
Feature Value Acquisition in Testing:
A Sequential Batch Test Algorithm

Victor S. Sheng SSHENG@CSD.UWO.CA
Charles X. Ling CLING@CSD.UWO.CA
Department of Computer Science, The University of Western Ontario, London, Ontario N6A 5B7, Canada

Abstract
In medical diagnosis, doctors often have to order
sets of medical tests in sequence in order to
make an accurate diagnosis of patient diseases.
While doing so they have to make a trade-off
between the cost of the tests and possible
misdiagnosis. In this paper, we use cost-sensitive
learning to model this process. We assume that
test examples (new patients) may contain
missing values, and their actual values can be
acquired at cost (similar to doing medical tests)
in order to reduce misclassification errors
(misdiagnosis). We propose a novel Sequential
Batch Test algorithm that can acquire sets of
attribute values in sequence, similar to sets of
medical tests ordered by doctors in sequence.
The goal of our algorithm is to minimize the
total cost (i.e., the trade-off) of acquiring
attribute values and misclassifications. We
demonstrate the effectiveness of our algorithm,
and show that it outperforms previous methods
significantly. Our algorithm can be readily
applied in real-world diagnosis tasks. A case
study on the heart disease is given in the paper.

1. Introduction

Cost-sensitive learning considers a variety of costs in
various components and process of learning (Turney,
2000), with the goal of minimizing the costs or the total
cost. Two most important types of costs are identified as
misclassification costs and attribute costs (also called test
costs). Misclassification costs are an extension of error
rate (or one minus accuracy) as different types of errors
(such as false positive and false negative) can have
different costs. Attribute costs reflect how expensive to
obtain the missing attribute values. Recent works have
considered methods of acquiring attribute values during
training (Melville et al., 2004; 2005) and testing (Ling et
al., 2004; Chai et al., 2004), for the purpose of reducing

—————
 Appearing in Proceedings of the 23nd International Conference on
Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by the
author(s)/owner(s).

the misclassification cost. Learning algorithms that
actively acquire extra information (such as missing
attribute values) during learning is also called active
learning (e.g., (Cohn et al., 1996; Saar-Tsechansky and
Provost, 2004; Greiner et al., 2002)). Studying active
learning in cost-sensitive framework has a unique
advantage: learning becomes an optimization problem
with a single goal: minimizing the sum of attribute
acquisition cost and misclassification cost. In this paper,
we propose a novel algorithm for attribute acquisition
during testing based a model has already been built.

Assume that a cost-sensitive model has already been built.
Given a test case with missing attribute values, the
question is what attribute values should be acquired, at
what order, such that the sum of attribute acquisition cost
and expected misclassification cost is minimum.
Answering to this question can make a significant impact
to many real-world diagnosis applications. For instance,
during medical diagnosis, doctors need to apply their
existing knowledge (similar to a cost-sensitive model
previously built) to predict the disease (class label) of new
patents (test cases). As much is unknown (missing values)
of a new patient, the doctors often have to order medical
tests, such as blood tests (acquiring attribute values)
before a final prediction (diagnosis) is made. Not only do
medical tests have different costs (i.e., attribute costs,
which include the actual cost as well as risks and
uncomfortability to the patients), they also have different
delay time in getting their results from the laboratories.
Due to delays in getting the test results, doctors often
order several tests to be done together as in a batch (that
is, at the same time), and based on the results of the tests
in the batch, decide what tests, if any, are to be performed
next. When tests are done in a batch, the delay of the
batch is (reasonably assumed to be) the maximum delay
of all tests in the batch. Thus, doing tests in batch
significantly reduces the delay compared to the total delay
if these tests are done in sequence (i.e., the maximum of a
set of numbers is always smaller than the sum of them).
Clearly, doctors have to decide what tests should be
performed in batches, at what order, in order to strike a
good balance between reducing the test costs, reducing
the total delay time, and making a good prediction on
patient’s disease (reducing misclassification cost).

Feature Value Acquisition in Testing: A Sequential Batch Test Algorithm

In this paper we propose a novel algorithm that can
decide, for each test example, what attribute values should
be acquired in batch, at what order, in order to minimize
the sum of attribute acquisition costs, delay costs, and
misclassification costs. We call it Sequential Batch Test
(SBT for short) algorithm. Our algorithm utilizes a cost-
sensitive decision tree (Ling et al., 2004) built previously.
We assume that test examples may have missing attribute
values, and each attribute has a specific (given) cost, as
well as a delay cost, which may be converted from the
delay time (say, in hours). All costs (misclassification
cost, attribute cost, and delay cost) are represented in the
same unit (such as dollars). Our proposed algorithm SBT
can suggest batches of attribute values to acquire, in a
certain sequence, such that the sum of attribute
acquisition costs, delay costs, and misclassification costs
is minimal.

 Our work is significantly different from previous work in
attribute value acquisition during training. (Melville et al.,
2004; 2005) proposed attribute value acquisition during
training, instead of testing as in our paper. Their
algorithm is also sequential in nature to query the missing
values, instead of in batches. In addition, their goal is to
reduce misclassification error, instead of total cost. (Ling
et al., 2004) proposed attribute value acquisition during
testing. However, their “test strategies” are simple: only
one attribute is acquired at a time (the batch size is always
1). They did propose a “single batch” algorithm that
suggests a batch of tests to be done at the same time.
However, their single batch algorithm acquires all
attributes in a sub-tree of the decision tree to be
performed, and thus, too many attributes would be
included in only one batch. In addition, no delay cost is
considered. (Turney, 1995) included delay in the
attributes, but only delayed or non-delayed. We quantify
the amount of delay in each attribute. (Turney, 1995)’s
algorithm is a genetic algorithm, which is more
computationally expensive and was not studied in a true
cost-sensitive framework as we do. Most previous work
on active learning (such as (Cohn et al., 1996; Saar-
Tsechansky and Provost, 2004; Greiner et al., 2002))
considers labeling costs while our algorithm acquires
actively attribute values during the testing process.

Our paper is organized as follows. In Section 2, we
introduce a real-world case on the heart disease to
illustrate the problem we are studying. In Section 3, we
describe our Sequential Batch Test (SBT) algorithm for
test examples and its integration with the cost-sensitive
decision tree learning. Then we demonstrate the
effectiveness of our algorithm, and show experimentally
that it outperforms previous methods. Finally we conclude
the work in Section 5.

2. A Case Study of Heart Disease

Before we discuss the Sequential Batch Test algorithm,
let us look at a concrete case first: the Heart Disease. The

Heart Disease dataset was used in the cost-sensitive
genetic algorithm by (Turney, 1995), and it involves the
diagnosis of the heart disease. The class label is whether
or not there is a coronary artery narrowing
(positive/negative), and the attributes are 13 non-invasive
tests including patient profile (they are simply regarded as
“cheap tests”), as listed in Table 1. The misclassification
costs (the values of false positive (FP) and false negative
(FN)), attribute costs, and attribute delay time are
obtained from medical experts in the local hospital and
the insurance program in Canada: the misclassification
costs FP = 600 and FN = 1,000, and the attribute costs
and their delay time (in hours) are listed in Table 1. To
convert the delay time to cost, an hourly rate is also given.
The multiplication of the delay time and the hourly rate is
attributes’ delay cost. For real world applications, we can
assume that test cases may have different hourly rate, just
as different patients may have different tolerance for
waiting; some people may be willing to wait while others
cannot. The original dataset contains a total of 294 cases
with 36.1% positive cases (106 positive cases) and the
rest are negative cases. Note that in practice when a group
of related tests (such as blood tests) are performed at the
same time (in a batch), there is often a discount on the
total test cost. This issue is not considered in this paper.

Table 1. Attribute costs (in Canadian Dollars) and delay time (in
hours) for the Heart Disease dataset.

As we have discussed in the Introduction, we assume that
a cost-sensitive decision tree has been built for the
problem domain, and is used as a base learner for the SBT
algorithm. In this paper, we re-implemented the cost-
sensitive decision tree proposed by (Ling, et al., 2004),
and thus we provide a quick review of it here. The cost-
sensitive decision tree is very similar to C4.5 (Quinlan,
1993), except it uses total cost reduction, instead of
entropy reduction, as the attribute split criterion. More
specifically, the total cost before and after splitting on an
attribute can be calculated, and the difference is the cost
reduction “produced” by this attribute. The total cost
before split is simply the misclassification cost of the set

Tests
(attributes)

Description Attribute
Costs (CN$)

Delay Time
(hours)

age of the patient 1.00 0.001
Sex Sex 1.00 0.001
Cp chest pain type 1.00 0.001
Trestbps resting blood pressure 1.00 0.01
Chol serum cholesterol in mg/dl 7.27 4
Fbs fasting blood sugar 5.20 4
Restecg resting electrocardiography results 15.50 0.5
Thalach maximum heart rate achieved 102.90 1
Exang exercise induced angina 87.30 1
Oldpeak ST depression induced by exercise 87.30 1
Slope slope of the peak exercise ST segment 87.30 1
Ca number of major vessels colored by

fluoroscopy
100.90 1

Thal finishing heart rate 102.90 1

Feature Value Acquisition in Testing: A Sequential Batch Test Algorithm

 (a) Hourly rate of $1/hr (b) Hourly rate of $100/hr

Figure 1. Cost-sensitive decision trees with two different hourly rates for the delay tolerance. The attribute cost and delay cost are
displayed in each node separated by /. Continuous attributes have been discretized and are represented by 1, 2, and so on.

of examples. The total cost after split on an attribute is the
sum of misclassification cost of subsets of examples split
by the attribute values, plus the attribute cost and the
attribute delay cost of these examples (the cost-sensitive
decision tree proposed by (Ling, et al., 2004) does not
consider the attribute delay cost). The attribute with the
maximal positive cost reduction is chosen as the root, and
the procedure recursively applies to the subsets of
examples split by the attribute values.

We apply this cost-sensitive tree algorithm to the Heart
Disease dataset with three different hourly rates of $1/hr,
$10/hr, and $100/hr. Again the hourly rate multiplies the
delay time equals to the delay cost. As one must wait for
the result of attributes being tested, we include delay cost
as a part of the attribute cost during the tree construction.
The numerical attributes in datasets are discretized into
discrete values (we use 1, 2, … to represent them) using
the minimal entropy method of (Fayyad and Irani, 1993).
Figures 1(a) and 1(b) show the two trees built with two
different delay costs for the hourly rates of $1/hr and
$100/hr. The tree with hourly rate of $10/hr is very
similar to the one with $1/hr, except one different small
sub-tree; therefore it is not shown.

Several interesting observations can be made from the
two trees. First we can see that delay costs can affect the
decision trees significantly. Compared Figures 1(a) and
1(b), the tree structures are quite different as the delay
costs are varied. Specifically, the tree Figure 1(b) with a
higher delay cost prefers to use the attributes with lower
delay costs to split the training examples. The attributes
with higher delay costs only appear in the bottom if they
are used. Another observation is that the tree-building
algorithm prefers to choose attributes with zero or small
sum of attribute and delay costs at the top (or root) of the
tree. This is because the attribute at the root will be tested

by all test examples. Choosing an attribute with zero or
small cost helps reduce the total cost. Of course attribute
selection also depends on discriminative power of the
attribute, as an attribute is selected if the sum of
misclassification, attribute cost, and delay cost is minimal.

Given a test examples with missing values (even when all
values are missing), and a cost-sensitive decision trees
similar to the ones in Figure 1, the SBT algorithm will
suggest batches of attribute values to be tested in a certain
sequence, in order to minimize the total cost of attribute
acquisition, delay, and misclassification. Note that when a
batch of unknown attributes (tests) is being determined,
their values are not known; only after the batch is
determined, their true values will be obtained at cost. If
too many attributes are included in a batch, many of them
may be wasted and the total test cost can be high. If too
few attributes are included, more batches of tests would
be needed and the total wait cost would be high. SBT will
then determine if the next batch of tests is needed or not,
based on the revealed values of earlier tests. Clearly it is
not trivial to make an optimal decision. We will describe
SBT in the next section. After that we will revisit this case
Section 4.4.

3. Sequential Batch Test (SBT) Algorithm

In this section, we describe our Sequential Batch Test
(SBT) in detail. We will first describe the SBT algorithm
in the generic form; that is, it is an A*-like search
algorithm that can work with any cost-sensitive learning
model, if the required components of the model can be
implemented efficiently (see below). We will then
describe SBT with cost-sensitive decision trees. The tree
structure makes the implementation of SBT more
efficient.

slope
($87.3/1)

age
($1/0.001)

sex
($1/0.001)

exang
($87.3/1)

0

cp
($1/0.001)

0

trestbps
($1/0.01)

sex
($1/0.001)

trestbps
($1/0.01)

trestbps
($1/0.01)

0

0 1

0 0 1 0 1

0 1 1

0 0

slope
($87.3/1)

sex
($1/0.001)

oldpeak
($87.3/1)

sex
($1/0.001)

0

exang
($87.3/1)

age
($1/0.001)

1 fbs
($5.2/4) 1

0 1

2
fbs

($5.2/4)

0

2

1

2

2

211

11 1

2

2 2

1

2 3

41

2

3

1 2

2 1

1

1

1

1

1

1

2

2

2

2 1 2

2

1

2

2

2 11

1 1 1

2

2 2

1

2

4
1

2

3

1 2

2 1

1

1

1

1 1

2

2

2

2

3

1 2

age
($1/0.1)

sex
($1/0.1)

restecg
($15.5/50)

0

cp
($1/0.1)

0

trestbps
($1/1)

trestbps
($1/1)

trestbps
($1/1)

0

0 1

0

0 1 0

0 1 1

0 0

slope
($87.3/100)

0

exang
($87.3/100)

1

0 1 0

age
($1/0.1)

sex
($1/0.1)

sex
($1/0.1)

slope
($87.3/100)

sex
($1/0.1)

trestbps
($1/1)

sex
($1/0.1)

sex
($1/0.1)

Feature Value Acquisition in Testing: A Sequential Batch Test Algorithm

3.1 The Framework of SBT

The framework of the SBT algorithm is quite simple, and
it can work with any cost-sensitive learning algorithms,
such as ICET in (Turney, 1995), cost-sensitive decision
tree in (Ling et al., 2004), and cost-sensitive naïve Bayes
in (Chai et al., 2004), as long as the required components
can be implemented efficiently. At the core of the SBT
algorithm is an A*-like algorithm to search for one batch
of tests to be performed. It has three components:
initialization, evaluation, and update. The three
components are directly dependent on the cost-sensitive
learning model. The initialization component searches the
initial candidates. Then the evaluation component
evaluates the cost-effectiveness of each candidate in the
list. The best candidate with the maximum expected cost
reduction is chosen, and is added into the current batch if
it is positive. The update component updates and
maintains the potential candidates. After one batch is
determined, the values of the attributes in the batch are
obtained (after performing the tests). The SBT algorithm
will continue to search the next batch until no more
batches needed. The pseudo-code of the general SBT
algorithm is shown in Figure 2.

Algorithm SBT_General()

Input: a cost-sensitive learning algorithm, a test example with
missing values

1. Loop
a. L = Get an initial list of candidates
b. B = empty /* the current batch of tests */
c. While L is not empty do

i. Find v with maximum cost reduction in L
ii. If v has a positive cost reduction
iii. Then add v into B, delete v from L, and update L
iv. Else exit the while loop /* No suitable candidate*/

d. End of while
e. If (B is not empty) then

i. Output B as the current batch of tests
ii. Obtain values of attributes in B at cost

f. Else exit Loop at 1
2. Predict the test case with all known values

Figure 2. The generic pseudo-code for SBT.

The first sub-step (1a) that initializes the candidate list L
is dependent on the learning model. For decision trees, the
initial candidate list contains only one node: the first
unknown attribute encountered when a test example with
missing values is classified by the tree. For cost-sensitive
naïve Bayes, the initial list contains all unknown
attributes of the test example. Similarly, the evaluation
steps (1c(i) and 1c(ii)) are also dependent on the learning
models. We will describe the integration of SBT with
cost-sensitive decision trees and the corresponding
evaluation method in the following section. The
evaluation process for naïve Bayes is computationally
expensive (involving combination of attributes in the
current batch), thus we do not study it in this paper. Last,
updating the candidate list L (sub-step 1c(iii)) also relies
on the learning model. For decision trees, the update

procedure will delete the best candidate from the list L,
and then adds its children into the list L. For cost-sensitive
naïve Bayes, the chosen candidate is simply deleted from
the candidate list L.

3.2 SBT with Cost-sensitive Decision Tree

In this section we will describe SBT with cost-sensitive
decision trees as the base learner. The tree structure (such
as trees in Figure 1) makes the searching the initial
candidate list and maintaining the candidate list easy and
efficient. We have discussed the initialization and update
steps in Section 3.1. In this section, we focus on the
evaluation step of SBT with cost-sensitive decision trees.

With the cost-sensitive decision trees, SBT uses a
heuristic utility measure to decide what attributes should
be included in the batch. The utility U(.) of an attribute is
the net profit brought by the attribute, described below.
An attribute is added to a batch if the utility is positive
and maximum (among other attributes). We keep on
adding more unknown attributes into the current batch
until no more unknown attributes can bring in net profit.
The rationale behind this (heuristic) strategy is that
attributes that bring in some net profit is worthwhile to be
included in the current batch. The pseudo-code for SBT
with cost-sensitive decision trees is given in Figure 3. The
line numbers (such as 1a and 1c(iii)) in Figure 3
correspond to the same line numbers in Figure 2. The
time complexity of this specific SBT algorithm is linear to
the size of the tree, as each node in the tree would be
considered at most once.

Algorithm SBT_Tree()

Input: the cost-sensitive decision tree learning algorithm CSDT,
a test example with missing values

1. Loop
a. L = the first unknown attribute when classifying a test

case
b. B = empty /* the batch of tests */
c. While L is not empty do

i. Calculate U(i) for each i ∈ L, U(t) = maxU(i)
ii. If U(t) > 0
iii. then add t into B, delete t from L, add R(t) into L
iv. else exit the while loop /* No positive utility */

d. End of while
e. If (B is not empty) then

i. Output B as the current batch of tests
ii. Obtain values of attributes in B at cost

f. Else exit Loop at 1
2. Predict the test case with all known values

Figure 3. The pseudo-code for SBT with cost-sensitive decision
trees. The line numbers (such as 1a and 1c(iii)) correspond to
the same line numbers in Figure 2.

The utility U(.) of an attribute (line 1c(i) in the pseudo-
code) is the net profit brought in by the attribute. As the
attribute value is yet unknown when deciding the batch,
U(.) of an attribute is estimated by the expected value of

Feature Value Acquisition in Testing: A Sequential Batch Test Algorithm

all possible values of the attribute. The probability of a
possible value is estimated by the training examples
falling under that node in the tree. More specifically, the
utility U(.) of an attribute is the difference of expected
total cost before and after testing i, defined as follows:

]),(),()([)()(∑ +×+−=
j

TBWjimiscjipicimisciU

where misc(.) is the total expected misclassification cost
of a node in the tree before testing i, c(.) is the total
attribute cost, and p(i, j) is the probability of the j-th value
of the attribute i. WTB is the current batch delay cost. It is
defined as WTB = max(WB, Wi), where WB is the previous
batch delay cost, and Wi is the delay cost of the attribute i.

When the attribute t is added into the batch, the update
procedure (line 1c(iii)) deletes the attribute t from the list
L, and then adds its children R(t) into the list L.

After the current batch of attributes is determined, it will
request the values of those attributes in the batch at cost
(line 1e(ii)). After these values are obtained, the test
example can be classified further down in the tree, until it
is stopped by another unknown attribute or at a leaf. In the
former case, the same procedure is applied; in the latter
case, the test example is classified with the class label of
the leaf, and the testing process is completed.

The SBT algorithm described above is heuristic but it is
close to the ideal one: it guarantees that if the delay cost
of all attributes is 0, then the SBT would become an ideal,
sequential process: it performs one attribute acquisition at
a time (or the batch size is always 1). See Section 4.3 for
experimental verification. This is also the myopia
approach (Gorry and Barnett, 1968). On the other hand, if
the delay cost of the first attribute in a batch is very large,
the current batch would grow until the expected cost
reduction of the remaining unknown attributes is no
longer greater than 0. Thus, only one batch is
recommended (see Section 4.3 for experimental
verification).

4. Experiments

In this section, we empirically evaluate the SBT algorithm
(from now on, when we mention the SBT algorithm, we
mean SBT with cost-sensitive decision tree) on real-world
datasets to show its effectiveness in finding batches of
attributes to be acquired in sequence to minimize the sum
of attribute costs, attribute delay costs, and
misclassification cost.

4.1 Datasets and Experiment Setup

We choose 10 real-world datasets, listed in Table 2, from
the UCI Machine Learning Repository (Blake and Merz,
1998). These datasets are chosen because they are binary
class, have at least some discrete attributes, and have a
good number of examples. The numerical attributes in
datasets are discretized into integers (1, 2, …) using the

minimal entropy method of (Fayyad and Irani, 1993).
Each dataset is split into two parts: the training set (60%)
and the test set (40%). To study the effect of various
amount of missing values in the test data, a certain
percentage of attributes (20%, 40%, 60%, 80%, and
100%) are randomly selected and marked as unknown (in
test examples). If an attribute value is requested by the
SBT algorithm, its original value is revealed.

Unfortunately, the detailed attribute costs and attribute
delay costs of these datasets are unknown. To make the
comparison possible, we simply assign random numbers
in a certain range as these costs. This is reasonable
because the same set of costs is used in the experimental
evaluations and comparison. The attribute costs are
assigned with random numbers between 0 and 100. In
order to investigate the effect of various delay costs, we
set up four levels for delay costs: (a) all delay costs are 0;
(b) all delay costs are randomly assigned from 0 to 50,
thus the delay costs are half of the range of attribute costs;
(c) all delay costs are randomly assigned from 0 to 100;
and (d) all delay costs are randomly assigned from 0 to
200 (twice the range of attribute costs). We also vary the
misclassification costs (FP/FN) to be 1k/6k, 2k/6k, 4k/6k,
and 6k/6k. (Due to symmetry, there is no need to
experiment cases where FP > FN). The correct
classification costs TP and TN are always set as 0.

Table 2. Datasets used in the experiments

 No. of
Attributes

No. of
Examples

Class dist.
(N/P)

Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357
Tic-tac-toe 9 958 332/626
Mushroom 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118

4.2 Delay Cost Varied while Misclassification Cost
Fixed

In this section, we investigate the effects of delay costs
whose range is varied under a fixed misclassification cost.
For each misclassification cost (FP/FN=1k/6k, 2k/6k,
4k/6k, and FP/FN=6k/6k, we vary the three ranges of the
delay costs ([0..50], [0..100], and [0..200]). We repeat this
process 25 times, and the average number of batches for
the 10 datasets is plotted in Figure 4.

Note that from Figure 4 we can see that the number of
batches is often less than 1 especially when the ratios of
missing attributes are small (such as 0.2). This is because
with a small percentage of missing values, often the SBT
algorithm does not need to acquire any missing values
when classifying test examples by the decision tree.

Feature Value Acquisition in Testing: A Sequential Batch Test Algorithm

From Figure 4, we can draw some interesting
conclusions: First of all, the smaller the delay cost range,
the more the number of batches (for the same ratio of
unknown attributes). This meets our expectation: when
the delay cost is small, it is preferable to have small batch
sizes (thus more batches in sequence), as it is better to
wait to obtain attribute values so that they can help to
make decision for the next attribute(s) more accurately
and save money from unnecessary attribute acquisition.
The extreme case is zero (0) attribute delay cost. Under
this case, it is preferable to do one test at a time. Our
experiment results show that the average number of
batches in this case is the highest. When the range of the
delay cost is high, we can expect that SBT will reduce the
number of batches to save the total cost, as shown in
Figure 5.

Figure 4. Number of batches of our SBT under different
misclassification cost settings.

 Figure 5. The average total costs (in $) for SBT under different
misclassification cost settings.

Figure 5 shows the average total costs of SBT for the 10
datasets under the misclassification cost settings. We can
see clearly that when the ratio of missing values increases,
the average total cost also increases, as expected. What is
more interesting is that when the range of the delay costs
increases, the average total cost also increases. As the
range of the delay costs increases, attribute delay costs
become higher. This directly causes the batch delay cost
to increase.

4.3 Delay Cost is Zero or Very Large

To further study the effect of the delay cost on the number
of batches in SBT, we conduct two more experiments:
setting one attribute delay cost (from some non-zero
value) to zero or very large (greater than the maximum
misclassification cost). When the delay cost of an
attribute is set to 0, it is likely that this attribute will be
single out to form a batch by itself, as knowing its value
(without delay) would help to decide what other attributes
should be acquired in the next step. On the other hand, if
the delay cost of one attribute is set much larger than the
misclassification cost, then this attribute will be “pushed
out” of the decision tree (not chosen in the tree as the sum
of attribute cost and delay cost is very large). Thus it will
not be picked by SBT to be included in a batch. We study
one specific case and one general case with the dataset
(Kr-vs-kp), as shown below.

For the specific case, a particular test example is chosen.
The attribute cost of all attributes is randomly assigned to
be within 0 to 100, and the misclassification cost is set to
be 4k/6k. In this case the SBT algorithm suggests 3
batches with total cost $6,951.1 (sum of the attribute
costs, delay costs, and misclassification cost of $6,000).
The three batches are: {A21}, {A1, A6, A10, A15, A16, A28,
A31, A32, A33, A35}, and {A20, A22, A23}. Then one
attribute, A31, is chosen, and its delay cost is changed
from 21.3 (randomly assigned) to be 0. The number of
batches increases from 3 to 4: {A21}, {A1, A6, A10, A15,
A16, A28, A32, A33, A35}, {A31}, {A20, A22, A23}, as the
attribute A31 is singled out as a batch alone. On the other
hand, when the delay cost of A31 is changed from 21.3 to
a very large number (10,000 here), the number of batches
decreases from 3 to 2: {A21}, {A1, A6, A10, A15, A16, A28,
A32, A33, A35}, as A31 is not included in the tree.

To study the general case, we run our SBT 25 times for a
set of test cases (40% randomly sampled the dataset Kr-
vs-kp); other settings are the same as above. For each run,
A31 is set to 0 or to 10,000. The average number of
batches is listed in Table 3. From the table, we can clearly
see the general trend: the an attribute’s delay cost is set to
0, the number of batches increases by about 1 on average,
indicating that the attribute is singled out from the batch,
if it was in the batch. If the attribute’s delay cost is set to a
very large number, this attribute would be pushed out of
the tree (if it was in the tree). The number of batches
would decrease by about 1 on average. This indicates that
the SBT algorithm, though heuristic, is close to the ideal
one. When delay costs are small, the algorithm behaves
like a sequential one, doing one test at a time. When delay
costs are large, the algorithm just would suggest one
single batch.

Table 3. The average number of batches under different delay
cost of A31 from the dataset Kr-vs-kp.

Delay cost of A31 [0..100] 0 10,000
Number of batches 1.85 1.93 1.76

80

100

120

140

160

180

200

220

240

0.2 0.4 0.6 0.8 1
Unknown attribute ratio (FP/FN=1k/6k)

To
ta

l c
os

t

MaxWc=0
MaxWc=50

MaxWc=100
MaxWc=200

90

140

190

240

290

0.2 0.4 0.6 0.8 1
Unknown attribute ratio (FP/FN=2k/6k)

To
ta

l c
os

t

MaxWc=0

MaxWc=50

MaxWc=100

MaxWc=200

90

140

190

240

290

0.2 0.4 0.6 0.8 1
Unknow n attribute ratio (FP/FN=4k/6k)

To
ta

l c
os

t

MaxWc=0

MaxWc=50

MaxWc=100

MaxWc=200

90

140

190

240

290

340

0.2 0.4 0.6 0.8 1
Unknow n attribute ratio (FP/FN=6k/6k)

To
ta

l c
os

t

MaxWc=0

MaxWc=50

MaxWc=100

MaxWc=200

0.4
0.6
0.8

1
1.2
1.4
1.6

0.2 0.4 0.6 0.8 1
Unknw on attribute ratio (FP/FN=2k/6k)

N
um

be
r o

f b
at

ch
es

MaxWc=0
MaxWc=50
MaxWc=100
MaxWc=200

0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7

0.2 0.4 0.6 0.8 1
Unknow n attribute ratio (FP/FN=1k/6k)

N
um

be
r o

f b
at

ch
es

MaxWc=0
MaxWc=50
MaxWc=100
MaxWc=200

0.4

0.9

1.4

1.9

0.2 0.4 0.6 0.8 1
Unknow n attribute ratio (FP/FN=4k/6k)

N
um

eb
r o

f b
at

ch
es MaxWc=0

MaxWc=50
MaxWc=100
MaxWc=200

0.4

0.9

1.4

1.9

0.2 0.4 0.6 0.8 1
Unknow n attribute ratio (FP/FN=6k/6k)

N
um

be
r o

f b
at

ch
es MaxWc=0

MaxWc=50
MaxWc=100
MaxWc=200

Feature Value Acquisition in Testing: A Sequential Batch Test Algorithm

4.4 Revisit the Heart Disease Dataset

With the cost-sensitive decision trees built under different
hourly rates, we can apply our SBT algorithm to predict
what attribute values should be acquired, at what order, in
order to minimize the sum of attribute acquisition costs,
delay costs, and misclassification costs. Here we assume
that for all test examples, all attribute values are missing
(as new patients). Under the different hourly rates ($1/hr,
$10/hr, and $100/hr), the average total cost and the
average of number of batches of our SBT are displayed in
Figure 6.

Figure 6. The average total cost and the average number of
batches of our SBT on the dataset Heart Disease.

From Figure 6, we can see the number of batches changes
dramatically when the delay costs are changed. When
delay costs are increased (that is, the hourly rate is
increased from 1 to 10 to 100), the number of batches
decreases significantly. At the same time, the average
total cost increases significantly as well.

We next choose a particular test example to study SBT
under different hourly rates of 1, 10, and 100, simulating
patients with different tolerance levels of waiting. When
the hourly rate is set to be 1, SBT decides that two
batches of tests are needed for the test case. The first
batch of tests contains cp, sex and trestbps. The second
batch contains slope and fbs. Thus, the total attribute costs
for the test case is $95.5, and the total delay cost is $4.01.
Thus the total cost is $99.51 (no misclassification cost).
When the hourly rate is set to be 10, SBT decides that
only one batch is needed, containing cp, sex and trestbps.
The total attribute costs for this test example is $3.0, and
the total delay cost is $0.1. Thus the total cost is $3.1 (no
misclassification cost). Note that for this particular test
example, the total cost under the hourly rate of 10 is lower
than that under 1. However, in general the total cost under
the hourly rate of 10 is more likely to be higher than that
under 1. When the hourly rate is set to 100, SBT also
decides that only one batch is needed, containing cp, sex,
and trestbps, which is the same as the one with hourly rate
of 10. Thus, the total attribute cost is same ($3.0).
However, the total delay cost is $1.2 (higher than the
delay cost under the hourly rate of 10). The total cost is
$4.2 (no classification cost). In general, the higher the
hourly rate for waiting, the few batches will be suggested.

4.5 Comparison with Previous Work

As we discussed in the Introduction, SBT is a
generalization of the sequential test and single batch test

in (Ling et al., 2004). When the delay cost of all attributes
is 0, SBT behaves like sequential test (one test in a batch).
When the delay cost of unknown attributes is large, SBT
is much like single batch, forming one batch of tests. This
section compares SBT to the sequential test (called SeqT
here) and single batch (called SingB here) of (Ling et al.,
2004).

First of all, SeqT must be modified slightly, so it can deal
with attributes with delay cost. We add the delay cost into
the attribute cost, when an attribute is needed to get its
value. SingB is also modified to deal with delay cost.
When the single batch is formed by SingB, the maximum
delay cost of all attributes in the batch is added to the total
cost. Attribute costs are set randomly in the range of
[0..100], and the misclassification cost is set to be 4k/6k in
this comparison. All other settings in the experiment are
the same as in Section 4.1. The experimental results of the
three algorithms (SBT, SeqT, and SingB) are shown in
Figure 7.

Figure 7. Comparing the average total cost of SBT to previous
methods SeqT and SingB. The smaller the total cost, the better.

From Figure 7, we can see that SBT outperforms SeqT at
any unknown attribute ratio. When the unknown attribute
ratio is greater than 0.3 or so, SBT outperforms SingB
significantly. SBT is much better than SeqT and SingB
when the unknown attribute ratio increases. SingB
outperforms slightly SeqT and SBT when the unknown
attribute ratio is very low (less than 0.3), since SingB has
only one batch delay cost (the maximum delay cost).
However SBT has more batch delay costs and SeqT even
has a delay cost for each acquiring attribute. When the
unknown attribute ratio is greater than 0.5 or so, SeqT
performs better than SingB, since each test in SeqT is
used; however SingB performs many tests that are
wasted. In all, SBT performs the best, SeqT is second, and
SingB is the worst, especially when the unknown attribute
ratio is high.

5. Conclusions and Future Work

In this paper, we use cost-sensitive learning to model
medical diagnosis process in which doctors have to make
a trade-off between the cost of the tests and possible
misdiagnosis. In order to minimize the sum of
misdiagnosis costs, test costs, and delay costs, we propose
the sequential batch test strategy (SBT) that can acquire
sets of attribute values in sequence, similar to sets of
medical tests ordered by doctors in sequence. We

100

150

200

250

300

0.2 0.4 0.6 0.8 1
Unknow n attribute ratio

To
ta

l c
os

t

m=$1/hr m=$10/hr m=$100/hr

0
0.5

1
1.5

2
2.5

3
3.5

0.2 0.4 0.6 0.8 1
Unknow n attribute ratio

N
um

be
r o

f b
at

ch
es

m=$1/hr m=$10/hr m=$100/hr

120
170
220
270
320
370
420
470

0.2 0.4 0.6 0.8 1
Unknow n attribute ratio

To
ta

l c
os

t

SingB
SeqT
SBT

Feature Value Acquisition in Testing: A Sequential Batch Test Algorithm

empirically evaluate our SBT and investigate the effects
of delay costs under different settings, and show that it
outperforms previous methods. Our algorithm can be
applied in real-world diagnosis tasks.

In our future work we plan to continue to work with
medical doctors to apply our algorithms to medical data
with real costs. We also plan to incorporate other types of
costs in our decision tree learning and test strategies.

Acknowledgements
We thank very much Dr. Qingping Feng and Dr. Ray Guo
at University Hospital for providing valuable medical
information about the heart disease studied in the paper.
The authors thank NSERC for supporting their research.

References
Blake, C.L. and Merz, C.J. 1998. UCI Repository of

machine learning databases (website). Irvine, CA:
University of California, Department of Information and
Computer Science.

Chai, X., Deng, L., Yang, Q., and Ling, C.X. 2004. Test-
Cost Sensitive Naive Bayes Classification. In
Proceedings of The 2004 IEEE International
Conference on Data Mining.

Cohn, D., Ghahramani, Z., and Jordan, M. 1996. Active
learning with statistical models. Journal of Artificial
Intelligence Research, 4: 129-145.

Domingos, P. 1999. MetaCost: A General Method for
Making Classifiers Cost-Sensitive. In Proceedings of
the Fifth International Conference on Knowledge
Discovery and Data Mining, 155-164. San Diego, CA:
ACM Press.

Elkan, C. 2001. The Foundations of Cost-Sensitive
Learning. In Proceedings of the Seventeenth
International Joint Conference of Artificial Intelligence,
973-978. Seattle, Washington: Morgan Kaufmann.

Fayyad, U.M. and Irani, K.B. 1993. Multi-interval
discretization of continuous-valued attributes for
classification learning. In Proceedings of the 13th
International Joint Conference on Artificial Intelligence,
1022-1027. France: Morgan Kaufmann.

Friedman, J., Yun, Y., and Kohavi, R. 1996. Lazy
Decision Trees. In proceedings of 13th National
Conference Artificial Intelligence.

Gorry, G.. and Barnett, G.. 1968. “Experience with a
model of sequential diagnosis”, Computers and
Biomedical Research.

Greiner, R., Grove, A., and Roth, D. 2002. Learning cost-
sensitive active classifiers. Artificial Intelligence,
139(2): 137-174.

Ling, C.X., Yang, Q., Wang, J., and Zhang, S. 2004.
Decision Trees with Minimal Costs. In Proceedings of
the Twenty-First International Conference on Machine
Learning, Banff, Alberta: Morgan Kaufmann.

Lizotte, D., Madani, O., and Greiner R. 2003. Budgeted
Learning of Naïve-Bayes Classifiers. In Proceedings of
the Nineteenth Conference on Uncertainty in Artificial
Intelligence. Acapulco, Mexico: Morgan Kaufmann.

Melville, P., Saar-Tsechansky, M., Provost, F., and
Mooney, R.J. 2004. Active Feature Acquisition for
Classifier Induction. In Proceedings of the Fourth
International Conference on Data Mining. UK.

Melville, P., Saar-Tsechansky, M., Provost, F., and
Mooney, R.J. 2005. Economical Active Feature-value
Acquisition through Expected Utility Estimation.
UBDM Workshop, KDD 2005.

Mitchell, T. 1997. Machine Learning, the McGraw-Hill
Companies.

Nunez, M. 1991. The use of background knowledge in
decision tree induction. Machine learning, 6:231-250.

Quinlan, J.R. eds. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann.

Saar-Tsechansky, M. and Provost, F. 2004. Active
sampling for class probability estimation and ranking.
Machine Learning, 54(2): 153-178.

Tan, M. 1993. Cost-sensitive learning of classification
knowledge and its applications in robotics. Machine
Learning Journal, 13:7-33.

Ting, K.M. 1998. Inducing Cost-Sensitive Trees via
Instance Weighting. In Proceedings of the Second
European Symposium on Principles of Data Mining and
Knowledge Discovery, 23-26. Springer-Verlag.

Turney, P.D. 1995. Cost-Sensitive Classification:
Empirical Evaluation of a Hybrid Genetic Decision Tree
Induction Algorithm. Journal of Artificial Intelligence
Research 2:369-409.

Turney, P.D. 2000. Types of cost in inductive concept
learning. In Proceedings of the Workshop on Cost-
Sensitive Learning at the Seventeenth International
Conference on Machine Learning, Stanford University,
California.

Zadrozny, B. and Elkan, C. 2001. Learning and Making
Decisions When Costs and Probabilities are Both
Unknown. In Proceedings of the Seventh International
Conference on Knowledge Discovery and Data Mining,
204-213.

Zubek, V.B. and Dietterich, T. 2002. Pruning improves
heuristic search for cost-sensitive learning. In
Proceedings of the Nineteenth International Conference
of Machine Learning, 27-35, Sydney, Australia: Morgan
Kaufmann.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

