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Abstract  
In medical diagnosis, doctors often have to order 
sets of medical tests in sequence in order to 
make an accurate diagnosis of patient diseases. 
While doing so they have to make a trade-off 
between the cost of the tests and possible 
misdiagnosis. In this paper, we use cost-sensitive 
learning to model this process. We assume that 
test examples (new patients) may contain 
missing values, and their actual values can be 
acquired at cost (similar to doing medical tests) 
in order to reduce misclassification errors 
(misdiagnosis). We propose a novel Sequential 
Batch Test algorithm that can acquire sets of 
attribute values in sequence, similar to sets of 
medical tests ordered by doctors in sequence. 
The goal of our algorithm is to minimize the 
total cost (i.e., the trade-off) of acquiring 
attribute values and misclassifications. We 
demonstrate the effectiveness of our algorithm, 
and show that it outperforms previous methods 
significantly. Our algorithm can be readily 
applied in real-world diagnosis tasks. A case 
study on the heart disease is given in the paper. 

1.  Introduction  

Cost-sensitive learning considers a variety of costs in 
various components and process of learning (Turney, 
2000), with the goal of minimizing the costs or the total 
cost. Two most important types of costs are identified as 
misclassification costs and attribute costs (also called test 
costs). Misclassification costs are an extension of error 
rate (or one minus accuracy) as different types of errors 
(such as false positive and false negative) can have 
different costs. Attribute costs reflect how expensive to 
obtain the missing attribute values. Recent works have 
considered methods of acquiring attribute values during 
training (Melville et al., 2004; 2005) and testing (Ling et 
al., 2004; Chai et al., 2004), for the purpose of reducing 
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the misclassification cost. Learning algorithms that 
actively acquire extra information (such as missing 
attribute values) during learning is also called active 
learning (e.g., (Cohn et al., 1996; Saar-Tsechansky and 
Provost, 2004; Greiner et al., 2002)). Studying active 
learning in cost-sensitive framework has a unique 
advantage: learning becomes an optimization problem 
with a single goal: minimizing the sum of attribute 
acquisition cost and misclassification cost. In this paper, 
we propose a novel algorithm for attribute acquisition 
during testing based a model has already been built.  

Assume that a cost-sensitive model has already been built. 
Given a test case with missing attribute values, the 
question is what attribute values should be acquired, at 
what order, such that the sum of attribute acquisition cost 
and expected misclassification cost is minimum. 
Answering to this question can make a significant impact 
to many real-world diagnosis applications. For instance, 
during medical diagnosis, doctors need to apply their 
existing knowledge (similar to a cost-sensitive model 
previously built) to predict the disease (class label) of new 
patents (test cases). As much is unknown (missing values) 
of a new patient, the doctors often have to order medical 
tests, such as blood tests (acquiring attribute values) 
before a final prediction (diagnosis) is made. Not only do 
medical tests have different costs (i.e., attribute costs, 
which include the actual cost as well as risks and 
uncomfortability to the patients), they also have different 
delay time in getting their results from the laboratories. 
Due to delays in getting the test results, doctors often 
order several tests to be done together as in a batch (that 
is, at the same time), and based on the results of the tests 
in the batch, decide what tests, if any, are to be performed 
next. When tests are done in a batch, the delay of the 
batch is (reasonably assumed to be) the maximum delay 
of all tests in the batch. Thus, doing tests in batch 
significantly reduces the delay compared to the total delay 
if these tests are done in sequence (i.e., the maximum of a 
set of numbers is always smaller than the sum of them). 
Clearly, doctors have to decide what tests should be 
performed in batches, at what order, in order to strike a 
good balance between reducing the test costs, reducing 
the total delay time, and making a good prediction on 
patient’s disease (reducing misclassification cost).  
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In this paper we propose a novel algorithm that can 
decide, for each test example, what attribute values should 
be acquired in batch, at what order, in order to minimize 
the sum of attribute acquisition costs, delay costs, and 
misclassification costs. We call it Sequential Batch Test 
(SBT for short) algorithm. Our algorithm utilizes a cost-
sensitive decision tree (Ling et al., 2004) built previously. 
We assume that test examples may have missing attribute 
values, and each attribute has a specific (given) cost, as 
well as a delay cost, which may be converted from the 
delay time (say, in hours). All costs (misclassification 
cost, attribute cost, and delay cost) are represented in the 
same unit (such as dollars). Our proposed algorithm SBT 
can suggest batches of attribute values to acquire, in a 
certain sequence, such that the sum of attribute 
acquisition costs, delay costs, and misclassification costs 
is minimal.   

 Our work is significantly different from previous work in 
attribute value acquisition during training. (Melville et al., 
2004; 2005) proposed attribute value acquisition during 
training, instead of testing as in our paper. Their 
algorithm is also sequential in nature to query the missing 
values, instead of in batches. In addition, their goal is to 
reduce misclassification error, instead of total cost. (Ling 
et al., 2004) proposed attribute value acquisition during 
testing. However, their “test strategies” are simple: only 
one attribute is acquired at a time (the batch size is always 
1). They did propose a “single batch” algorithm that 
suggests a batch of tests to be done at the same time. 
However, their single batch algorithm acquires all 
attributes in a sub-tree of the decision tree to be 
performed, and thus, too many attributes would be 
included in only one batch. In addition, no delay cost is 
considered. (Turney, 1995) included delay in the 
attributes, but only delayed or non-delayed. We quantify 
the amount of delay in each attribute. (Turney, 1995)’s 
algorithm is a genetic algorithm, which is more 
computationally expensive and was not studied in a true 
cost-sensitive framework as we do.  Most previous work 
on active learning (such as (Cohn et al., 1996; Saar-
Tsechansky and Provost, 2004; Greiner et al., 2002)) 
considers labeling costs while our algorithm acquires 
actively attribute values during the testing process.  

Our paper is organized as follows. In Section 2, we 
introduce a real-world case on the heart disease to 
illustrate the problem we are studying. In Section 3, we 
describe our Sequential Batch Test (SBT) algorithm for 
test examples and its integration with the cost-sensitive 
decision tree learning. Then we demonstrate the 
effectiveness of our algorithm, and show experimentally 
that it outperforms previous methods. Finally we conclude 
the work in Section 5.  

2.  A Case Study of Heart Disease 

Before we discuss the Sequential Batch Test algorithm, 
let us look at a concrete case first: the Heart Disease. The 

Heart Disease dataset was used in the cost-sensitive 
genetic algorithm by (Turney, 1995), and it involves the 
diagnosis of the heart disease. The class label is whether 
or not there is a coronary artery narrowing 
(positive/negative), and the attributes are 13 non-invasive 
tests including patient profile (they are simply regarded as 
“cheap tests”), as listed in Table 1. The misclassification 
costs (the values of false positive (FP) and false negative 
(FN)), attribute costs, and attribute delay time are 
obtained from medical experts in the local hospital and 
the insurance program in Canada: the misclassification 
costs FP = 600 and FN = 1,000, and the attribute costs 
and their delay time (in hours) are listed in Table 1. To 
convert the delay time to cost, an hourly rate is also given. 
The multiplication of the delay time and the hourly rate is 
attributes’ delay cost. For real world applications, we can 
assume that test cases may have different hourly rate, just 
as different patients may have different tolerance for 
waiting; some people may be willing to wait while others 
cannot. The original dataset contains a total of 294 cases 
with 36.1% positive cases (106 positive cases) and the 
rest are negative cases. Note that in practice when a group 
of related tests (such as blood tests) are performed at the 
same time (in a batch), there is often a discount on the 
total test cost. This issue is not considered in this paper.  

Table 1. Attribute costs (in Canadian Dollars) and delay time (in 
hours) for the Heart Disease dataset. 

As we have discussed in the Introduction, we assume that 
a cost-sensitive decision tree has been built for the 
problem domain, and is used as a base learner for the SBT 
algorithm. In this paper, we re-implemented the cost-
sensitive decision tree proposed by (Ling, et al., 2004), 
and thus we provide a quick review of it here. The cost-
sensitive decision tree is very similar to C4.5 (Quinlan, 
1993), except it uses total cost reduction, instead of 
entropy reduction, as the attribute split criterion. More 
specifically, the total cost before and after splitting on an 
attribute can be calculated, and the difference is the cost 
reduction “produced” by this attribute. The total cost 
before split is simply the misclassification cost of the set  

Tests 
(attributes)

Description Attribute 
Costs (CN$)

Delay Time 
(hours) 

age of the patient 1.00 0.001 
Sex Sex 1.00 0.001 
Cp chest pain type 1.00 0.001 
Trestbps resting blood pressure 1.00 0.01 
Chol serum cholesterol in mg/dl 7.27 4 
Fbs fasting blood sugar 5.20 4 
Restecg resting electrocardiography results 15.50 0.5 
Thalach maximum heart rate achieved 102.90 1 
Exang exercise induced angina 87.30 1 
Oldpeak ST depression induced by exercise 87.30 1 
Slope slope of the peak exercise ST segment  87.30 1 
Ca number of major vessels colored by 

fluoroscopy
100.90 1 

Thal finishing heart rate 102.90 1
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                           (a) Hourly rate of $1/hr                                                                    (b) Hourly rate of $100/hr 

Figure 1. Cost-sensitive decision trees with two different hourly rates for the delay tolerance. The attribute cost and delay cost are 
displayed in each node separated by /. Continuous attributes have been discretized and are represented by 1, 2, and so on. 

of examples. The total cost after split on an attribute is the 
sum of misclassification cost of subsets of examples split 
by the attribute values, plus the attribute cost and the 
attribute delay cost of these examples (the cost-sensitive 
decision tree proposed by (Ling, et al., 2004) does not 
consider the attribute delay cost).  The attribute with the 
maximal positive cost reduction is chosen as the root, and 
the procedure recursively applies to the subsets of 
examples split by the attribute values.  

We apply this cost-sensitive tree algorithm to the Heart 
Disease dataset with three different hourly rates of $1/hr, 
$10/hr, and $100/hr. Again the hourly rate multiplies the 
delay time equals to the delay cost. As one must wait for 
the result of attributes being tested, we include delay cost 
as a part of the attribute cost during the tree construction. 
The numerical attributes in datasets are discretized into 
discrete values (we use 1, 2, … to represent them) using 
the minimal entropy method of (Fayyad and Irani, 1993). 
Figures 1(a) and 1(b) show the two trees built with two 
different delay costs for the hourly rates of $1/hr and 
$100/hr. The tree with hourly rate of $10/hr is very 
similar to the one with $1/hr, except one different small 
sub-tree; therefore it is not shown. 

Several interesting observations can be made from the 
two trees. First we can see that delay costs can affect the 
decision trees significantly. Compared Figures 1(a) and 
1(b), the tree structures are quite different as the delay 
costs are varied.  Specifically, the tree Figure 1(b) with a 
higher delay cost prefers to use the attributes with lower 
delay costs to split the training examples. The attributes 
with higher delay costs only appear in the bottom if they 
are used. Another observation is that the tree-building 
algorithm prefers to choose attributes with zero or small 
sum of attribute and delay costs at the top (or root) of the 
tree. This is because the attribute at the root will be tested 

by all test examples. Choosing an attribute with zero or 
small cost helps reduce the total cost. Of course attribute 
selection also depends on discriminative power of the 
attribute, as an attribute is selected if the sum of 
misclassification, attribute cost, and delay cost is minimal.  

Given a test examples with missing values (even when all 
values are missing), and a cost-sensitive decision trees 
similar to the ones in Figure 1, the SBT algorithm will 
suggest batches of attribute values to be tested in a certain 
sequence, in order to minimize the total cost of attribute 
acquisition, delay, and misclassification. Note that when a 
batch of unknown attributes (tests) is being determined, 
their values are not known; only after the batch is 
determined, their true values will be obtained at cost. If 
too many attributes are included in a batch, many of them 
may be wasted and the total test cost can be high. If too 
few attributes are included, more batches of tests would 
be needed and the total wait cost would be high. SBT will 
then determine if the next batch of tests is needed or not, 
based on the revealed values of earlier tests. Clearly it is 
not trivial to make an optimal decision. We will describe 
SBT in the next section. After that we will revisit this case 
Section 4.4. 

3.  Sequential Batch Test (SBT) Algorithm 

In this section, we describe our Sequential Batch Test 
(SBT) in detail. We will first describe the SBT algorithm 
in the generic form; that is, it is an A*-like search 
algorithm that can work with any cost-sensitive learning 
model, if the required components of the model can be 
implemented efficiently (see below). We will then 
describe SBT with cost-sensitive decision trees. The tree 
structure makes the implementation of SBT more 
efficient.  
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3.1   The Framework of SBT  

The framework of the SBT algorithm is quite simple, and 
it can work with any cost-sensitive learning algorithms, 
such as ICET in (Turney, 1995), cost-sensitive decision 
tree in (Ling et al., 2004), and cost-sensitive naïve Bayes 
in (Chai et al., 2004), as long as the required components 
can be implemented efficiently. At the core of the SBT 
algorithm is an A*-like algorithm to search for one batch 
of tests to be performed. It has three components: 
initialization, evaluation, and update. The three 
components are directly dependent on the cost-sensitive 
learning model. The initialization component searches the 
initial candidates. Then the evaluation component 
evaluates the cost-effectiveness of each candidate in the 
list. The best candidate with the maximum expected cost 
reduction is chosen, and is added into the current batch if 
it is positive. The update component updates and 
maintains the potential candidates. After one batch is 
determined, the values of the attributes in the batch are 
obtained (after performing the tests). The SBT algorithm 
will continue to search the next batch until no more 
batches needed. The pseudo-code of the general SBT 
algorithm is shown in Figure 2. 

Algorithm SBT_General() 

Input: a cost-sensitive learning algorithm, a test example with 
missing values 

1. Loop 
a. L = Get an initial list of candidates 
b. B = empty   /* the current batch of tests */ 
c. While L is not empty do 

i. Find v with maximum cost reduction in L 
ii. If v has a positive cost reduction 
iii. Then add v into B, delete v from L, and update L  
iv. Else exit the while loop /* No suitable candidate*/ 

d. End of while 
e. If (B is not empty) then 

i.  Output B as the current batch of tests 
ii. Obtain values of attributes in B at cost 

f. Else exit Loop at 1 
2. Predict the test case with all known values 

Figure 2. The generic pseudo-code for SBT. 

The first sub-step (1a) that initializes the candidate list L 
is dependent on the learning model. For decision trees, the 
initial candidate list contains only one node: the first 
unknown attribute encountered when a test example with 
missing values is classified by the tree. For cost-sensitive 
naïve Bayes, the initial list contains all unknown 
attributes of the test example. Similarly, the evaluation 
steps (1c(i) and 1c(ii)) are also dependent on the learning 
models. We will describe the integration of SBT with 
cost-sensitive decision trees and the corresponding 
evaluation method in the following section. The 
evaluation process for naïve Bayes is computationally 
expensive (involving combination of attributes in the 
current batch), thus we do not study it in this paper. Last, 
updating the candidate list L (sub-step 1c(iii)) also relies 
on the learning model. For decision trees, the update 

procedure will delete the best candidate from the list L, 
and then adds its children into the list L. For cost-sensitive 
naïve Bayes, the chosen candidate is simply deleted from 
the candidate list L.  

3.2  SBT with Cost-sensitive Decision Tree  

In this section we will describe SBT with cost-sensitive 
decision trees as the base learner. The tree structure (such 
as trees in Figure 1) makes the searching the initial 
candidate list and maintaining the candidate list easy and 
efficient. We have discussed the initialization and update 
steps in Section 3.1. In this section, we focus on the 
evaluation step of SBT with cost-sensitive decision trees. 

With the cost-sensitive decision trees, SBT uses a 
heuristic utility measure to decide what attributes should 
be included in the batch. The utility U(.) of an attribute is 
the net profit brought by the attribute, described below. 
An attribute is added to a batch if the utility is positive 
and maximum (among other attributes). We keep on 
adding more unknown attributes into the current batch 
until no more unknown attributes can bring in net profit. 
The rationale behind this (heuristic) strategy is that 
attributes that bring in some net profit is worthwhile to be 
included in the current batch. The pseudo-code for SBT 
with cost-sensitive decision trees is given in Figure 3. The 
line numbers (such as 1a and 1c(iii)) in Figure 3 
correspond to the same line numbers in Figure 2. The 
time complexity of this specific SBT algorithm is linear to 
the size of the tree, as each node in the tree would be 
considered at most once.  

Algorithm SBT_Tree() 

Input: the cost-sensitive decision tree learning algorithm CSDT, 
a test example with missing values 

1. Loop  
a. L = the first unknown attribute when classifying a test 

case   
b. B = empty   /* the batch of tests */ 
c. While L is not empty do 

i. Calculate U(i) for each i ∈  L, U(t) = maxU(i) 
ii. If U(t) > 0  
iii. then add t into B, delete t from L, add R(t) into L 
iv. else exit the while loop  /* No positive utility */ 

d. End of while 
e. If (B is not empty) then 

i. Output B as the current batch of tests 
ii. Obtain values of attributes in B at cost 

f. Else exit Loop at 1 
2. Predict the test case with all known values 

Figure 3. The pseudo-code for SBT with cost-sensitive decision 
trees. The line numbers (such as 1a and 1c(iii)) correspond to 
the same line numbers in Figure 2. 

The utility U(.) of an attribute (line 1c(i) in the pseudo-
code) is the net profit brought in by the attribute. As the 
attribute value is yet unknown when deciding the batch, 
U(.) of an attribute is estimated by the expected value of 
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all possible values of the attribute. The probability of a 
possible value is estimated by the training examples 
falling under that node in the tree. More specifically, the 
utility U(.) of an attribute is the difference of expected 
total cost before and after testing i, defined as follows: 

]),(),()([)()( ∑ +×+−=
j

TBWjimiscjipicimisciU  

where misc(.) is the total expected misclassification cost 
of a node in the tree before testing i, c(.) is the total 
attribute cost, and p(i, j) is the probability of the j-th value 
of the attribute i. WTB is the current batch delay cost. It is 
defined as WTB = max(WB, Wi), where WB is the previous 
batch delay cost, and Wi is the delay cost of the attribute i. 

When the attribute t is added into the batch, the update 
procedure (line 1c(iii)) deletes the attribute t from the list 
L, and then adds its children R(t) into the list L. 

After the current batch of attributes is determined, it will 
request the values of those attributes in the batch at cost 
(line 1e(ii)). After these values are obtained, the test 
example can be classified further down in the tree, until it 
is stopped by another unknown attribute or at a leaf. In the 
former case, the same procedure is applied; in the latter 
case, the test example is classified with the class label of 
the leaf, and the testing process is completed.   

The SBT algorithm described above is heuristic but it is 
close to the ideal one: it guarantees that if the delay cost 
of all attributes is 0, then the SBT would become an ideal, 
sequential process: it performs one attribute acquisition at 
a time (or the batch size is always 1). See Section 4.3 for 
experimental verification. This is also the myopia 
approach (Gorry and Barnett, 1968). On the other hand, if 
the delay cost of the first attribute in a batch is very large, 
the current batch would grow until the expected cost 
reduction of the remaining unknown attributes is no 
longer greater than 0. Thus, only one batch is 
recommended (see Section 4.3 for experimental 
verification). 

4.  Experiments 

In this section, we empirically evaluate the SBT algorithm 
(from now on, when we mention the SBT algorithm, we 
mean SBT with cost-sensitive decision tree) on real-world 
datasets to show its effectiveness in finding batches of 
attributes to be acquired in sequence to minimize the sum 
of attribute costs, attribute delay costs, and 
misclassification cost.  

4.1  Datasets and Experiment Setup 

We choose 10 real-world datasets, listed in Table 2, from 
the UCI Machine Learning Repository (Blake and Merz, 
1998). These datasets are chosen because they are binary 
class, have at least some discrete attributes, and have a 
good number of examples. The numerical attributes in 
datasets are discretized into integers (1, 2, …) using the 

minimal entropy method of (Fayyad and Irani, 1993). 
Each dataset is split into two parts: the training set (60%) 
and the test set (40%). To study the effect of various 
amount of missing values in the test data, a certain 
percentage of attributes (20%, 40%, 60%, 80%, and 
100%) are randomly selected and marked as unknown (in 
test examples). If an attribute value is requested by the 
SBT algorithm, its original value is revealed.  

Unfortunately, the detailed attribute costs and attribute 
delay costs of these datasets are unknown. To make the 
comparison possible, we simply assign random numbers 
in a certain range as these costs. This is reasonable 
because the same set of costs is used in the experimental 
evaluations and comparison. The attribute costs are 
assigned with random numbers between 0 and 100. In 
order to investigate the effect of various delay costs, we 
set up four levels for delay costs: (a) all delay costs are 0; 
(b) all delay costs are randomly assigned from 0 to 50, 
thus the delay costs are half of the range of attribute costs; 
(c) all delay costs are randomly assigned from 0 to 100; 
and (d) all delay costs are randomly assigned from 0 to 
200 (twice the range of attribute costs). We also vary the 
misclassification costs (FP/FN) to be 1k/6k, 2k/6k, 4k/6k, 
and 6k/6k. (Due to symmetry, there is no need to 
experiment cases where FP > FN). The correct 
classification costs TP and TN are always set as 0.  

Table 2. Datasets used in the experiments 

 No. of 
Attributes 

No. of 
Examples 

Class dist. 
(N/P) 

Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357
Tic-tac-toe 9 958 332/626
Mushroom 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118

4.2  Delay Cost Varied while Misclassification Cost 
Fixed 

In this section, we investigate the effects of delay costs 
whose range is varied under a fixed misclassification cost. 
For each misclassification cost (FP/FN=1k/6k, 2k/6k, 
4k/6k, and FP/FN=6k/6k, we vary the three ranges of the 
delay costs ([0..50], [0..100], and [0..200]). We repeat this 
process 25 times, and the average number of batches for 
the 10 datasets is plotted in Figure 4.  

Note that from Figure 4 we can see that the number of 
batches is often less than 1 especially when the ratios of 
missing attributes are small (such as 0.2). This is because 
with a small percentage of missing values, often the SBT 
algorithm does not need to acquire any missing values 
when classifying test examples by the decision tree.  
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From Figure 4, we can draw some interesting 
conclusions: First of all, the smaller the delay cost range, 
the more the number of batches (for the same ratio of 
unknown attributes). This meets our expectation: when 
the delay cost is small, it is preferable to have small batch 
sizes (thus more batches in sequence), as it is better to 
wait to obtain attribute values so that they can help to 
make decision for the next attribute(s) more accurately 
and save money from unnecessary attribute acquisition. 
The extreme case is zero (0) attribute delay cost. Under 
this case, it is preferable to do one test at a time. Our 
experiment results show that the average number of 
batches in this case is the highest. When the range of the 
delay cost is high, we can expect that SBT will reduce the 
number of batches to save the total cost, as shown in 
Figure 5. 

Figure 4. Number of batches of our SBT under different 
misclassification cost settings. 

 Figure 5. The average total costs (in $) for SBT under different 
misclassification cost settings. 

Figure 5 shows the average total costs of SBT for the 10 
datasets under the misclassification cost settings. We can 
see clearly that when the ratio of missing values increases, 
the average total cost also increases, as expected. What is 
more interesting is that when the range of the delay costs 
increases, the average total cost also increases. As the 
range of the delay costs increases, attribute delay costs 
become higher. This directly causes the batch delay cost 
to increase. 

 

4.3  Delay Cost is Zero or Very Large 

To further study the effect of the delay cost on the number 
of batches in SBT, we conduct two more experiments: 
setting one attribute delay cost (from some non-zero 
value) to zero or very large (greater than the maximum 
misclassification cost). When the delay cost of an 
attribute is set to 0, it is likely that this attribute will be 
single out to form a batch by itself, as knowing its value 
(without delay) would help to decide what other attributes 
should be acquired in the next step. On the other hand, if 
the delay cost of one attribute is set much larger than the 
misclassification cost, then this attribute will be “pushed 
out” of the decision tree (not chosen in the tree as the sum 
of attribute cost and delay cost is very large). Thus it will 
not be picked by SBT to be included in a batch. We study 
one specific case and one general case with the dataset 
(Kr-vs-kp), as shown below.  

For the specific case, a particular test example is chosen. 
The attribute cost of all attributes is randomly assigned to 
be within 0 to 100, and the misclassification cost is set to 
be 4k/6k. In this case the SBT algorithm suggests 3 
batches with total cost $6,951.1 (sum of the attribute 
costs, delay costs, and misclassification cost of $6,000). 
The three batches are: {A21}, {A1, A6, A10, A15, A16, A28, 
A31, A32, A33, A35}, and {A20, A22, A23}. Then one 
attribute, A31, is chosen, and its delay cost is changed 
from 21.3 (randomly assigned) to be 0. The number of 
batches increases from 3 to 4: {A21}, {A1, A6, A10, A15, 
A16, A28, A32, A33, A35}, {A31}, {A20, A22, A23}, as the 
attribute A31 is singled out as a batch alone. On the other 
hand, when the delay cost of A31 is changed from 21.3 to 
a very large number (10,000 here), the number of batches 
decreases from 3 to 2: {A21}, {A1, A6, A10, A15, A16, A28, 
A32, A33, A35}, as A31 is not included in the tree.  

To study the general case, we run our SBT 25 times for a 
set of test cases (40% randomly sampled the dataset Kr-
vs-kp); other settings are the same as above. For each run, 
A31 is set to 0 or to 10,000. The average number of 
batches is listed in Table 3. From the table, we can clearly 
see the general trend: the an attribute’s delay cost is set to 
0, the number of batches increases by about 1 on average, 
indicating that the attribute is singled out from the batch, 
if it was in the batch. If the attribute’s delay cost is set to a 
very large number, this attribute would be pushed out of 
the tree (if it was in the tree). The number of batches 
would decrease by about 1 on average. This indicates that 
the SBT algorithm, though heuristic, is close to the ideal 
one. When delay costs are small, the algorithm behaves 
like a sequential one, doing one test at a time. When delay 
costs are large, the algorithm just would suggest one 
single batch.   

Table 3. The average number of batches under different delay 
cost of A31 from the dataset Kr-vs-kp. 

Delay cost of A31 [0..100] 0 10,000
Number of batches 1.85 1.93 1.76
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4.4  Revisit the Heart Disease Dataset 

With the cost-sensitive decision trees built under different 
hourly rates, we can apply our SBT algorithm to predict 
what attribute values should be acquired, at what order, in 
order to minimize the sum of attribute acquisition costs, 
delay costs, and misclassification costs. Here we assume 
that for all test examples, all attribute values are missing 
(as new patients). Under the different hourly rates ($1/hr, 
$10/hr, and $100/hr), the average total cost and the 
average of number of batches of our SBT are displayed in 
Figure 6.  

Figure 6. The average total cost and the average number of 
batches of our SBT on the dataset Heart Disease. 

From Figure 6, we can see the number of batches changes 
dramatically when the delay costs are changed. When 
delay costs are increased (that is, the hourly rate is 
increased from 1 to 10 to 100), the number of batches 
decreases significantly. At the same time, the average 
total cost increases significantly as well. 

We next choose a particular test example to study SBT 
under different hourly rates of 1, 10, and 100, simulating 
patients with different tolerance levels of waiting. When 
the hourly rate is set to be 1, SBT decides that two 
batches of tests are needed for the test case. The first 
batch of tests contains cp, sex and trestbps. The second 
batch contains slope and fbs. Thus, the total attribute costs 
for the test case is $95.5, and the total delay cost is $4.01. 
Thus the total cost is $99.51 (no misclassification cost). 
When the hourly rate is set to be 10, SBT decides that 
only one batch is needed, containing cp, sex and trestbps. 
The total attribute costs for this test example is $3.0, and 
the total delay cost is $0.1. Thus the total cost is $3.1 (no 
misclassification cost). Note that for this particular test 
example, the total cost under the hourly rate of 10 is lower 
than that under 1. However, in general the total cost under 
the hourly rate of 10 is more likely to be higher than that 
under 1. When the hourly rate is set to 100, SBT also 
decides that only one batch is needed, containing cp, sex, 
and trestbps, which is the same as the one with hourly rate 
of 10. Thus, the total attribute cost is same ($3.0). 
However, the total delay cost is $1.2 (higher than the 
delay cost under the hourly rate of 10). The total cost is 
$4.2 (no classification cost). In general, the higher the 
hourly rate for waiting, the few batches will be suggested.  

4.5  Comparison with Previous Work 

As we discussed in the Introduction, SBT is a 
generalization of the sequential test and single batch test 

in (Ling et al., 2004). When the delay cost of all attributes 
is 0, SBT behaves like sequential test (one test in a batch). 
When the delay cost of unknown attributes is large, SBT 
is much like single batch, forming one batch of tests. This 
section compares SBT to the sequential test (called SeqT 
here) and single batch (called SingB here) of (Ling et al., 
2004).  

First of all, SeqT must be modified slightly, so it can deal 
with attributes with delay cost. We add the delay cost into 
the attribute cost, when an attribute is needed to get its 
value. SingB is also modified to deal with delay cost. 
When the single batch is formed by SingB, the maximum 
delay cost of all attributes in the batch is added to the total 
cost. Attribute costs are set randomly in the range of 
[0..100], and the misclassification cost is set to be 4k/6k in 
this comparison. All other settings in the experiment are 
the same as in Section 4.1. The experimental results of the 
three algorithms (SBT, SeqT, and SingB) are shown in 
Figure 7.  

Figure 7. Comparing the average total cost of SBT to previous 
methods SeqT and SingB. The smaller the total cost, the better. 

From Figure 7, we can see that SBT outperforms SeqT at 
any unknown attribute ratio. When the unknown attribute 
ratio is greater than 0.3 or so, SBT outperforms SingB 
significantly. SBT is much better than SeqT and SingB 
when the unknown attribute ratio increases. SingB 
outperforms slightly SeqT and SBT when the unknown 
attribute ratio is very low (less than 0.3), since SingB has 
only one batch delay cost (the maximum delay cost). 
However SBT has more batch delay costs and SeqT even 
has a delay cost for each acquiring attribute. When the 
unknown attribute ratio is greater than 0.5 or so, SeqT 
performs better than SingB, since each test in SeqT is 
used; however SingB performs many tests that are 
wasted. In all, SBT performs the best, SeqT is second, and 
SingB is the worst, especially when the unknown attribute 
ratio is high.  

5.  Conclusions and Future Work 

In this paper, we use cost-sensitive learning to model 
medical diagnosis process in which doctors have to make 
a trade-off between the cost of the tests and possible 
misdiagnosis. In order to minimize the sum of 
misdiagnosis costs, test costs, and delay costs, we propose 
the sequential batch test strategy (SBT) that can acquire 
sets of attribute values in sequence, similar to sets of 
medical tests ordered by doctors in sequence. We 
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empirically evaluate our SBT and investigate the effects 
of delay costs under different settings, and show that it 
outperforms previous methods. Our algorithm can be 
applied in real-world diagnosis tasks. 

In our future work we plan to continue to work with 
medical doctors to apply our algorithms to medical data 
with real costs. We also plan to incorporate other types of 
costs in our decision tree learning and test strategies. 
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