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Evaluation measures are widely used in machine learning a
data mining to compare different learning algorithms. They"
are also often used as objective functions to construahiear
ing models. For example, accuracy is a common evaluatio
measure in machine learning.
compare predictive performance of many learning algorghm
including decision trees, neural networks, and naive Baye
(e.g.,[Kononenko, 199D, and it is also the goal of optimiza-
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Abstract

Evaluation measures play an important role in ma-
chine learning because they are used not only to
compare different learning algorithms, but also of-
ten as goals to optimize in constructing learning
models. Both formal and empirical work has been
published in comparing evaluation measures. In
this paper, we propose a general approach to con-
struct new measures based on the existing ones,
and we prove that the new measures are consis-
tent with, and finer than, the existing ones. We
also show that the new measure is more correlated
to RMS (Root Mean Square error) with artificial
datasets. Finally, we demonstrate experimentally
that the greedy-search based algorithm (such as ar-
tificial neural networks) trained with the new and
finer measure usually can achieve better prediction
performance. This provides a general approach
to improve the predictive performance of existing
learning algorithms based on greedy search.

Introduction

tion in constructing decision tre¢®uinlan, 1993 In recent . o ]
years, the ROC (Receiver Operating Characteristics)-origiz Review of Formal Criteria for Comparing

nated in signal detectiofGreen and Swets, 19b6as been
introduced into machine learnifBrovost and Fawcett, 1997;
Provostet al,, 1994. The area under the ROC curve, or sim-
ply AUC, has been proposed in comparing learning algo
rithms[Provost and Domingos, 20P&nd constructing or op-
timizing learning model&Ferriet al,, 2002; Rakotomamonijy,

2004.

[Bradley, 199F experimentally compares popular machine
learning algorithms using both accuracy abtd C, and finds

It has been widely used t
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Analysis of Variance (ANOVA) tests, is independent of the
decision threshold, and is invariant gopriori class prob-
ability distributions.  Recently[Caruana and Niculescu-
Mizil, 2004] empirically compare nine commonly used ma-
chine learning measures in terms of the correlation reiatio
They find that RMS (Root Mean Square error) is most cor-
related with the other measures on average, and thus it is a
robust measure in uncertain situations. They also cortsiruc
new measure called SAR by averaging the measures of accu-
racy,AUC, and RMS, and claim that this new measure works
better than RMS.

In [Ling et al, 2009 two formal criteria are established
to compare evaluation measures. They are cgfiedistical)
consistencyand(statistical) discriminancy They formally
prove thatAU C' is consistent with, and more discriminant (or
finer) than accuracy, for the binary balanced datasets (which
have the same number of positive and negative examples).

In this paper we propose a general method to construct new
measures based on existing ones, and prove that they are con-
sistent with and finer than the existing onés. Further, we
will show experimentally that the newly constructed measur
is more correlated to RMS than the existing ones. With a
consistent and finer measure, a greedy hill-climbing legyni

rjgorithm (such as neural networks) would search betee (i.

ot likely to get stuck in a flat plateau) and find better opti-
mal solutions. We conduct experiments to show that neural

g_‘etworks optimized by the new measure predict better than

e ones optimized by the existing ones. This illustrates th
usefulness of designing new and finer measures for machine
learning, as it provides a general method to improve legrnin
algorithms using greedy search.

Measures
In [Ling et al, 2003 the degree of consistenanddegree

of discriminancyof two measures are proposed and defined.

The degree of consistency between two meastiraad g,
denoted a’ ¢, is simply the fraction (probability) that two
measures are consistent over some distribution of thenosta

1We normalize all measures in our discussion to be in [0, Ih wi
0 to be the worst, and 1 to be the best. For this reason, thesagos

that AUC' exhibits several desirable properties compared tased instead of the error rate. Also RMS (Root Mean Squace)err
accuracy. For exampledUC has increased sensitivity in in this paper is actuallyl(— RM S).



space. Two measures are consistent when comparing two o
jectsa andb, if f stipulates thaw is better tharb, g also
stipulates that is better tharb.

Using the example oAU C (as f) and accuracy (ag) on
two ranked lists (as andb), most of the timedU C and accu-

racy do agree on each other (i.e., they are consistent). How-

ever, there are exceptions whdit/C' and accuracy contra-
dict. Table 1 lists two ranked lists of 10 testing exampfes,
presumably as the result of the prediction by two learning al
gorithms. ThedUC of the ranked list: is 2%,  and theAU C

of the ranked list is % Thus the ranked list is better than
the ranked lisb according toAUC. But assuming that both
learning algorithms classify half (the right most 5) of tHe 1

tizélble 2: A counter example in which two ranked lists have
the sameAU C but different accuracies

3 Constructing New and Better Measures

First of all, we show formally that the finer relation is tran-
sitive (while the consistent relation is not; a counter egham
can be easily given). We ugé- g to denote thaf is finer
thang. The following theorem proves that the finer relation
is transitive.

examples as positive, and the other 5 as negative. The accu-

racy ofa is 60%, and the accuracy éfis 80%. Therefore,
b is better tharu according to accuracy. ClearlgdUC and
accuracy are inconsistent here. Again the probabilitytihat

Theorem 1 For measures, g, andh, if f = gandg > h,
thenf = h.

Proof: Let ¥ be the set of the objects to be evaluatéd=

measureg’ andg are consistent is defined as degree of cony v 4, B, X, X, ¥;,Ys c T. Inthe following definitions

andg areconsistentff the degree of consisten®s ¢ > 0.5.
That is, f andg are consistent if they agree with each other
on over half of the cases.

Table 1: A counter example in whichU C and accuracy are
inconsistent.

Thedegree of discriminancyf f overg, denoted a®y,
is defined as the ratio of cases whérean tell the difference
butg cannot, over the cases wherean tell the difference but
f cannot. UsingAUC' (asf) and accuracy (ag) as example
again. There are many cases in whittiC' can tell the dif-
ference between two ranked lists but accuracy cannot. $his
partially due to the fact thatU C' has many more values than

accuracy. But counter examples also exist in which accuracy

can tell the difference budlU C cannot. Table 2 shows such

“gla) # g(b)" etc. We defined = {(a,b)|a,b,€ U, f #
9 =5 B={(a,b)|f =9#}) X1 ={(a,D)|f # g #h =
}! X2 = {(a5b)|f =49 #ah :}! Yl = {(aab)|f 3&79 =
Jh #}, Yy = {(a,b)|f =,9 =, h #}. ThenclearlyD;,, =

14] L XX A
51 > L Do/n = s > LoandDy = 1pix, ey

Since we havéA| > |B|, and| X1 |+ | X2| > |Y1]|+|Y2], thus
|A] = [Y1| + [X1| > [B| = [Xa| + [Y2|, Dyjp > 1.0

We propose a general approach to construct a “two-level
measure”, denoted agkg, based on two existing measures
f andg. Intuitively, f:g is a new measure whergis used
first as a “dominant” measure in comparisonfIfies in the
comparison, theg would be used as a tie breaker. We can
formally define the two-level measufeg as follows.

Definition 1 A two-level measure formed byf and g, de-
poted byf:g, is defined as:

o 9(a) > 6(b) iff fa) > f(b), or fa) = f(b) and
gla) > g(b);

a counter example. We can obtain that both ranked lists have ® ¢la) = ¢(b) iff f(a) = f(b) andg(a) = g(b).

the samedUC (g) but different accuracies (60% and 40%
respectively).[Ling et al, 2003 define that a measurgis
more discriminan{or finer) thang iff D;,, > 1. That s,
f is finer thang if there are more cases whefecan tell the
difference buty cannot, thary can tell the difference buf
cannot.

In the next section we will propose a general approach t
construct new measures that are provably consistent with a
finer than the existing ones.

2The domain ofAUC and accuracy is the ranked lists of labeled
examples, ordered according to the increasing probatafityeing
positive. Almost all classification learning algorithmsich as de-
cision trees, naive Bayes, support vector machines, ancineet-
works produce probability estimations on the classificatidhich
can be used to rank testing examples.

3The AUC can be calculated by the formul&éland and Till,

2001 AUC = % whereno andn, are the number of

positive and negative examples (both 5 here) respectiaalyy; is
the position of the&th positive example.

When usingAU C and accuracy as two existing measures,
if AUC values of the two ranked lists are different, then the
new two-level measurdU C':acc agrees withAU C, no mat-
ter what the value of accuracy is. But#UC values are
the same, then the two-level measure agrees with accuracy.
Our new measurelU C:acc is different from the new mea-

Sure SAR proposed ifCaruana and Niculescu-Mizil, 20D4
"as ours is not a simple linear combination of existing mea-

sures, and is still a measure for ranked lists with clasd$abe

The following theorem proves that the two-level measure
defined is consistent with and finer than the existing mea-
sures.

Theorem 2 Let ¢ = f:g be the two-level measure formed
by f andg, f = g, andDy,, # oco. ThenCy ; = 1, and
D,/ s = oo. Inaddition,Cy , > Cy 4, andD,, = oc. That
is, ¢ is a finer measure than bothandg; i.e.,¢ = f > g.

Proof: Let A = {(a,)|f:9(a) > f:9(b), f(a) < f(b)}.
By Definition 1, A = ®. ThereforeC, ; = 1. LetB =



{(a,b)|f(a) = f(b),g(a) > g(b)}, C = {(a,b)|f(a) >  greedy search better as it is less likely to stop prematimely
f(b),g(a) > ( )}, D = {( b)|f(a) > f(b),g(a) < (b)} a flat plateau. We will discuss this later in the paper.
ThenC,, = % Cjy = ICmD\ ThusC,,, > In the next section, we will experimentally compare the

new measurelU C:acc with RMS, and show that it is more
tchgtg “ ngo(r ()Jhscr}n;F ?n;ryl/dt?(er)e SOJ?(S )n Ot;i??g) De f/\IqJ iuih correlated with RMS thadlU C' and accuracy.

Dy, # oo, there exists;, b € ¥ such that f(a) = f(b) .
and/g(a) > ¢(b)" which is equivalent to f:g(a) # f:g(b) 4 .Cpmparlng the New M_easure to_ RMS _
and f(a) = f(b)". ThereforeD,,; = oo, similarly we have As indicated bylCaruana and Niculescu-Mizil, 20p4iven
D/, = co. O true probabilities of examples, RMS (Root Mean Square er-

To confirm Theorem 2 when it applies to the two-level ror) [Kenney and Keeping, 1962s shown to be the most
measure AUC:acc, we conduct experiment to compute reliable measure when the best measure is unknown.  In
the degree of consistency and discriminancy between ththis section, we use artificial data generated with knowa tru
AUC:accandAUC (andacc). This also gives us an intuition probabilities to show empirically that the newly constegtt
for the degrees of the consistency and discriminancy betweemeasureAU C:acc is slightly more correlated with RMS than
AUC:acc, AUC andacc. AUC, and significantly more correlated with RMS than ac-

To conduct the experiment, we exhaustively enumerate aguracy.
possible pairs of ranked lists with 6, 8, 10, 12, 14, and 16 ex- We first randomly generate pairs of “true” ranked lists and
amples of artificial datasets with an equal number of pasitiv perturbed ranked lists. The “true” ranked list always con-
and negative examplésThe two criteria are computed, and Sists ofn binary examples with théth example having the
the results are shown in Tables 3. Clearly, we can see frorarobability ofp; = L of belonging to the positive class. We
the table thaCy auc = 1, andDy/auc = oc. Similarly, then generate aperturbed ranked I_|st_by randomly fluctgatin
we can see tha€y acc > Cauc,ace; aNdDy/acc = 0. the probability of each example within a range bounded by
These confirm Theorem 2. e. That is, if the true probability ip, the perturbed probabil-

ity is randomly distributed ifmaz(0, p; — €), min(1, p; +
) €)]. Table 4 shows an example of the “true” and perturbed

Table 3: Compare the two-level measureAUC:acc with  ranked lists with 10 examples. Examples with probabilities

AUC andacc. greater than 0.5 are regarded as positive, otherwise as nega
tive. From this table the values &M S, AUC, ace, and
’Z CAOUg‘é;cc C%WC Dy/ave 00%020 Ds/ace AUC':acc compared to the “true” ranked list can be easily
5 0977 T N 0978 = computed as 0.293, 0.68, 0.6, 0.686 and 0.657 respectively.
0 0.963 T S 0.964 =
i 0.951 1 oo 0.953 o
14 0.942 L o0 0.943 00 Table 4: An example of “true” (T) and perturbed (P) ranked
16 0.935 1 0o 0.936 [SS) lists.
. . . . . [TTOT 0z 03 04 05 06 07 08 03 1p
One might think that we could construct a more discrimi- - - - - _ + + v+ o+
nant “three-level” measure (such g&g): f) from the newly P00 0I5 05 05 085 02 08 07 10 04

formed two-level measuré:g and an original measurg or
g, and this process could repeat to get finer and finer mea-
sures. However, this will not work. Recall that in Theorem  After we generate 200 tuples dtM S, AUC, acc, and
2 one of the conditions to construct a finer two-level measureA/ C:ace, we calculate the Pearson correlation coefficients
¢ = f:gisthatD;,, # co. However, Theorem 2 proves [Edwards, 1976of AUC, acc, and AUC:acc compared to
thatD,,; = D/, = oo, making it impossible for to be  RASS. We also vary the value ef and repeat this process
combined Wlthf or g for further constructing new measures. five times. The averaged correlation coefficients are listed
Therefore, we can only use this method of constructing a twoTable 5. We perform a two-tailed pairedest with 95% con-
level measurencefrom two existing measures. fidence interval to see whether the differences in these cor-
This general method of constructing new, consistent, angelation coefficients are statistically significant. Théues
finer measures is useful in evaluating learning algorithmsin bold means that they are significantly indifferent witle th
For example, when comparing two learning algorithms, iflargest values in each row, but they are significantly larger
AUC is the same on a testing set, then we compare the aghan the values not in bold.
curacy to see which one is better. This gives rise to a finer Several interesting conclusions can be drawn from the ta-
evaluation measure in comparing learning algorithms thamle. First of all, the correlation coefficients ofUC and
using AUC' or accuracy alone. Another advantage of dis- AU C:acc are all significantly greater than thatafc with all
covering a finer measure is that many learning algorithms values. It indicates that these measures are more couelate

build a model by optimizing some measure using hill climb-with RMS than accuracy. Secondly, we can see that when

ing greedy search. A consistent and finer measure will gwdei

- SAgain, AUC, acc, and AUC"acc are all compared tg1 —
“Artificial datasets are used for the uniform distributiontioé RMS) as all measures are normalized to be in [0, 1], with O as

instance space. the worst and 1 as the best predictive performance.




Table 5: Comparing correlation coefficients afc, AUC,

AUC:acc with RMS.

AU C':acc predicts better than the model optimized AY C,
measured by all of the three measurd&’(:acc, AUC, and
acc). Similarly, the model optimized byAU C would be bet-
ter than the model optimized by accuracy.

acc AUC AUC:acc i ; e Al .
c=103 | 0.2454:0.076 0.3222:0.072 0.317Z0.072 To optimize ANN with a measurg (f is eitherAUCtace,
AUC, or acc here), we implement the following simple opti-
€=05] 046780071 05350063 0.53520.064 mization process: We still use the standard back-propagati
c =07 | 05932001 0.6596:0.015 0.66180.014 it pth o P | %.ﬁm
=08 | 0.6546:0.051 0.69960.041 0.7036E0.041 algorithm that minimizes the sum of thé squared dilterences
=09 | 0.66560.024 0.71320.025 0.7168L0.025 (same as the RMS error) as it is the most robust and “strict

measure, but we monitor the changefinnstead to decide
when to stop training® More specifically, we save the cur-
rent weights in the neural network, and look ahead and train
the network forV more epochs, and obtain the ngwalue.
If the difference between the twf values is larger than a
pre-selected threshold it indicates that the neural network
is still improving according tg’, so we save the new weights
(after trainingV epochs) as the current best weights, and the
dprocess repeats. If the difference between the fwalues
iS less thar, it indicates that the neural network is not im-
proving according tof (a long flat plateau), so the training
stops, and the saved weights are used as the final weights for
the neural network optimized hy.
We choose: = 0.01 and N = 100. We choose 20 real-
In sum, from the experiments conducted in this section, wéorld datasets from the UCI Machine Learning Repository
can conclude thatll C::acc is slightly more correlated with  1Blake and Merz, 1998 The properties of these datasets are

RMS thanAU C, which is significantly more correlated than Shown in Table 6. Each dataset is split into training and test
accuracy. sets using 5-fold cross-validation.

is small (0.3 and 0.5), there is no significant differencedn c
relation coefficients oAU C and AU C::ace. But with the in-
creasing value of, our newly constructed measufé/ C:acc
becomes significantly more correlated with RMS thEiRC.
Thirdly, whene is small (0.3), the values of all correlation
coefficients are relatively small (0.2454), but wheis large
(0.9), the values are larger (0.7188). This can be expect
as when the perturbatior)(is small, there can often be no
change in rankingAU C' = 1) and accuracydcc = 1), while
RMS is not 0. Thus the values ¢fUC andacc do not cor-
relate well with RMS. When the perturbatiod) (s large, the
rank list (AU C) and accuracy are both affected.

5 Building Better Models with Finer

Table 6: Descriptions of the datasets used in our expergnent
Measures

In Section 3, we showed that the two-level meastt&_:acc zﬁaaeﬁt Ins;ggces Attr?l’%utes Clél SS
is finer thanAU C' (which is in turn finer than accuracy). That autos 205 26 v
is, AUC:acc = AUC > acc. As we have discussed earlier, a breast-c 286 10 2
significant advantage of discovering consistent and fine-me cars ’ 700 7 2
sures is that they can be used in building learning models colic 368 23 5
(such as classifiers) by optimizing the finer measures djrect credit-a 690 16 2
with greedy hill-climbing search. Intuitively, greedy sela diabetes 768 9 2
will less likely to stop prematurely with a long flat platedu i eco 336 v 8
a finer measure is used for optimization. In this section, we Glass 214 10 7
will show that by maximizingAUC:acc or AUC, we will heart-c 303 14 5
get better prediction than by maximizing the accuracy. We hepatitis 155 20 2
will conduct our experiments using artificial neural netisor ionosph 351 35 2
(ANNSs). This is because ANNSs are a typical hill-climbing D —tumor. 339 18 21
greedy search, and are much more sensitive to small changes ' ima 392 8 2
in the optimization process by producing different weights se?gment 2310 20 7
On th_e other hand, decision trees, for example, may not.be sonar 208 61 2
fiirrllsmve enough to changes in the attribute selectios-crit soybean 683 36 19
Essentially we want to train three ANNs with the same vseprl1li(c::Iee 3814960 ?S 2
training data optimized usingUC:acc, AUC, andacc re- vote 435 17 2

spectively. For simplicity, we call the three ANN models
ANN 4 ¢:aces ANN 4p ¢, and ANN, .. respectively. Then we

tive performance of the three different learning modelshen t  three models ANN caee, ANN 4z7c, and ANN, .. is shown
test sets are measured HY/C:acc, AUC, andacc. We do i, Taple 7. '

this many times (using a 5-fold cross-validation) to obthim

average on testingU C:acc, testingAU C, and testing accu- There are few previous works, such[&erschtal and Raskutti,
racy. What we expect to see is that the model optimized by004, that directly optimizeAU C in learning.




Table 8: Summary of experimental results in terms of
AUC:acc, AUC, acc. Each cell indicates the number of win-

Table 7: Predictive results from the three ANNs optimized bydraw-loss.
AUC:ace, AUC, and accuracy.

Dataset Model acc AUC AUC:acc
ANN AU C.ace | 0.9631  0.9462  0.9558
anneal ANN Ay 0.9434 0.9308 0.9402
ANN .. 0.9376 0.9055 0.9148
ANN AU C:ace | 0.7880  0.9217  0.9296
autos ANN Av ¢ 0.7843 0.8943 0.9021
ANN . 0.7735 0.8809 0.8886
ANN AU C.ace | 0.8432 0.6531 0.6615
breast ANN v 0.8446 0.6553 0.6637
ANN,cc 0.8447 0.6527 0.6611
ANN AU C:ace | 0.8686  0.9231  0.9318
cars ANN Av ¢ 0.8643 0.9214 0.9301
ANN .. 0.7829 0.8782 0.8860
ANN AU C.ace | 0.8239 0.8543  0.8625
colic ANN Av 0.7821 0.8187 0.8265
ANN,cc 0.8057 0.8087 0.8168
ANN AU C:qce | 0.7058 0.6518  0.6589
credit-a ANN Ay 0.6936 0.6245 0.6314
ANN .. 0.7058 0.6520 0.6591
ANN AU C:ace | 0.7509 0.8071  0.8146
diabetes ANN Av ¢ 0.7608 0.8084 0.8160
ANNgcc 0.7650 0.7936 0.8013
ANN AU C.ace | 0.9488 0.9390 0.9485
eco ANN v 0.8497 09436 0.9521
ANN,cc 0.9548 0.9458 0.9553
ANN AU C:qce | 05865  0.7908  0.7967
Glass ANN AU ¢ 0.5603 0.7752 0.7808
ANN .. 05298 0.7317 0.7369
ANN AU C.ace | 07778 0.8201  0.8279
heart-c ANN Av ¢ 0.7854 0.8163 0.8242
ANN,cc 0.7778 0.8098 0.8176
ANN AU Cc:ace | 0.8305 0.8050 0.8133
hepatitis ANN Ay 0.8305 0.8050 0.8133
ANN .. 0.8305 0.7503 0.7586
ANN AU C.ace | 09072 0.9538  0.9629
ionosph. ANN Av 0.9153 0.9622 0.9713
ANNgcc 0.9047 0.9477 0.9567
ANN AU C.ace | 0.4576  0.7751  0.7797
primary-tumor || ANNap ¢ 0.4637 0.7803 0.7849
ANN .. 0.4505 0.7492 0.7537
ANN AU Cc:ace | 07122 0.7311  0.7382
pima ANN Av 0.7009 0.7038 0.7108
ANN . 0.6233 0.6621 0.6683
ANN AU C.ace | 0.9246  0.9927 1.00
segment ANN v 0.9063 0.9910 1.00
ANN,cc 0.8806 0.9839 0.9927
ANN AU C:ace | 0.7419 0.8532  0.8606
sonar ANNAp 0.7203 0.8537 0.8609
ANN .. 0.6958 0.8710 0.8779
ANN Ay C.ace | 0.9280 0.9923  1.00
soybean ANN Av 0.8872 0.9710 0.9799
ANN,cc 0.8761 0.9229 0.9317
ANN AU C:ace | 0.9546  0.9887  0.9982
splice ANN Av 0.9533 0.9612 0.9707
ANN,cc 0.9341 0.9253 0.9346
ANN AU Cc:ace | 0.6804 0.8735 0.8803
vehicle ANN Ay 0.7019 0.8806 0.8876
ANN .. 0.6673 0.8299 0.8366
ANN AU Cc:ace | 0.7627 0.6802  0.6878
vote ANN Av 0.7586 0.6588 0.6664
ANNgcc 0.7456  0.6324 0.6399
ANN AU C.ace | 0.7978 0.8476  0.8556
Average ANN Ay 0.7853 0.8378 0.8457
ANN,cc 0.7743 0.8167 0.8244

AUC:acc ANN 4y | ANNgee
ANN A C-ace 8-11-1 12-8-0
ANN sy 10-9-1
AUC ANN 4y | ANNg..
ANN A C-ace 8-11-1 12-8-0
ANN 4y 10-9-1
acc ANN 2 | ANNgee
ANN A C-ace 8-12-0 11-8-1
ANN 4y 11-8-1

Note that in Table 7 the predictive results of different mod-
els on each dataset can only be compared vertically because
it is not meaningful to compare results horizontally as galu
of accuracyAUC, and AU C':acc are not comparable.

We perform a paired t-test with the 95% confidence
level on each of the 20 datasets comparing the models
of ANNavc.ace» ANNayc and AN Ng.., measured by
AUC:acc, AUC and accuracy, respectively. We count in
how many datasets that one model is statistically signifigan
better or worse than another model. The summary of these
comparisons is listed in Table 8. The data in each cell in-
dicates the win-draw-loss number of datasets that the model
in the corresponding row over the model in the correspond-
ing column. Several interesting conclusions can be drawn
from the results in Table 7 and 8. Clearly, the result shows
that the AN Napc.q.ce Mmodel performs significantly better
than AN N yc and AN Ny, andAN N 4y ¢ performs sig-
nificantly better thamAN N,.. in terms of the three differ-
ent measures. When evaluated witly C:acc (or AUC),
AN N Auc.qace 1S Significantly better thad N N 47¢ (8 wins,

11 draws, 1 loss), and N N4y ¢ is significantly better than

AN Ny (10wins, 9 draws, 1 loss). When evaluated with ac-
curacy,AN Ny c.acc IS significantly better thall N N4 ¢

( 8 wins, 12 draws, 0 loss), andN N 4y ¢ is significantly
better thanAN N,.. ( 11wins, 8 draws, 1 loss). Therefore
models optimized byAU C':acc are significantly better than
models optimized bylU C andacc. This shows the advan-
tage of using consistent and finer measures in model building
by greedy search — optimizing consistent and finer measures
lead to models with better predictions.

6 Discussions

The experimental results in the previous section show Heat t
ANN model optimized byAU C':acc performs better than the
ANN model optimized by accuracy even if they are both eval-
uated with accuracy. This is somewhat against a common in-
tuition in machine learning that a model should be optimized
by a measure that it will be measured on. However, some re-
centworks have reported similar findings. For examijites-

set, 2004 has compared the model selection performance of
AUC and accuracy in highly uncertain situations. He shows
that AUC is more likely to choose the correct model than
accuracy, even if the model selection criterion is the medel



future accuracy. We have conducted an extensive empiricdEdwards, 1976 Allen Louis Edwards. An introduction to
study that verifie§Rosset, 200¥s conclusions. Further, we linear regression and correlationV. H. Freeman, 1976.

compare the model selection performance of nine evaluation:erri etal, 2004 C. Ferri, P. A. Flach, and J. Hernandez-
measures, and show that, in general, a finer megssmaore Orallo. Learning decision trees using the area under the
likely to select better models thgreven if the model is evalu- ROC curve. InProceedings of the Nineteenth Interna-

ated byg (submitted manuscript). This prompts us to believe a1 conference on Machine Learning (ICML 2002)
that a finer measure may have an intrinsic advantage in model pages 139-146, 2002.

selection and model optimization. ,

We believe that finer measures also have advantages in hifsreen and Swets, 19b@®.M. Green and J.A. SwetSignal
climbing search algorithms, leading towards a better imgin Detection Theory and Psychophysid#/iley, New York,
model. The basic idea of hill climbing is to always head to- 1966.
wards a state which is better than the current one. A hearristiiHand and Till, 2001 D. J. Hand and R. J. Till. A simple
measure is used to choose the best state from several candi-generalisation of the area under the ROC curve for mul-
date future states. As future states can be viewed as differe tiple class classification problemsMachine Learning
learning models, the heuristics measure which chooses the 45:171-186, 2001.

best future state can be viewed as choosing the best fuw(;ﬁerschtal and Raskutti, 20D4Alan Herschtal and Bhavani

model. Since a finer measure is shown to be more likely t : L ; )
choose the better model, it is more likely to choose the bette Ezf,lfuég'sgﬁ{m'fg?oigi%fﬁgieﬁhtﬁ 5 (z)fs(t:lfrr:t/grlrgtri]c?n%rla

future state. Therefore, we can conclude that a finer heuris- Conference on Machine Learnin004.
tics measure is more likely to lead to a better learning model| . ]
in hill climbing algorithms. The experimental results ireth [Kenney and Keeping, 1962J. F. Kenney and E. S Keeping.

previous section can be well explained by this conclusion. ~ Mathematics of Statisticsrinceton, NJ, 1962.
[Kononenko, 199D I. Kononenko. Comparison of induc-
7 Conclusions and Future Work tive and naive Bayesian learning approaches to automatic

Evaluation metrics are essential in machine learning amerot knowledge acquisition. In B. Wielinga, editoCurrent

: ) : . . Trends in Knowledge AcquisitiofOS Press, 1990.
experimental science and engineering areas. In this paper,
we first review the formal criteria established [hing et  [Ling etal, 2003 C. X. Ling, J. Huang, and H. Zhang.
al., 2009 to compare the predictive performance of any two AUC: a statistically consistent and more discriminating
single-number measures. We then propose a general ap- measure than accuracy. Rroceedings of 18th Interna-
proach to construct new measures based on existing ones, andtional Conference on Artificial Intelligence (IJCAI-2003)
prove that the new measures are consistent with and finer than pages 519-526, 2003.
the existing ones. We compare experimentally the new megprovost and Domingos, 20D3. Provost and P. Domingos.
sureAU C:acc with a best measure RMS, and show that it is Tree induction for probabi"ty-based rankingMachine
more correlated with it thadU C' andacc. Finally, we show Learning 52:3:199-215, 2003.

that learning models optimized with hill-climbing by theme
and finer measure predict better than models optimized by thléorOVOSt a_md Fawcett,_lQI_)'F. Provost and T. Fan:ett.
Analysis and visualization of classifier performance: com-

existing ones. ) ; X e
9 parison under imprecise class and cost distributioRrin

In our future work, we plan to study how to construct new ceedings of the Third International Conference on Knowl-
measures based on the popular evaluation measures in infor- edge Discovery and Data Miningmages 43-48. AAAI

mation retrieval and natural language processing. We will

also re-design other popular learning algorithms by oimi Press, 1997.

ing these new construced measures. [Provostet al,, 1999 F. Provost, T. Fawcett, and R. Kohavi.
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