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Abstract

Evaluation measures play an important role in ma-
chine learning because they are used not only to
compare different learning algorithms, but also of-
ten as goals to optimize in constructing learning
models. Both formal and empirical work has been
published in comparing evaluation measures. In
this paper, we propose a general approach to con-
struct new measures based on the existing ones,
and we prove that the new measures are consis-
tent with, and finer than, the existing ones. We
also show that the new measure is more correlated
to RMS (Root Mean Square error) with artificial
datasets. Finally, we demonstrate experimentally
that the greedy-search based algorithm (such as ar-
tificial neural networks) trained with the new and
finer measure usually can achieve better prediction
performance. This provides a general approach
to improve the predictive performance of existing
learning algorithms based on greedy search.

1 Introduction
Evaluation measures are widely used in machine learning and
data mining to compare different learning algorithms. They
are also often used as objective functions to construct learn-
ing models. For example, accuracy is a common evaluation
measure in machine learning. It has been widely used to
compare predictive performance of many learning algorithms
including decision trees, neural networks, and naive Bayes
(e.g.,[Kononenko, 1990]), and it is also the goal of optimiza-
tion in constructing decision trees[Quinlan, 1993]. In recent
years, the ROC (Receiver Operating Characteristics) origi-
nated in signal detection[Green and Swets, 1966] has been
introduced into machine learning[Provost and Fawcett, 1997;
Provostet al., 1998]. The area under the ROC curve, or sim-
ply AUC, has been proposed in comparing learning algo-
rithms[Provost and Domingos, 2003] and constructing or op-
timizing learning models[Ferriet al., 2002; Rakotomamonjy,
2004].

[Bradley, 1997] experimentally compares popular machine
learning algorithms using both accuracy andAUC, and finds
that AUC exhibits several desirable properties compared to
accuracy. For example,AUC has increased sensitivity in

Analysis of Variance (ANOVA) tests, is independent of the
decision threshold, and is invariant toa priori class prob-
ability distributions. Recently,[Caruana and Niculescu-
Mizil, 2004] empirically compare nine commonly used ma-
chine learning measures in terms of the correlation relations.
They find that RMS (Root Mean Square error) is most cor-
related with the other measures on average, and thus it is a
robust measure in uncertain situations. They also construct a
new measure called SAR by averaging the measures of accu-
racy,AUC, and RMS, and claim that this new measure works
better than RMS.

In [Ling et al., 2003] two formal criteria are established
to compare evaluation measures. They are called(statistical)
consistency, and(statistical) discriminancy. They formally
prove thatAUC is consistent with, and more discriminant (or
finer) than accuracy, for the binary balanced datasets (which
have the same number of positive and negative examples).

In this paper we propose a general method to construct new
measures based on existing ones, and prove that they are con-
sistent with and finer than the existing ones.1 Further, we
will show experimentally that the newly constructed measure
is more correlated to RMS than the existing ones. With a
consistent and finer measure, a greedy hill-climbing learning
algorithm (such as neural networks) would search better (i.e.,
not likely to get stuck in a flat plateau) and find better opti-
mal solutions. We conduct experiments to show that neural
networks optimized by the new measure predict better than
the ones optimized by the existing ones. This illustrates the
usefulness of designing new and finer measures for machine
learning, as it provides a general method to improve learning
algorithms using greedy search.

2 Review of Formal Criteria for Comparing
Measures

In [Ling et al., 2003] the degree of consistencyanddegree
of discriminancyof two measures are proposed and defined.
The degree of consistency between two measuresf andg,
denoted asCf ,g, is simply the fraction (probability) that two
measures are consistent over some distribution of the instance

1We normalize all measures in our discussion to be in [0, 1], with
0 to be the worst, and 1 to be the best. For this reason, the accuracy is
used instead of the error rate. Also RMS (Root Mean Square error)
in this paper is actually (1 − RMS).



space. Two measures are consistent when comparing two ob-
jects a and b, if f stipulates thata is better thanb, g also
stipulates thata is better thanb.

Using the example ofAUC (asf ) and accuracy (asg) on
two ranked lists (asa andb), most of the timeAUC and accu-
racy do agree on each other (i.e., they are consistent). How-
ever, there are exceptions whenAUC and accuracy contra-
dict. Table 1 lists two ranked lists of 10 testing examples,2

presumably as the result of the prediction by two learning al-
gorithms. TheAUC of the ranked lista is 21

25
, 3 and theAUC

of the ranked listb is 16

25
. Thus the ranked lista is better than

the ranked listb according toAUC. But assuming that both
learning algorithms classify half (the right most 5) of the 10
examples as positive, and the other 5 as negative. The accu-
racy ofa is 60%, and the accuracy ofb is 80%. Therefore,
b is better thana according to accuracy. Clearly,AUC and
accuracy are inconsistent here. Again the probability thattwo
measuresf andg are consistent is defined as degree of con-
sistencyCf ,g. [Ling et al., 2003] define that two measuresf
andg areconsistentiff the degree of consistencyCf ,g > 0.5.
That is,f andg are consistent if they agree with each other
on over half of the cases.

Table 1: A counter example in whichAUC and accuracy are
inconsistent.

a − − − + + | − − + + +
b + − − − − | + + + + −

Thedegree of discriminancyof f overg, denoted asDf/g,
is defined as the ratio of cases wheref can tell the difference
butg cannot, over the cases whereg can tell the difference but
f cannot. UsingAUC (asf ) and accuracy (asg) as example
again. There are many cases in whichAUC can tell the dif-
ference between two ranked lists but accuracy cannot. This is
partially due to the fact thatAUC has many more values than
accuracy. But counter examples also exist in which accuracy
can tell the difference butAUC cannot. Table 2 shows such
a counter example. We can obtain that both ranked lists have
the sameAUC ( 3

5
) but different accuracies (60% and 40%

respectively).[Ling et al., 2003] define that a measuref is
more discriminant(or finer) thang iff Df/g > 1. That is,
f is finer thang if there are more cases wheref can tell the
difference butg cannot, thang can tell the difference butf
cannot.

In the next section we will propose a general approach to
construct new measures that are provably consistent with and
finer than the existing ones.

2The domain ofAUC and accuracy is the ranked lists of labeled
examples, ordered according to the increasing probabilityof being
positive. Almost all classification learning algorithms, such as de-
cision trees, naive Bayes, support vector machines, and neural net-
works produce probability estimations on the classification which
can be used to rank testing examples.

3The AUC can be calculated by the formula[Hand and Till,

2001] AUC =
Pn0

i=1
(ri−i)

n0n1
, wheren0 andn1 are the number of

positive and negative examples (both 5 here) respectively,andri is
the position of theith positive example.

Table 2: A counter example in which two ranked lists have
the sameAUC but different accuracies

a − − + + − | + + − − +
b − − + + + | − − + − +

3 Constructing New and Better Measures
First of all, we show formally that the finer relation is tran-
sitive (while the consistent relation is not; a counter example
can be easily given). We usef � g to denote thatf is finer
thang. The following theorem proves that the finer relation
is transitive.

Theorem 1 For measuresf , g, andh, if f � g andg � h,
thenf � h.

Proof: Let Ψ be the set of the objects to be evaluated,Γ =
Ψ×Ψ, A, B, X1, X2, Y1, Y2 ⊂ Γ. In the following definitions
we use “f =” to represent “f(a) = f(b)”, “ g 6=” to represent
“g(a) 6= g(b)” etc. We defineA = {(a, b)|a, b,∈ Ψ, f 6=
, g =}, B = {(a, b)|f =, g 6=}, X1 = {(a, b)|f 6=, g 6=, h =
}, X2 = {(a, b)|f =, g 6=, h =}, Y1 = {(a, b)|f 6=, g =
, h 6=}, Y2 = {(a, b)|f =, g =, h 6=}. Then clearlyDf/g =
|A|
|B| > 1, Dg/h = |X1|+|X2|

|Y1|+|Y2|
> 1, andDf/h = |A|−|Y1|+|X1|

|B|−|X2|+|Y2|
.

Since we have|A| > |B|, and|X1|+ |X2| > |Y1|+ |Y2|, thus
|A| − |Y1| + |X1| > |B| − |X2| + |Y2|, Df/h > 1. �

We propose a general approach to construct a “two-level
measure”, denoted asf :g, based on two existing measures
f andg. Intuitively, f :g is a new measure wheref is used
first as a “dominant” measure in comparison. Iff ties in the
comparison, theng would be used as a tie breaker. We can
formally define the two-level measuref :g as follows.

Definition 1 A two-level measureφ formed byf andg, de-
noted byf :g, is defined as:

• φ(a) > φ(b) iff f(a) > f(b), or f(a) = f(b) and
g(a) > g(b);

• φ(a) = φ(b) iff f(a) = f(b) andg(a) = g(b).

When usingAUC and accuracy as two existing measures,
if AUC values of the two ranked lists are different, then the
new two-level measureAUC:acc agrees withAUC, no mat-
ter what the value of accuracy is. But ifAUC values are
the same, then the two-level measure agrees with accuracy.
Our new measureAUC:acc is different from the new mea-
sure SAR proposed in[Caruana and Niculescu-Mizil, 2004]
as ours is not a simple linear combination of existing mea-
sures, and is still a measure for ranked lists with class labels.

The following theorem proves that the two-level measure
defined is consistent with and finer than the existing mea-
sures.

Theorem 2 Let φ = f :g be the two-level measure formed
by f andg, f � g, andDf/g 6= ∞. ThenCφ,f = 1, and
Dφ/f = ∞. In addition,Cφ,g ≥ Cf,g, andDφ/g = ∞. That
is, φ is a finer measure than bothf andg; i.e.,φ � f � g.

Proof: Let A = {(a, b)|f :g(a) > f :g(b), f(a) < f(b)}.
By Definition 1, A = Φ. ThereforeCφ,f = 1. Let B =



{(a, b)|f(a) = f(b), g(a) > g(b)}, C = {(a, b)|f(a) >
f(b), g(a) > g(b)}, D = {(a, b)|f(a) > f(b), g(a) < g(b)},
ThenCφ,g = |B|+|C|

|B|+|C|+|D| , Cf,g = |C|
|C|+|D| . ThusCφ,g ≥

Cf,g. For discriminancy there does not exista, b ∈ Ψ such
that “f :g(a) = f :g(b) andf(a) > f(b)”. SinceDf/g > 1,
Df/g 6= ∞, there existsa, b ∈ Ψ such that “f(a) = f(b)
andg(a) > g(b)” which is equivalent to “f :g(a) 6= f :g(b)
andf(a) = f(b)”. ThereforeDφ/f = ∞, similarly we have
Dφ/g = ∞. �

To confirm Theorem 2 when it applies to the two-level
measureAUC:acc, we conduct experiment to compute
the degree of consistency and discriminancy between the
AUC:acc andAUC (andacc). This also gives us an intuition
for the degrees of the consistency and discriminancy between
AUC:acc, AUC andacc.

To conduct the experiment, we exhaustively enumerate all
possible pairs of ranked lists with 6, 8, 10, 12, 14, and 16 ex-
amples of artificial datasets with an equal number of positive
and negative examples.4 The two criteria are computed, and
the results are shown in Tables 3. Clearly, we can see from
the table thatCφ,AUC = 1, andDφ/AUC = ∞. Similarly,
we can see thatCφ,acc > CAUC,acc, andDφ/acc = ∞.
These confirm Theorem 2.

Table 3: Compare the two-level measureφ=AUC:acc with
AUC andacc.

# CAUC,acc Cφ,AUC Dφ/AUC Cφ,acc Dφ/acc

6 0.991 1 ∞ 0.992 ∞
8 0.977 1 ∞ 0.978 ∞
10 0.963 1 ∞ 0.964 ∞
12 0.951 1 ∞ 0.953 ∞
14 0.942 1 ∞ 0.943 ∞
16 0.935 1 ∞ 0.936 ∞

One might think that we could construct a more discrimi-
nant “three-level” measure (such as(f :g):f ) from the newly
formed two-level measuref :g and an original measuref or
g, and this process could repeat to get finer and finer mea-
sures. However, this will not work. Recall that in Theorem
2 one of the conditions to construct a finer two-level measure
φ = f :g is thatDf/g 6= ∞. However, Theorem 2 proves
thatDφ/f = Dφ/g = ∞, making it impossible forφ to be
combined withf or g for further constructing new measures.
Therefore, we can only use this method of constructing a two-
level measureoncefrom two existing measures.

This general method of constructing new, consistent, and
finer measures is useful in evaluating learning algorithms.
For example, when comparing two learning algorithms, if
AUC is the same on a testing set, then we compare the ac-
curacy to see which one is better. This gives rise to a finer
evaluation measure in comparing learning algorithms than
using AUC or accuracy alone. Another advantage of dis-
covering a finer measure is that many learning algorithms
build a model by optimizing some measure using hill climb-
ing greedy search. A consistent and finer measure will guide

4Artificial datasets are used for the uniform distribution ofthe
instance space.

greedy search better as it is less likely to stop prematurelyin
a flat plateau. We will discuss this later in the paper.

In the next section, we will experimentally compare the
new measureAUC:acc with RMS, and show that it is more
correlated with RMS thanAUC and accuracy.

4 Comparing the New Measure to RMS
As indicated by[Caruana and Niculescu-Mizil, 2004], given
true probabilities of examples, RMS (Root Mean Square er-
ror) [Kenney and Keeping, 1962] is shown to be the most
reliable measure when the best measure is unknown. In
this section, we use artificial data generated with known true
probabilities to show empirically that the newly constructed
measureAUC:acc is slightly more correlated with RMS than
AUC, and significantly more correlated with RMS than ac-
curacy.

We first randomly generate pairs of “true” ranked lists and
perturbed ranked lists. The “true” ranked list always con-
sists ofn binary examples, with thei-th example having the
probability ofpi = i

n of belonging to the positive class. We
then generate a perturbed ranked list by randomly fluctuating
the probability of each example within a range bounded by
ε. That is, if the true probability isp, the perturbed probabil-
ity is randomly distributed in[max(0, pi − ε), min(1, pi +
ε)]. Table 4 shows an example of the “true” and perturbed
ranked lists with 10 examples. Examples with probabilities
greater than 0.5 are regarded as positive, otherwise as nega-
tive. From this table the values ofRMS, AUC, acc, and
AUC:acc compared to the “true” ranked list can be easily
computed as 0.293, 0.68, 0.6, 0.686 and 0.657 respectively.

Table 4: An example of “true” (T) and perturbed (P) ranked
lists.

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
− − − − − + + + + +

P 0.0 0.15 0.6 0.5 0.95 0.2 0.65 0.7 1.0 0.4
− − + − + − + + + −

After we generate 200 tuples ofRMS, AUC, acc, and
AUC:acc, we calculate the Pearson correlation coefficients
[Edwards, 1976] of AUC, acc, andAUC:acc compared to
RMS5. We also vary the value ofε, and repeat this process
five times. The averaged correlation coefficients are listedin
Table 5. We perform a two-tailed pairedt-test with 95% con-
fidence interval to see whether the differences in these cor-
relation coefficients are statistically significant. The values
in bold means that they are significantly indifferent with the
largest values in each row, but they are significantly larger
than the values not in bold.

Several interesting conclusions can be drawn from the ta-
ble. First of all, the correlation coefficients ofAUC and
AUC:acc are all significantly greater than that ofacc with all
ε values. It indicates that these measures are more correlated
with RMS than accuracy. Secondly, we can see that whenε

5Again, AUC, acc, and AUC:acc are all compared to(1 −

RMS) as all measures are normalized to be in [0, 1], with 0 as
the worst and 1 as the best predictive performance.



Table 5: Comparing correlation coefficients ofacc, AUC,
AUC:acc with RMS.

acc AUC AUC:acc
ε = 0.3 0.2454±0.076 0.3222±0.072 0.3177±0.072
ε = 0.5 0.4678±0.071 0.535±0.063 0.5352±0.064
ε = 0.7 0.5932±0.01 0.6596±0.015 0.6616±0.014
ε = 0.8 0.6546±0.051 0.6996±0.041 0.7036±0.041
ε = 0.9 0.6656±0.024 0.7137±0.025 0.7168±0.025

is small (0.3 and 0.5), there is no significant difference in cor-
relation coefficients ofAUC andAUC:acc. But with the in-
creasing value ofε, our newly constructed measureAUC:acc
becomes significantly more correlated with RMS thanAUC.
Thirdly, whenε is small (0.3), the values of all correlation
coefficients are relatively small (0.2454), but whenε is large
(0.9), the values are larger (0.7188). This can be expected
as when the perturbation (ε) is small, there can often be no
change in ranking (AUC = 1) and accuracy (acc = 1), while
RMS is not 0. Thus the values ofAUC andacc do not cor-
relate well with RMS. When the perturbation (ε) is large, the
rank list (AUC) and accuracy are both affected.

In sum, from the experiments conducted in this section, we
can conclude thatAUC:acc is slightly more correlated with
RMS thanAUC, which is significantly more correlated than
accuracy.

5 Building Better Models with Finer
Measures

In Section 3, we showed that the two-level measureAUC:acc
is finer thanAUC (which is in turn finer than accuracy). That
is,AUC:acc � AUC � acc. As we have discussed earlier, a
significant advantage of discovering consistent and finer mea-
sures is that they can be used in building learning models
(such as classifiers) by optimizing the finer measures directly
with greedy hill-climbing search. Intuitively, greedy search
will less likely to stop prematurely with a long flat plateau if
a finer measure is used for optimization. In this section, we
will show that by maximizingAUC:acc or AUC, we will
get better prediction than by maximizing the accuracy. We
will conduct our experiments using artificial neural networks
(ANNs). This is because ANNs are a typical hill-climbing
greedy search, and are much more sensitive to small changes
in the optimization process by producing different weights.
On the other hand, decision trees, for example, may not be
sensitive enough to changes in the attribute selection crite-
rion.

Essentially we want to train three ANNs with the same
training data optimized usingAUC:acc, AUC, andacc re-
spectively. For simplicity, we call the three ANN models
ANNAUC:acc, ANNAUC , and ANNacc respectively. Then we
test these three ANN models on the testing sets. The predic-
tive performance of the three different learning models on the
test sets are measured byAUC:acc, AUC, andacc. We do
this many times (using a 5-fold cross-validation) to obtainthe
average on testingAUC:acc, testingAUC, and testing accu-
racy. What we expect to see is that the model optimized by

AUC:acc predicts better than the model optimized byAUC,
measured by all of the three measures (AUC:acc, AUC, and
acc). Similarly, the model optimized byAUC would be bet-
ter than the model optimized by accuracy.

To optimize ANN with a measuref (f is eitherAUC:acc,
AUC, or acc here), we implement the following simple opti-
mization process: We still use the standard back-propagation
algorithm that minimizes the sum of the squared differences
(same as the RMS error) as it is the most robust and “strict”
measure, but we monitor the change inf instead to decide
when to stop training.6 More specifically, we save the cur-
rent weights in the neural network, and look ahead and train
the network forN more epochs, and obtain the newf value.
If the difference between the twof values is larger than a
pre-selected thresholdε, it indicates that the neural network
is still improving according tof , so we save the new weights
(after trainingN epochs) as the current best weights, and the
process repeats. If the difference between the twof values
is less thanε, it indicates that the neural network is not im-
proving according tof (a long flat plateau), so the training
stops, and the saved weights are used as the final weights for
the neural network optimized byf .

We chooseε = 0.01 andN = 100. We choose 20 real-
world datasets from the UCI Machine Learning Repository
[Blake and Merz, 1998]. The properties of these datasets are
shown in Table 6. Each dataset is split into training and test
sets using 5-fold cross-validation.

Table 6: Descriptions of the datasets used in our experiments.

Dataset Instances Attributes Class
anneal 898 39 6
autos 205 26 7

breast-c. 286 10 2
cars 700 7 2
colic 368 23 2

credit-a 690 16 2
diabetes 768 9 2

eco 336 7 8
Glass 214 10 7
heart-c 303 14 5

hepatitis 155 20 2
ionosph. 351 35 2
p.-tumor 339 18 21

pima 392 8 2
segment 2310 20 7

sonar 208 61 2
soybean 683 36 19
splice 3190 62 3
vehicle 846 19 4

vote 435 17 2

The predictive performance on the testing sets from the
three models ANNAUC:acc, ANNAUC , and ANNacc is shown
in Table 7.

6There are few previous works, such as[Herschtal and Raskutti,
2004], that directly optimizeAUC in learning.



Table 7: Predictive results from the three ANNs optimized by
AUC:acc, AUC, and accuracy.

Dataset Model acc AUC AUC:acc
ANNAUC:acc 0.9631 0.9462 0.9558

anneal ANNAUC 0.9434 0.9308 0.9402
ANNacc 0.9376 0.9055 0.9148

ANNAUC:acc 0.7880 0.9217 0.9296
autos ANNAUC 0.7843 0.8943 0.9021

ANNacc 0.7735 0.8809 0.8886

ANNAUC:acc 0.8432 0.6531 0.6615
breast ANNAUC 0.8446 0.6553 0.6637

ANNacc 0.8447 0.6527 0.6611

ANNAUC:acc 0.8686 0.9231 0.9318
cars ANNAUC 0.8643 0.9214 0.9301

ANNacc 0.7829 0.8782 0.8860

ANNAUC:acc 0.8239 0.8543 0.8625
colic ANNAUC 0.7821 0.8187 0.8265

ANNacc 0.8057 0.8087 0.8168

ANNAUC:acc 0.7058 0.6518 0.6589
credit-a ANNAUC 0.6936 0.6245 0.6314

ANNacc 0.7058 0.6520 0.6591

ANNAUC:acc 0.7509 0.8071 0.8146
diabetes ANNAUC 0.7608 0.8084 0.8160

ANNacc 0.7650 0.7936 0.8013

ANNAUC:acc 0.9488 0.9390 0.9485
eco ANNAUC 0.8497 0.9436 0.9521

ANNacc 0.9548 0.9458 0.9553

ANNAUC:acc 0.5865 0.7908 0.7967
Glass ANNAUC 0.5603 0.7752 0.7808

ANNacc 0.5298 0.7317 0.7369

ANNAUC:acc 0.7778 0.8201 0.8279
heart-c ANNAUC 0.7854 0.8163 0.8242

ANNacc 0.7778 0.8098 0.8176

ANNAUC:acc 0.8305 0.8050 0.8133
hepatitis ANNAUC 0.8305 0.8050 0.8133

ANNacc 0.8305 0.7503 0.7586

ANNAUC:acc 0.9072 0.9538 0.9629
ionosph. ANNAUC 0.9153 0.9622 0.9713

ANNacc 0.9047 0.9477 0.9567

ANNAUC:acc 0.4576 0.7751 0.7797
primary-tumor ANNAUC 0.4637 0.7803 0.7849

ANNacc 0.4505 0.7492 0.7537

ANNAUC:acc 0.7122 0.7311 0.7382
pima ANNAUC 0.7009 0.7038 0.7108

ANNacc 0.6233 0.6621 0.6683

ANNAUC:acc 0.9246 0.9927 1.00
segment ANNAUC 0.9063 0.9910 1.00

ANNacc 0.8806 0.9839 0.9927

ANNAUC:acc 0.7419 0.8532 0.8606
sonar ANNAUC 0.7203 0.8537 0.8609

ANNacc 0.6958 0.8710 0.8779

ANNAUC:acc 0.9280 0.9923 1.00
soybean ANNAUC 0.8872 0.9710 0.9799

ANNacc 0.8761 0.9229 0.9317
ANNAUC:acc 0.9546 0.9887 0.9982

splice ANNAUC 0.9533 0.9612 0.9707
ANNacc 0.9341 0.9253 0.9346

ANNAUC:acc 0.6804 0.8735 0.8803
vehicle ANNAUC 0.7019 0.8806 0.8876

ANNacc 0.6673 0.8299 0.8366

ANNAUC:acc 0.7627 0.6802 0.6878
vote ANNAUC 0.7586 0.6588 0.6664

ANNacc 0.7456 0.6324 0.6399

ANNAUC:acc 0.7978 0.8476 0.8556
Average ANNAUC 0.7853 0.8378 0.8457

ANNacc 0.7743 0.8167 0.8244

Table 8: Summary of experimental results in terms of
AUC:acc, AUC, acc. Each cell indicates the number of win-
draw-loss.

AUC:acc ANNAUC ANNacc

ANNAUC:acc 8-11-1 12-8-0
ANNAUC 10-9-1

AUC ANNAUC ANNacc

ANNAUC:acc 8-11-1 12-8-0
ANNAUC 10-9-1

acc ANNAUC ANNacc

ANNAUC:acc 8-12-0 11-8-1
ANNAUC 11-8-1

Note that in Table 7 the predictive results of different mod-
els on each dataset can only be compared vertically because
it is not meaningful to compare results horizontally as values
of accuracy,AUC, andAUC:acc are not comparable.

We perform a paired t-test with the 95% confidence
level on each of the 20 datasets comparing the models
of ANNAUC:acc, ANNAUC and ANNacc, measured by
AUC:acc, AUC and accuracy, respectively. We count in
how many datasets that one model is statistically significantly
better or worse than another model. The summary of these
comparisons is listed in Table 8. The data in each cell in-
dicates the win-draw-loss number of datasets that the model
in the corresponding row over the model in the correspond-
ing column. Several interesting conclusions can be drawn
from the results in Table 7 and 8. Clearly, the result shows
that theANNAUC:acc model performs significantly better
thanANNAUC andANNacc, andANNAUC performs sig-
nificantly better thanANNacc in terms of the three differ-
ent measures. When evaluated withAUC:acc (or AUC),
ANNAUC:acc is significantly better thanANNAUC ( 8 wins,
11 draws, 1 loss), andANNAUC is significantly better than
ANNacc ( 10wins, 9 draws, 1 loss). When evaluated with ac-
curacy,ANNAUC:acc is significantly better thanANNAUC

( 8 wins, 12 draws, 0 loss), andANNAUC is significantly
better thanANNacc ( 11wins, 8 draws, 1 loss). Therefore
models optimized byAUC:acc are significantly better than
models optimized byAUC andacc. This shows the advan-
tage of using consistent and finer measures in model building
by greedy search – optimizing consistent and finer measures
lead to models with better predictions.

6 Discussions
The experimental results in the previous section show that the
ANN model optimized byAUC:acc performs better than the
ANN model optimized by accuracy even if they are both eval-
uated with accuracy. This is somewhat against a common in-
tuition in machine learning that a model should be optimized
by a measure that it will be measured on. However, some re-
cent works have reported similar findings. For example,[Ros-
set, 2004] has compared the model selection performance of
AUC and accuracy in highly uncertain situations. He shows
that AUC is more likely to choose the correct model than
accuracy, even if the model selection criterion is the model’s



future accuracy. We have conducted an extensive empirical
study that verifies[Rosset, 2004]’s conclusions. Further, we
compare the model selection performance of nine evaluation
measures, and show that, in general, a finer measuref is more
likely to select better models thang even if the model is evalu-
ated byg (submitted manuscript). This prompts us to believe
that a finer measure may have an intrinsic advantage in model
selection and model optimization.

We believe that finer measures also have advantages in hill
climbing search algorithms, leading towards a better training
model. The basic idea of hill climbing is to always head to-
wards a state which is better than the current one. A heuristic
measure is used to choose the best state from several candi-
date future states. As future states can be viewed as different
learning models, the heuristics measure which chooses the
best future state can be viewed as choosing the best future
model. Since a finer measure is shown to be more likely to
choose the better model, it is more likely to choose the better
future state. Therefore, we can conclude that a finer heuris-
tics measure is more likely to lead to a better learning model
in hill climbing algorithms. The experimental results in the
previous section can be well explained by this conclusion.

7 Conclusions and Future Work
Evaluation metrics are essential in machine learning and other
experimental science and engineering areas. In this paper,
we first review the formal criteria established in[Ling et
al., 2003] to compare the predictive performance of any two
single-number measures. We then propose a general ap-
proach to construct new measures based on existing ones, and
prove that the new measures are consistent with and finer than
the existing ones. We compare experimentally the new mea-
sureAUC:acc with a best measure RMS, and show that it is
more correlated with it thanAUC andacc. Finally, we show
that learning models optimized with hill-climbing by the new
and finer measure predict better than models optimized by the
existing ones.

In our future work, we plan to study how to construct new
measures based on the popular evaluation measures in infor-
mation retrieval and natural language processing. We will
also re-design other popular learning algorithms by optimiz-
ing these new construced measures.
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