorithm is designed to find
generalized templates with [any]. First, it groups the
queries clicked by the same article together, and sorts
them by the article frequency, so queries of the most
clicked articles are mined first. From the queries of the
same article, two are chosen according to a greedy
heuristic (see later) if they have some keyword(s) in
common. Then a tentative template is created with those
common keyword(s), and the [any] keyword inserted. Its
accuracy and coverage can then be calculated. If the
accuracy or the coverage of this template is below some
thresholds, it is discarded; else the template replaces all
queries correctly covered by it, and the process repeats,
until no new templates can be formed. Then generalized
templates (with the generalized concept [any]) and
simple templates (the remaining user queries) are
returned. All those templates are associated with the
article directly.

To choose which two queries for generalization, a greedy
heuristic is used. Every pair of queries is tried, and the
pair with the maximum coverage while the accuracy is
above some pre-set threshold is chosen at each step for
generalization.

Experiments show that this algorithm does not produce
satisfactory results: only a few useful templates are
produced. The first reason is that the generalization step
of introducing [any] into templates is often too bold:
such templates cover too many queries incorrectly, and
thus have a low accuracy. Second, many keywords have
slightly different spellings (sometimes with a minor
spelling error) and thus are not regarded as the same,
preventing possible generalization. Third, many
keywords are synonyms; but since they are spelled
differently, they cannot be treated as the same for
possible generalization. Fourth, one-keyword queries are
not paired for generalization, since it would inevitably
produce an overly generalized template “article ID ←
[any]”. However, most (52.5%) of the queries in the user
logs are one-word queries. We wish generalization
happen more gradually. This would also alleviate the
first problem mentioned above.

2.2 Improvements Over the Simple
Generalization Algorithm

In the following four subsections we provide solutions to
the four problems mentioned above.

2.2.1 A Hierarchy Over Keywords

The first problem mentioned earlier is over
generalization. That is, any two different keywords from
two queries will be replaced by [any]. To provide more
graded generalization, a hierarchical structure with the
“is-a” relation would be useful. With this hierarchy, the
generalization of two keywords would be the lowest
concept that is an ancestor of both keywords in the
hierarchy.

It is a tedious job to construct such a hierarchy over tens
of thousands of keywords in the user queries. We used
WordNet [Miller, 1990] to generate such a hierarchy
automatically. A problem occurred is that most keywords
have different senses or meanings, which in turn, have
different parents in the hierarchy. We adopt the first, or
the most frequently used meaning of each keyword in the
WordNet. Previous research [Ng et al, 1996; Lin, 1997]
found that the most frequently used meanings are
accurate enough compared with more sophisticated
methods.

For example, if we use “<” to represent the is-a relation,
then WordNet would generalize “alphabet” as: alphabet
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< character set < list < database < information < message
< communication < social relation < relation <
abstraction. Similarly, “symbol” would be generalized as:
symbol < signal < communication < social relation <
relation < abstraction. Then “communication” would be
the least general concept of “alphabet” and “symbol” in
the hierarchy.

Allowing gradual generalization using WordNet
introduces too many possibilities of generalization for
two queries. A keyword in one query may generalize
with any other keyword in the other query, introducing
an explosive number of combinations. A heuristic is
further introduced: two queries can be generalized if they
have the same number of keywords, and only one
keyword in the two queries is different. That is, the two
queries must be in the format of:

keyword1, …, keywordi, keywordj

keyword1, …, keywordi, keywordk

where keywordj ≠ keywordk. A potential template is then
produced:

keyword1, …, keywordi, [concept1]

where concept1 is the lowest concept which is an
ancestor of keywordj and keywordk in the hierarchy. The
same evaluation criteria (the accuracy and coverage of
templates) are applied to the generalized templates.

With the introduction of the concept hierarchy, more
interesting templates can be discovered. For example,
from

Greek, alphabet

Greek, symbol

A template “article ID ← Greek, [communication]” is
produced. “[communication]” would also cover other
keywords such as “document”, “letter”, and “myth”,
which could be contained in future user queries.

We note that WordNet is only a useful tool to produce
such a hierarchy over keywords. One can create or
modify concepts and “is-a” links in such a hierarchy, or
use other thesaurus to produce such a hierarchy. The
more levels we have in the hierarchy, the more gradual
or conservative the generalization would be.

2.2.2 Query Pre-processing

The second reason preventing useful generalization of
the two queries is that minor differences in the spelling

of the same keyword are regarded as different keywords.
For example, “book” and “books” are regarded as
completely different keywords. Misspelled words are
also treated as completely different words.

A simple morphology analysis tool in WordNet is used,
which converts words into their “original” forms. For
example, “books” to “book”, “studied” to “study”. We
apply the conversion in our program before
generalization is taken place. Currently we are working
on spelling correction on the keywords in user queries.

2.2.3 Synonym Conversion

Another major problem in this simple generalization
algorithm is that many keywords are synonyms: they
have very similar meanings but with different spellings.
For example, “Internet” and “WWW”, “penalty” and
“punishment”, and “computer” and “data-processor” are
all synonyms. Since any generalization of two queries
requires common components in the queries, such
synonyms should be regarded as the same.

WordNet is again used for the synonym conversion. A
dictionary of keywords appearing in user queries is
dynamically created when the user logs are scanned.
Before a new keyword is inserted into the dictionary, its
synonyms are checked to see if any of them is already in
the dictionary. If it is, the synonym in the dictionary
replaces this keyword. This would reduce the size of the
dictionary by about 27%. Even though the reduction is
not huge, we found that the reduction happens on
keywords that are very frequently used in the queries.

2.2.4 More Flexible Generalizations

Due to the introduction of the hierarchy, pairs of one-
keyword queries may now be generalized. As to which
two queries are paired for generalization, the same
greedy heuristic is used: the pair that produces a
template with the maximum coverage while the accuracy
is above a threshold is chosen. All queries covered by
the new template are removed, and the process repeats
until no new templates can be generated.

The pseudo-code of the bottom-up generalization
algorithm with all improvements is presented in Figure 1.

Several further possible generalization methods are
currently under study. For example, queries with
different number of keywords, queries with two different
keywords in the pair, and so on.
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3. Prototype and Test Results

We have constructed an off-line mining system as
described in the previous section. From the two-day raw
log files of a total size 850 megabytes, it takes a few
hours to mine all the templates. Most of the time was
spent on the pre-processing, as well as calculating errors
of each potential template, since it requires scanning all
of the rest of the queries. No attempt is made yet to
optimize the efficiency of the code. In the end, about 400
templates are found whose accuracy is above 0.75 (a
threshold we chose arbitrarily).

A graphic user interface for easy viewing of the
templates is built, and is illustrated in Figure 2. It allows
users to view all templates (both simple and generalized)
or generalized templates only, view templates sorted by
different ways, and display templates in different level of

details. In Figure 2, detail display is chosen, so queries
that were used to produce generalized templates are also
listed under the templates. One can see that some
generalized templates might be too general (for example,
“ice” and “paw” become [entity something]), while
others make sense (for example, “bird” and “fish”
become [vertebrate craniate], “robin” and “goldfinch”
become [oscine oscine_bird], and so on).

It should be noted that these templates were produced
from only two days’ user logs over thousands of articles.
With logs of more days or months, more reliable and
interesting templates will be found, since more queries
will be asked for each article, and over-general templates
would be rejected by “negative examples” in the logs.

To fully test how effectively those templates help to
improve the performance of the search engine, we would

QuerySet = IIS log files

QuerySet = Filtering(QuerySet) /* producing list of user keywords and click */

QuerySet = Pre-process(QuerySet) /* word stemming, synonym conversion */

QuerySet = sort(QuerySet) /* cluster queries by article ID */

For each article ID do

Cluster together all one-keyword queries

Repeat

Use greedy strategy to choose two queries

Produce a template /* Use WordNet to generalize */

Insert the template into QuerySet; remove all queries covered from QuerySet

Until no new templates can be found

Cluster together all multi-keyword queries

Repeat

Use greedy strategy to choose two queries with one keyword being different

Produce a template

Insert the template into QuerySet; remove all queries covered from QuerySet

Until no new templates can be found

Output all generalized templates and simple templates

Figure 1: Pseudo-code of the template mining algorithm
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deploy the template matching mechanism into the actual
search engine. At this point, our research effort has not
yet been transferred to the product group, therefore, we

can only run a simulation to see roughly how much
improvement one might get from templates mined from
the two-day logs.

To run our simulation more realistically, we partition the
two-day log files into two batches: a training batch which
is about 80% of all logs from the beginning, and a testing
batch which is the last 20% of the logs. We then run our
mining algorithm on the training batch, and test the
templates produced on the testing batch (last 20% of the
queries), simulating the actual deploy of the templates
after data mining has been conducted.

Three criteria are used to see the effectiveness of the
templates mined from the training logs. The first is the
recall; it measures the percent of the testing queries that
are matched with the templates. The higher the recall, the
more queries are benefited from using templates. The
second is the precision, which measures, among queries
matched with the templates, the percent of the testing
queries that are correctly predicted by the templates (that

is, user clicks of those queries are the same as what
templates predict). The third criterion is the speed
improvement. Assuming template matching is k times
faster than the regular search, the time needed for
returning the answer from templates is, on average, only

Recall/k + (1−recall) ×1

percent of time needed by the regular search engine. The
smaller this number, the more saving in time is achieved
from using the templates.

We calculate these three criteria by running our mining
algorithm in three versions with an increasing power: the
first version comes with the concept hierarchy only, the
second with hierarchy and word morphology analysis (as
described in Section 2.2.2), and the third with hierarchy,
word morphology analysis, and the synonym conversion.
We expect to see better results with later versions. This

Figure 2: A user interface for viewing the templates mined.
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also allows us to find out which component is the
“source of power” that produces good results.

Table 1 presents our experiment results. As we can see,
some performance measure (i.e., recall) of the search
engine does improve dramatically when more
improvements are incorporated in our mining algorithm.
However, as shown in table 1, the first version has the
highest precision, which does not match our intuition.
However, we note that the recall of the first version is
much lower than the other two, therefore the reliability

of the precision is low. In addition, we are seeking the
balance between precision and recall. So the later
versions still have better overall performance, as they
have much higher recall. Considering that we have
relatively small log files (i.e. 260,000 queries over
20,000 articles) of short periods of time (i.e. two days),
the results in table 1 are nevertheless promising. We
believe that when more log files of longer periods of
time are available, we will obtain better results.

Recall Precision

I: with hierarchy 6.5% 51.2%

II: I + morphology analysis 15.3% 41.7%

III: II + synonyms 15.5% 42.0%

Table 1: Template mining results

4. Relation to Previous Work

Template learning discussed in this paper is similar to
rule learning from labeled examples, a well studied area
in machine learning. Many methods have been
developed, such as C4.5 rule, the AQ family, and
RIPPER. C4.5 rule [Quinlan 1993] is a state-of-art
method for learning production rule. It first builds a
decision tree, and then extracts rules from the decision
tree. Rules are then pruned by deleting conditions that do
not affect the predictive accuracy. However, C4.5rule is
limited to produce rules using only the original features
(that is, only “dropping variables” is used in
generalization), while our method also introduces
generalized concepts in the hierarchy.

The AQ family [Michalski, 1983] generates production
rules directly from data. It uses the “generate and
remove” strategy, which is adopted in our algorithm.
However, AQ is a top-down induction algorithm, starting
from a most general rule and making it more specific by
adding more conditions. AQ does not utilize concept
hierarchy as we use in our generalization process. It
seems difficult to incorporate concept hierarchy in the
top-down learning strategy, as a large number of
concepts in the hierarchy must be tried for making a rule
more specific. The difference between our mining
algorithm and RIPPER [Cohen, 1995] are also similar.

Concept hierarchy has been used in various machine
learning and data mining systems. One usage is as
background knowledge, as in [Han, Cai and Cercone,
1993]. Concept hierarchies have also been used in
various algorithms for characteristic rule mining [Han,
1995, 1996; Srikant, 1995], multiple-level association

mining [Han 1995], and classification [Kamber 1997].
What makes our work different is that our concept
hierarchy is much larger and more general; it is
generated automatically from WordNet over thousands
of keywords. Another difference is that it is used directly
in guiding the rule induction process.

The improvements over the simple generalization
algorithm, presented in section 2.2, are similar to
approaches to the term mismatch problem in information
retrieval. These approaches, called dimensionality
reduction in [Fabio, 2000], aim to increase the chance
that a query and a document refer to the same concept
using different terms. This can be achieved by reducing
the number of possible ways in which a concept is
expressed; in other word, reducing the “vocabulary” used
to represent the concepts. A number of techniques have
been proposed. The most important ones are manual
thesauri [Aitchison and Gilchrist, 1987], stemming and
conflation [Frakes, 1992], clustering or automatic
thesauri [Rasmussen 1992, Srinivadsan 1992], and
Latent Semantic Indexing [Deerwester et al., 1990].
These techniques propose different strategies of term
replacement. The strategies can be characterized by (1)
semantic considerations (manual thesauri), (2)
morphological rules (stemming and conflation), and (3)
term similarity or co-occurrence (clustering or Latent
Semantic Indexing). In section 2.2, we used strategies (1)
and (2). The manual thesauri we used is WordNet. We
also dealt with synonymous, but unlike strategy (3)
which clusters similar terms based on co-occurrence, we
used clusters of synonymous provided by WordNet
directly. Our training data are user logs, which do not
contain full text information of processed documents,
which are necessary for co-occurrence estimation.
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5. Conclusions and Future Work

In this paper we describe a new data-mining algorithm
that discovers generalized query patterns or templates
from large, raw user logs of a commercial knowledge-
based search engine. Those templates can provide
insights to the web editors as to what topics users are
mostly interested in. When incorporated with the regular
search engine, those templates can improve the search
speed, as well as recall and precision of the search engine,
as our simulation shows.

In our future work, more semantic information will be
introduced into our mining system so queries of similar
meanings can be clustered and generalized. In addition,
more log files of longer periods of time (such as months)
are needed to produce more reliable and more useful
templates, which will improve further the performance of
the search engine.
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