
Hybrid Cost-sensitive Decision Tree 

Shengli Sheng, Charles X. Ling 

Department of Computer Science, The University of Western Ontario 
London, Ontario N6A 5B7, Canada 

{cling, ssheng}@ csd.uwo.ca 

Abstract. Cost-sensitive decision tree and cost-sensitive naïve Bayes are both new 
cost-sensitive learning models proposed recently to minimize the total cost of test 
and misclassifications. Each of them has its advantages and disadvantages. In this 
paper, we propose a novel cost-sensitive learning model, a hybrid cost-sensitive 
decision tree, called DTNB, to reduce the minimum total cost, which integrates the 
advantages of cost-sensitive decision tree and of the cost-sensitive naïve Bayes 
together. We empirically evaluate it over various test strategies, and our experiments 
show that our DTNB outperforms cost-sensitive decision and the cost-sensitive 
naïve Bayes significantly in minimizing the total cost of tests and misclassification 
based on the same sequential test strategies, and single batch strategies. 

1  Introduction 

Inductive learning techniques have had great success in building classifiers and 
classifying test examples into classes with a high accuracy or low error rate. However, in 
many real-world applications, lowing misclassification error is not the goal as “errors” can 
cost very differently. This type of learning is called cost-sensitive learning. Turney [14] 
surveys a whole range of costs in cost-sensitive learning, among which two types of costs 
are most important: misclassification costs and test costs. For example, in a binary 
classification task, the cost of false positive (FP) and the cost of false negative (FN) are 
often very different. In addition, attributes (tests) may have different costs, and acquiring 
values of attributes also incurs costs. The goal of learning is to minimize the sum of the 
misclassification costs and the test costs.   
 Tasks involving both misclassification and test costs are abundant in real-world 
applications. For example, when building a model for medical diagnosis from the training 
data, we must consider the cost of tests (such as blood tests, X-ray, etc.) and the cost of 
misclassifications (errors in the diagnosis). Further, when a doctor sees a new patient (a 
test example), tests are normally ordered, at a cost to the patient or his/her insurance 
company. To better diagnose or predict the disease of the patient (i.e., reducing the 
misclassification cost). Doctors must balance the trade-off between potential 
misclassification costs and test costs to determinate which tests should be ordered, and at 



what order, to reduce the expected total cost. A case study on heart disease is given in the 
paper.  
 In this paper, we propose a new cost-sensitive learning model, DTNB, which integrates 
the advantages of the cost-sensitive decision tree and the cost-sensitive naïve Bayes, both 
of which minimize the total cost of misclassifications and tests. DTNB uses the cost-
sensitive decision tree to collect the required tests for test examples, and uses the cost-
sensitive naïve Bayes to classify. For a test example, after the required tests are collected 
according to the cost-sensitive decision tree, the tests are performed with a cost and their 
results are available. Then the cost-sensitive naïve Bayes built on all the training data is 
applied to classify the test example. The naïve Bayes model can make use of the known 
values which do not appear in the path which the test example follows to go down to a 
leaf in the cost-sensitive decision tree. Thus, we can expect that the cost-sensitive DTNB 
can achieve lower total cost than the cost-sensitive decision tree and the cost-sensitive 
naïve Bayes do alone. 
 The rest of paper is organized as follows. We first review the related work in Section 2. 
Then we describe our new cost-sensitive learning model, DTNB, to reduce the minimum 
total cost of tests and misclassifications in Section 3. In Section 4, we present empirical 
experiments. The paper concludes with discussion and some directions for the future work.  

2 Review of Previous Work 

Cost-sensitive learning has received extensive attentions in recent years. Turney [14] 
analyzes a variety of costs in machine learning, such as misclassification costs, test costs, 
active learning costs, computation cost, human-computer interaction cost, etc. Two types 
of costs are singled out as the most important in machine learning: misclassification costs 
and test costs, and test costs are normally considered in conjunction with misclassification 
costs. Much work has been done in considering non-uniform misclassification costs 
(alone), such as [4, 5, 7]. Those works can often used to solve problem of learning with 
very imbalanced datasets [3]. Some previous work, such as [10, 12], consider the test cost 
alone without incorporating misclassification cost. As pointed out by [14] it is obviously 
an oversight. As far as we know, the only work considering both misclassification and test 
costs includes [13, 15, 9, 2]. We discuss these works in detail below. 
 In [15], the cost-sensitive learning problem is cast as a Markov Decision Process 
(MDP), and an optimal solution is given as a search in a state space for optimal policies.  
While related to our work, their research adopts an optimal search strategy, which may 
incur very high computational cost to conduct the search.  In contrast, we adopt the local 
search similar to [11] using a polynomial time algorithm to build a new decision trees, and 
our test strategies are also polynomial to the tree size. (Greiner et al. 2002) studied the 
theoretical aspects of active learning with test costs using a PAC learning framework, 
which models how to use a budget to collect the relevant information for the real-world 
applications with no actual data at beginning. Our algorithm builds a model from history 



data to minimize the total cost of misclassification and tests for a new case with missing 
values. Turney [13] presented a system called ICET, which uses a genetic algorithm to 
build a decision tree to minimize the cost of tests and misclassification.  Our algorithm 
essentially adopts the same decision-tree building framework as in [11], and it is expected 
to be more efficient than Turney’s genetic algorithm based approach. 
 Ling et al. [9] propose a cost-sensitive decision tree learning program that minimizes 
the total cost of tests and misclassifications. They also propose several test strategies, and 
compare their results to C4.5. However, for a test example, the cost-sensitive decision tree 
ignores the information supplied by the known attributes which do not appear in the path 
which the test example follows to go down to a leaf in the cost-sensitive decision tree. 
Chai et al. [2] propose a cost-sensitive naïve Bayes based algorithm, called CSNB, which 
searches for minimal total cost of tests and misclassifications. They also propose a 
sequential test strategy and a single batch test strategy. However, the cost-sensitive naïve 
Bayes does not learn the general attribute structure (such as the tree structure) but only 
probability tables from training data. The test sequence for each test example is less 
comprehensible.  
 Our model, DTNB, combines the advantages of cost-sensitive decision tree and naïve 
Bayes. It utilizes the structure of the cost-sensitive decision tree to collect the beneficiary 
tests for a test example and makes use of the information in the known attributes which 
are ignored by the cost-sensitive decision tree to reduce the misclassification cost. We 
expect that our DTNB outperform cost-sensitive decision tree and cost-sensitive naïve 
Bayes alone in terms of the total cost of tests and misclassification. 

The new cost-sensitive model, DTNB, is composed of decision tree and naïve Bayes, 
but it is much different from NBTree [8] proposed by Kohavi. First of all, NBTree is not a 
cost-sensitive learning model. The learning algorithm of NBTree is similar to C4.5 
[Qui93]. DTNB is a cost-sensitive learning to minimize the total cost of tests and 
misclassification. Secondly, in NBTree, a naïve Bayes is constructed for each leaf using 
the data associated with the leaf. However, DTNB only constructs one naïve Bayes using 
all the training data. This naïve Bayes acts as a hidden node at each node (including the 
leaves) of the cost-sensitive decision tree. The details of difference between NBTree and 
DTNB are explained in Section 3.   

3 The New Cost-sensitive Learning - DTNB 

We assume that we are given a set of training data (with possible missing attribute values), 
the misclassification costs, and test costs for each attribute. We propose a novel cost-
sensitive learning model, DTNB, which combines the advantages of cost-sensitive 
decision tree and naïve Bayes. The rationale of DTNB is based on our observations. We 
note that cost-sensitive decision tree has the ability of learning a general structure, and the 
structure of the tree plays an important role for collecting the most beneficiary unknown 
values. However, the decision tree ignores the original known values which do not appear 



in the tree for classify a test example. In non-cost-sensitive learning, this is one reasonable 
feature of decision tree. But in cost-sensitive learning, any value is available with a certain 
cost. We do not want waste any available information. Naturally, making use of all known 
values can reduce the total cost. The information of the known attributes which do not 
appear in the path through which the test example goes down to a leaf of the tree is useful 
for cost-sensitive classification to reduce the misclassification cost. Fortunately, cost-
sensitive naïve Bayes indeed utilizes all known attributes for misclassification, but it does 
not have a structure learning ability to help determine which tests and in what order 
should be done for unknown attributes.  
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Fig. 1. An example of cost-sensitive DTNB 
 

In order to overcome these drawbacks and combine those advantages in the two cost-
sensitive models, we propose a novel cost-sensitive learning model, which integrates cost-
sensitive decision tree with cost-sensitive naïve Bayes, called DTNB. Figure 1 shows the 
structure of an example of the novel cost-sensitive learning model DTNB. We can see 
DTNB is an integration model with two parts. The left part is a cost-sensitive decision tree 
which is used for finding the required tests for each testing example. Besides the cost-
sensitive tree, DTNB also contains a naïve Bayes (right part), which is for classification. 

First of all, DTNB builds a cost-sensitive decision tree, given a set of training data, the 
misclassification costs, and test costs for each attribute. The building procedure is similar 
to C4.5. Instead of using entropy based splitting criteria, we use the expected total 
misclassification cost to select an attribute for splitting. This gives a more accurate choice 
for attribute selection. That is, an attribute may be selected as a root node of a decision 
tree if the sum of the test cost and the expected misclassification costs of all branches is 
the minimum among other attributes, and is less than that of the root. For a subset of 
examples with tp positive examples and tn negative examples, if CP = tp×TP + tn×FP is 



the total misclassification cost of being a positive leaf, and CN  =  tn× TN + tp×FN is the 
total misclassification cost of being a negative leaf, then the probability of being positive 
is estimated by the relative cost of CP and CN; the smaller the cost, the larger the 
probability (as minimum cost is sought). Thus, the probability of being positive is: 
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Thus, (E – EA –TC) is the expected cost reduction splitting on A, where TC is the total test 
cost for all examples on A. It is easy to find out which attribute has the smallest expected 
total cost (the sum of the test cost and the expected misclassification cost), and if it is 
smaller than the one without split (if so, it is worth to split). With the expected total 
misclassification cost described above as the splitting criterion, the lazy-tree learning 
algorithm is shown in Figure 2. 
 Simultaneously, we build a cost sensitive naïve Bayes. Note that this model is built on 
all the training data, and for all nodes in the tree. However, NBTree [Koh96] treats the 
segmentation of decision tree as an advantage. It builds a naïve Bayes at each leaf of the 
decision tree. And the naïve Bayes constructed for a leaf uses only the data associated 
with the leaf. However, as the tree grows, the training data are split into the lower level 
nodes. Finally, there are very little data in the leaves. The classification based on these 
leaves is far less accurate, so that the misclassification cost goes higher. This is reason that 
NBTree is proposed for larger dataset. However, without larger dataset assumption DTNB 
overcomes the shortcoming of segmentation of decision tree by constructing only one 
naïve Bayes using all the training data. This naïve Bayes acts as a hidden model at each 
node (including the leaves) of the cost-sensitive decision tree. The hidden model is only 
for classification. Thus, DTNB does not utilize the data which go down into a leaf of the 
tree to classify a testing example which drops into this leaf. It classifies the test example 
by the only hidden cost-sensitive naïve Bayes.  

DTNB only builds one general naïve Bayes from all the training data. Whereas, the 
posterior probabilities of a test example e are computed from the known attributes and the 
tested unknown attributes. The unknown attributes which are not selected to perform 



testing are not concerned. With the posterior probabilities, if FN× P(+|e) > FP×P(-|e), 
this test example is classified as negative, otherwise, as positive. A misclassification cost 
may be incurred if the prediction of the test example is wrong. Thus, for each test example, 
not only the attributes appearing on the tree, but also the known attributes can be fully 
used to make correct classification, so that the total misclassification cost can be reduced, 
as any known value is worthy of a certain cost. But for the cost-sensitive decision tree, it 
is possible some known attributes are not used to split the training data, so that they 
become useless for the classification. DTNB makes use of all known attributes, as well as 
the available values of the collected unknown attributes at certain test costs. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

CSDT(Examples, Attributes, TestCosts) 
1. Create a root node for the tree 
2. If all examples are positive, return the single-node tree, with label = + 
3. If all examples are negative, return the single-node tree, with label = - 
4. If attributes is empty, return the single-node tree, with label assigned 

according to min (EP, EN) 
5. Otherwise Begin 

a. If maximum cost reduction < 0 return the single-node tree, with label 
assigned according to min (EP, EN) 

b. A is an attribute which produces maximum cost reduction among all the 
remaining attributes 

c. Assign the attribute A as the tree root 
d. For each possible value vi of the attribute A 

i. Add a new branch below root, corresponding to the test A=vi 
ii. Segment the training examples into each branch Example_vi 
iii. If no examples in a branch, add a leaf node in this branch, with label 

assigned according to min (EP, EN) 
iv. Else add a subtree below this branch, CSDT(examples_vi, Attributes-A, 

TestCosts) 
6. End  
7. Return root 

Fig. 2. Algorithm of cost-sensitive decision tree 
 
 In the naïve Bayes model of DTNB, the Laplace Correction is applied. That is, 
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 After DTNB is built, for each testing example, there are two steps to find the minimum 
total cost of tests and misclassifications. The first step is to utilize the tree structure of the 
cost-sensitive decision tree to collect a set of tests which need be performed according to a 



certain strategy (there are several strategies explained in Section 4). The total test cost is 
accumulated in the step. After the set of tests are done, the values of the unknown 
attributes in the test example are available. It automatically goes to the second step, where 
the cost-sensitive naïve Bayes model is used to classify the test example into a certain 
class. The naïve Bayes uses not only the unknown attributes tested but also all known 
attributes. If it is classified incorrectly, there is misclassification cost. We empirically 
evaluate it over various test strategies in next section. 

4 Experiments 

We evaluate the performance of DTNB on two categories of test strategies: Sequential 
Test, and Single Batch Test. For a given test example with unknown attributes, the 
Sequential Test can request only one test at a time, and wait for the test result to decide 
which attribute to be tested next, or if a final prediction is made.  The Single Batch Test, 
on the other hand, can request one set (batch) of one or many tests to be done 
simultaneously before a final prediction is made.   

4.1 DTNB’s Optimal Sequential Test  

Recall that Sequential Test allows one test to be performed (at a cost) each time before the 
next test is determined, until a final prediction is made. Ling, et al. [9] described a simple 
strategy called Optimal Sequential Test (or OST in short) that directly utilizes the decision 
tree built to guide the sequence of tests to be performed in the following way: when the 
test example is classified by the tree, and is stopped by an attribute whose value is 
unknown, a test of that attribute is made at a cost. This process continues until the test 
case reaches a leaf of the tree. According to the leaf reached, a prediction is made, which 
may incur a misclassification cost if the prediction is wrong. Clearly the time complexity 
of OST is only linear to the depth of the tree. 
 One weakness with this approach is that it ignores some known attributes which do not 
appear in the path through which a test example goes down to a leaf. However, these 
attributes can be useful for reducing the misclassification cost. Like the OST, We also 
propose an Optimal Sequential Test strategy for DTNB (section 3), called DNOST in 
short. It has the similar process as OST. The only difference is that the class prediction 
which is not made by the leaf it reached, but the naïve Bayesian classification model in 
DTNB. This strategy utilizes the tree structure to collect the most useful tests for a test 
example. And it also utilizes the entire original known attributes in the test example with 
the unknown attributes tested to predict the class of the test example. We can expect 
DNOST outperforms OST. 
Comparing Sequential Test Strategies. To compare various sequential test strategies, 
we choose 10 real-world datasets which are listed in Table 1, from the UCI Machine 



Learning Repository [1]. The datasets are first discretized using the minimal entropy 
method [6]. These datasets are chosen because they are binary class, have at least some 
discrete attributes, and have a good number of examples. Each dataset is split into two 
parts: the training set (60%) and the test set (40%). Unlike the case study of heart disease, 
the detailed test costs and group information [13] of these datasets are unknown. To make 
the comparison possible, we simply choose randomly the test costs of all attributes to be 
some values between 0 and 100. This is reasonable because we compare the relative 
performance of all test strategies under the same chosen costs. To make the comparisons 
straightforward, we set up the same misclassification costs 200/600 (200 for false positive 
and 600 for false negative). For test examples, a certain ratio of attributes (0.2, 0.4, 0.6, 
0.8, and 1) are randomly selected and marked as unknown to simulate test cases with 
various degrees of missing values.  
 

Table 1. Datasets used in the experiments 

 No. of 
Attributes 

No. of 
Examples Class dist. (N/P) 

Ecoli 6 332 230/102 
Breast 9 683 444/239 
Heart 8 161 98/163 

Thyroid 24 2000 1762/238 
Australia 15 653 296/357 

Tic-tac-toe 9 958 332/626 
Mushroom 21 8124 4208/3916 
Kr-vs-kp 36 3196 1527/1669 
Voting 16 232 108/124 
Cars 6 446 328/118 

 
In this section, we compare our DNOST with the other two sequential test strategies 

available, OST, and CSNB [2] on 10 real-world datasets to see which one is better (having 
a smaller total cost). Note that DNOST and OST use the same decision tree to collect 
beneficiary tests. However, DNOST uses DTNB’s naïve Bayes for classification, while 
OST uses the leaves of tree to classify test examples. CSNB follows the same test strategy: 
determine next test based on the previous test result. However, it is based on the naïve 
Bayes only. In all, all of them are based on the same test strategy, but they are applied 
different cost-sensitive learning models. That is, their performances directly stand for the 
performances of different learning models. We repeat this process 25 times, and the 
average total costs for the 10 datasets are plotted in Figure 3. 
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Fig. 3. The total cost of our new Sequential Test Strategy DNOST compared to previous 
strategies (OST and CSNB) 

   
 We can make several interesting conclusions. First, DNOST performs the best among 
the three sequential test strategies. When the unknown attribute ratio is higher, the 
difference between DNOST and CSNB becomes bigger. However, DNOST is gradually 
close to OST when the unknown ratio is increased. When the unknown ratio is lower, the 
difference between DNOST and OST is bigger, as more known attributes are utilized in 
DTNB, but they are ignored in cost-sensitive decision tree. Second, the results proof our 
expectation which DTNB integrates the advantage of the decision tree and the naïve 
Bayes and overcomes their defects. When the unknown ratio is lower, there are more 
known attributes ignored by OST, so that OST performs worse, whereas DNOST and 
CSNB perform better and are closer, as they make use of the known values. When the 
unknown ratio is higher, there are less known attributes ignored by OST and both DNOST 
and OST utilize the tree structure to collect the most beneficiary tests, so that they perform 
better and are close to each other.  

4.2 Single Batch Test Strategies 

The Sequential Test Strategies have to wait for the result of each test to determine which 
test will be the next one. Waiting not only costs much time, but also increases the pressure 
and affects the life quality of patients in medical diagnosis. In manufacturing diagnoses, it 
delays the progress of engineering. Even in some particular situations, for example, 
emergence, we have to make decisions as soon as possible.  In medical emergence, 
doctors normally order one set of tests (at a cost) to be done at once. This is the case of the 
Single Batch Test. 



 In [9] a very simple heuristic is described. The basic idea is that when a test example is 
classified by a minimum-cost tree and is stopped by the first attribute whose value is 
unknown in the test case, all unknown attributes under and including this first attribute 
would be tested, as a single batch. Clearly, this strategy would have exactly the same 
misclassification cost as the Optimal Sequential Test, but the total test cost is higher as 
extra tests are performed. This strategy is called Naïve Single Batch (NSB).  
 The weakness of NSB is that it ignores some known attributes which do not appear in 
the path through which a test example goes down to a leaf after the tests are performed. 
However, these attributes can be useful for reducing the misclassification cost. Like the 
NSB, we apply the similar process on DTNB. The only difference is the class prediction 
which is not made by the leaf a test example reached after the tests are performed, but by 
the naïve Bayes classification model. We call this process DTNB’s Naïve Single Batch 
Test (or DN-NSB in short).  
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Fig. 4. The total cost of our new Single Batch Test Strategies DN-NSB compared to their previous 

strategies (NSB and CSNB-SB). 
 

Comparing Single Batch Test Strategies. We use the same experiment procedure on the 
same 10 datasets used in Section 4.1 (see Table 1) to compare various Single Batch Test 
strategies including CSNB-SB [2]. The only change is the misclassification costs, which 
are set to 2000/6000 (2000 for false positive and 6000 for false negative). The 
misclassification costs are set to be larger so the trees will be larger and the batch effect is 
more evident. Note that DN-NSB and NSB use the same decision tree to collect 
beneficiary tests. However, DN-NSB uses DTNB’s naïve Bayes for classification, while 
NSB uses the leaves of tree to classify test examples. CSNB follows the same test strategy: 
request one set (batch) of one or many tests to be done simultaneously before a final 
prediction is made. However, it is based on the naïve Bayes only. In all, all of them are 



based on the same test strategy, but they are applied to different cost-sensitive learning 
models. That is, their performances directly stand for the performances of different 
learning models. The total costs for the 10 datasets are compared and plotted in Figure 4.  
 We can make several interesting conclusions. First, the single batch test strategy (DN-
NSB) based on DTNB outperforms others on any unknown ratio. CSNB-SB outperforms 
NSB when the unknown ratio is higher, but it is worse than NSB when the unknown ratio 
goes down. Second, the results again proof our expectation which DTNB integrates the 
advantage of the decision tree and the naïve Bayes and overcomes their defects. When the 
unknown ratio is lower, there are more known attributes ignored by NSB, so that NSB 
performs worse. DN-NSB and CSNB-SB perform better, as they make use of the known 
values. When the unknown ratio is higher, there are less known attributes ignored by NSB 
and both DN-NSB and NSB utilize the tree structure to collect the most beneficiary tests, 
so that they perform better.   

5 Conclusion and Future Work 

In this paper, we present a hybrid decision tree learning algorithm, which integrate with 
naïve Bayes, to minimize the total cost of misclassifications and tests. We evaluate the 
performance (in terms of the total cost) empirically, compared to previous methods using 
decision tree and naïve Bayes alone. The results show that our novel learning algorithm, 
DTNB, performs significantly better than the decision tree learning and the naïve Bayes 
learning alone.  
 In our future work we plan to design smart single batch test strategies. We also plan to 
incorporate other types of costs in our hybrid decision tree learning DTNB and test 
strategies. 
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