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Abstract. Ensemblelearning has been shown to be very successful in data min-
ing. However most work on ensemblelearning concernsthe task of classification.
Little work has been done to construct ensembles that aim to improve ranking.
In this paper, we propose an approach to re-construct new ensembles based on
a given ensemble with the purpose to improve the ranking performance, which
is crucial in many data mining tasks. The experiments with real-world data sets
show that our new approach achieves significant improvements in ranking over
the original Bagging and Adaboost ensembles.

1 Introduction

Classificationis one of the fundamental tasksin knowledge discovery and data mining.
The performance of a classifier is usually evaluated by predictive accuracy. However,
most machinelearning classifiers can al so producethe probability estimation of theclass
prediction. Unfortunately, this probability information isignored in the measure of ac-
curacy.

In many real-world datamining applications, however, we often need the probability
estimations or ranking. For exampl e, in direct marketing, we often need to promote the
most likely customers, or we need to deploy different promotion strategies to customers
accordingtotheir likelihood of purchasing. To accomplish thesetaskswe need aranking
of customers according to their likelihood of purchasing. Thus ranking is often more
desirable than classification in these data mining tasks.

One natural question is how to evaluate a classifier’'s ranking performance. In re-
cent years, the area under the ROC (Receiver Operating Characteristics) curve, or Sim-
ply AUC, isincreasingly received attentionin the communities of machine learning and
datamining. Datamining researchers[1, 2] have shown that AUC isagood summary in
measuring aclassifier’soveral ranking performance. Hand and Till [3] present asimple
approach to calculating AUC of a classifier for binary classification.
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where ng and n; are the numbers of positive and negative examples respectively, and
S = S i, wherer; istherank of theiy, positive example in the ranked list.

Ensemble is a general approach which trains a number of classifiers and then com-
binestheir predictionsin classification. Many researches [4—6] have shown that the en-
sembleisquiteeffectiveinimproving the classification accuracy compared withasingle



classifier. The reason isthat the prediction error of an individual classifier can be coun-
teracted by the combination with other classifiers. Bagging [5] and Boosting [7] aretwo
of the most popular ensembl e techniques.

Most previouswork of ensemblelearningisfocussed on classification. To our knowl-
edge, there islittle work that directly constructs ensembles to improve probability es-
timations or ranking. [8] compared the probability estimations (ranking) performance
of different learning algorithms by using AUC as the comparison measure and demon-
strated that Boosted trees and Bagged trees perform better in terms of ranking than Neu-
ral Networksand SVMs. [9] used the boosting techniqueon the general preferencelearn-
ing (ranking) problem and proposed a new ranking boosting algorithm: RankBoost.

In thispaper, we propose anovel approach to improvetheranking performance over
agiven ensemble. The goa of thisapproach isto select some classifiers from the given
ensembl e to re-construct new ensembles. It first uses the k-Nearest Neighbor method to
find training data subsets which are most similar to thetest set, then it uses the measure
SAUC (see Section 2.2) as heuristic to dynamically choose the diverse and well per-
formed classifiers. Thisapproach iscalled DERC (Dynamic Ensemble Re-Construction)
algorithm. The new ensembles constructed by thisapproach are expected to have better
ranking performance than the original ensemble.

The paper is organized as follows. In Section 2 we give detailed description for our
new agorithm. In Section 3 we perform experiments on real world data setsto show the
advantages of the new algorithm.

2 DERC (Dynamic Ensemble Re-Construction) Algorithm

In an ensembl e, the combination of the predictions of severa classifiersis only useful
if they disagree to some degree. Each ensembl e classifier may perform diversely during
classification. Our DERC agorithmismotivated by thisdiversity property of ensemble.
Thediversity impliesthat each ensemble classifier performs best in probability estima:
tion (ranking) only in a subset of training instances. Thus given a test (sub)set, if we
use the k-Nearest Neighbor method to find some training subsets that are most similar
toit, the classifiers that perform diversely and accurately on those similar training sub-
sets are al so expected to perform well on thetest (sub)set. Therefore the new ensembles
constructed are expected to have better ranking performance than the origina ensemble.

Our DERC dgorithminvol vestwo basi c steps: findingthe most similar training (sub)sets,
and selecting the diverse and accurate classifiers.

Now we use Figure 1 to illustrate how DERC algorithmworks. Suppose that we are
given an ensemble E with multiple classifiers built on atraining set S, and we have an
unlabeled test set T at hand. Our goal isto select some classifiers from the ensemble E
to build one or more new ensembles to perform ranking on test set T.

2.1 FindingtheMost Similar Training Subsets

Thefirst stepisto stratify thetest set to some equal partsand find the most similar train-
ing subsets corresponding to test partitions. Since the labels of test instances are un-
known, we randomly pick aclassifier from ensemble E to classify thetest set T to obtain



the predicted |abels. Assume that we want to construct 3 new ensembles. According to
the predicted class|abelswe stratify (partition with equal classdistributions) the test set
T into 3 equa sized parts: Ty, T, and Tz. We want to select some classifiers from ensem-
ble E to build 3 different new ensembles which are responsiblefor ranking Ty, T, and T
respectively.

s
/dl/l/ d12- | s
n fi\:\::g‘]ﬁ:’: S13
Ty ] gy
T3 “1 SI5
test set
S

train set

Fig. 1. An examplefor the similar sets.

For each stratified test subset we use the k-Nearest Neighbor method to find k subsets
of training set which are most similar to that test set part. For each instance of the test
subset, we compute the distances from this instance to all training instances and find
the nearest k instances. We use the foll owing method to compute the distance between
two instances u and v, which are from the test subset and training dataset, respectively.
Supposethat an instance has k; nominal attributes A; and k, numerical attributes B;. We
usethesimplified VDM measure proposedin [10] to computethe distance of all nominal

attributes.
kg
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where N -4, iSthe number of instances in test subset holding value a, on attribute A;,
Na,=a,,c=c IS the number of instances in test subset which are predicted belonging to
class c and hold value a, on attribute A;. Here note that since test set is unlabeled, we
usethe class labels predicted in thefirst step.

We simply use the Euclidean distance to compute the difference of numerical at-
tributes. ED(u,v) = z:‘il(bui — by,)?, where by, isinstance u' value on numerical at-
tributeB;.

Thedistanceof uand vis

d(u,v) = VDM(u,Vv) + ED(u,Vv)

After the distances are computed, we randomly pick one from the k nearest instances of
each test instance and use them to form atraining subset. This subset is most similar to



thetest subset. We can use thismethod to find a desired number of most similar training
subsets. The distance between two similar data sets is ssimply the average distances of
each test subset instance with its corresponding nearest training instance. Asshown in
Figure 1, assume that Sy1, S12, Si3, S14 and Si5 are T;’s 5 most similar training subsets.
Their distancesto T, are computed as dy1, dio, di13, d14 and dys, respectively.

2.2 Sdecting Diverseand Accurate Classifiers

After the most similar training subsets are found, we use the following strategy to select
diverse and accurate classifiers from origina ensemble. Instead of directly using AUC
asthe criterion to choose classifiers, we propose a new measure SAUC (Softened Area
Under the ROC Curve) as the heuristic.

For a binary classification task, SAUC is defined as
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wherey > 0, pit, p; represent the predicted probabilities of being positive for the
ith positive and the jth negative examples in all m positive examples and n negative
examples, respectively.

We choose a series of measures SAUC(y;), SAUC(Y), - - -, SAUC(yn) as heuristics.
We use SAUCs as heuristics for two reasons. First, SAUC with different powersy may
have different sensitivities and robustness to instance ranking variations. Thus using
SAUCswith varied power y as heuristics can more reliably select diverse classifiersin
terms of ranking. Second, SAUC is a softened version of AUC and thusit is basically
consistent with AUC. From Equation 2 we can see that SAUC(0) = AUC. Thus using
SAUCs as criteria can select the classifiers with accurate ranking performance.

AsshowninFigure1lwe useeach classifier G, of ensemble E toclassify S1, Si2, Si3,
Sj4 and S5 to obtain the respective SAUC(y;) as SA11, SA12, SA13, SA1a, SA15. We then
compute a score for C;, which isthe weighted average of the SAUC(y; ) values obtained
above. ItisS =57, % We choose the classifier with the highest score. We repest the
above step n times by using a different SAUC(y; ) each timeto select anew classifier.

Finally we use all the classifiers selected to construct anew ensemble. This ensem-
bleis responsible for ranking T;. The new ensemble combination method is weighted
averaging, in which a classifier’s weight is its score computed above. Using the same
method we can construct two other ensembles which are responsiblefor ranking T, and
T, respectively. We give the pseudo-code of thisalgorithmin Table 1.

One natura question about the DERC algorithm is that how many new ensembles
should be constructed to give the best ranking performance. Since the number of test
set partitionsequal s to the number of new ensembles, thisquestion is equivalent to how
to choose an optimal number of test set partitions. Clearly, a small number of partitions
generally means large partitioned test subsets, which correspondsto large similar train-
ing subsets. Thus the corresponding new ensemble may not specialize on all instances



Table 1. The pseudo code for DERC algorithm

DERC(E,ST,n)
Input:
E : Anensemblewith classifiersCy,---,Cyn
S: Training data set
T : Test dataset
n: The number of test set partitions

choose a classifier from E to classify T
stratify T into Ty, Tp, -+, T
for each partition T; do
E' <o
find the most similar training subsets 1, S, - - -, Sk
compute the distancesd;q, d;,- - - ,dik from T; to Sy, - - -, Sk respectively
for each measure SAUC(y,) do
for each classifier G do

runG on Sy, Sp, -+, Sk
obtainthe SAUC(yy) of G as SA;,,- -+, SA,
compute the ranking score for classifier G
st
endfor
choosethe classifier CC with highest scorer;
Ef +— E'UCC
endfor
endfor
return all Ef

of the similar training subsets. Therefore our a gorithm may not perform best on a small
number of partitions. On the contrary for very large number of partitions, the size of
similar training subsets will be very small. In this case there is a danger of overfitting.
Thereforewe can claim that generally too small or too large number of partitionsshould
be avoided. We will perform experimentsin the next section to confirm thisclaim.

3 Experimental Evaluation

To evaluate the performance of our algorithm, we extract 16 representative binary data
setsfrom UCI [11].

We use Bagging and Adaboost as the ensembling methods and Naive Bayes as the
baselearner. We choose WEKA [12] astheimplementations. In order to increase theen-
sembl e diversity, we randomly select half of the training data for each bootstrap in our
Bagging process. This can guaranteethat the bagging classifiers are diverseto some de-
gree. We compare the performance of DERC with Bagging and Adaboost respectively.

In our DERC agorithm we use SAUC(y;) as criteriato select classifiers. We have
to determine the suitable number and scores of the powersy; by taking into account the
tradeoff between thequality of resultsand computational costs. Wetest the SAUC witha



wideranges of powersy by using all the 16 datasetsin the our experiments. The analysis
of these measures' performance shows that the power range of [0,3] isagood choicefor
SAUC. We choose 9 different SAUC with the powers of 0, 0.1, 0.4, 0.8, 1.0, 1.5, 2, 2.5,

3inour ex

periment.

We follow the procedure below to perform our experiment:

1. Wediscretizethe continuousattributesinall datasetsusing the entropy-based method
described in[13].
2. We perform 5-fold crossvalidation on each dataset. In each fold wetrain an ensem-
blewith 15 classifiers using Bagging and Adaboost methods, respectively. We then
run our DERC algorithm on the ensembl e trained. By varying the number of test set
partitions, we have a number of different DERC agorithm models.
3. We run the second step 20 times and we compute the average AUC for all the pre-
dictions.

We use a common statistic to compare the learning algorithms across all data sets.
We performed two tailed paired t-test with 95% confidence level to count in how many
datasets one algorithm performs significantly better, same, and worse than another algo-
rithm respectively. We use win/draw/lossto represent this.

The experimental resultsare listed in Table 2 and Table 3.

Table 2. Comparing the predictive AUC of DERC algorithms with Bagging

Dataset | Bagging | DERC(1) | DERC(2) | DERC(3) | DERC(4) | DERC(6)
breast |98.84 + 0.56{98.84 + 0.5398.83 + 0.50|98.85 + 0.59]98.86 - 0.55|98.81 £ 0.59
cars | 9356+ 3.0|9477+£22| 949427 | 9483+ 27| 9487429 | 9502+ 2.1

credit |92.894+ 1.2(9343+1.1|9336+1.2(9332+ 12| 933+ 14 | 933+ 11
echocardio| 72.34+ 8.4 | 72.34+ 84 | 7421+ 83 | 7411+ 8.4 | 7411+ 84 | 7309+ 8.4
eco  |99.28+£0.84|99.34+ 1.1| 99.34+ 1.0 [99.32 + 0.84 99.3+ 1.0 |99.33 + 0.84
heart |85.89 + 0.45| 86.01+ 0.5 | 86.97+ 0.5 |86.81 + 0.64| 86.06 + 1.7 | 85.92 + 2.6

hepatitis | 86.73+ 2.6 | 87.06+ 2.6 | 875+ 29 |89.14+ 2.6 | 8859+ 24| 882+ 138
import | 97.75+ 2.6 | 97.75+ 2.6 | 9759+ 2.8 | 97.72+ 2.6 | 97.72 + 2.6 | 97.74 + 2.6
liver | 6177+ 1.6|61.33+ 0.45| 61.64 + 0.6 | 61.4+ 0.18 | 61.26 + 0.3 | 61.19 £ 3.7
pima |77.27+89|79.33+7.6| 7929+ 7.7 |79.26+80|79.14+86|79.22+ 87
thyroid | 9512+ 1.7 | 95194+ 1.6 | 9510+ 1.6 | 9516+ 1.9 9524+ 1.9 9529+ 1.5
voting | 96.00 £0.36(96.08 £ 0.36|96.07 + 0.36(96.27 + 0.36|95.99 + 0.36|96.01 + 0.36
sick |96.84 £1.56|95.20 £2.48(094.27 £2.11|e94.27+3.47|093.99+-2.79|094.08+3.02
ionosphere| 94.59 +3.2194.80 + 3.22| 95.96 +3.47 | 95.85+2.63 | 95.84:+2.79 [95.84 + 3.92
german |84.26 +£4.02(87.58 + 4.33| 87.40 + 4.1 |87.23 + 4.21| 87.44 + 4.2 | 87.4 + 417
mushroom| 99.89 +0.04|99.79 + 0.04|99.88 -+ 0.04|99.90 + 0.04{99.89 + 0.04{99.89 + 0.04

widll 471210 7/8/1 8/7/1 8/7/1 7/8/1

Table 2 showsthe AUC vaues for the Bagging algorithm and the DERC algorithms

with different settings on various data sets. We use DERC(i) to denote the correspond-
ing DERC algorithm which generate a number of i new ensembles. Each data cell rep-
resents the average AUC value of the 20 trias of 5-fold cross validation for the corre-



sponding algorithm and data set. The data in bold shows the corresponding agorithm
performs significantly better than Bagging on the corresponding data set. The datawith
a“e” means it issignificantly worse than that of Bagging.

From thistable, we can see that DERC outperformstheorigina Bagging a gorithm.
The w/d/l statistics showsthat all DERCs with different settings have much more wins
than losses compared with Bagging algorithm. If we rank them according to the w/d/I
number, we can see that the DERC with 3 or 4 partitions performs best, the DERC with
2 or 6 partitionsthe second best, while the DERC with 1 partition the worst.

We can also see how the partition numbers influences the dynamic re-construction
performance. We can observe that generally the dynamic re-constructions with the par-
tition numbers of 3 or 4 perform best. It shows that dynamic re-construction with inter-
mediate number of partitionsoutperformsthat with large or small number of partitions.
Thisresult confirms our discussion in the previous section.

We a so compare our DERC a gorithmwith Adaboost and report theresultsin Table
3. The similar comparisons show that DERC also significantly outperforms Adaboost in
termsof AUC. DERC(3) winsin 5 datasets, tiesin 10 datasetson loses only in 1 dataset.

Table 3. Comparing the predictive AUC of DERC algorithms with Adaboost

Dataset | AdaBoost | DERC(1) | DERC(2) | DERC(3) | DERC(4) | DERC(6)
breast | 98.99 & 2.1| 98.39+ 2.4 | 9841 + 2.1 | 98.46+ 2.1 | 9851+ 2.1| 9853+ 2.1
cars | 9174+ 50| 9321+ 50 | 9314+ 50 | 94.72+£ 5.0 | 93.89+ 5.0 | 93.214 5.0
credit | 92.06+ 3.7 | 92.04+3.7| 9206+ 35| 92.08+ 4.8 | 92104+ 53| 91.77 + 4.7
echocardio| 72.02 + 4.8 | 7394+ 4.8 | 73.94 + 4.8 | 73.94+ 48 | 7394+ 4.8 | 73.94+ 4.8
eco | 99.30+1.099.134+1.0|99.02+ 1.0| 99.24+ 1.0 | 99.27 + 1.0| 99.62 £ 1.0
heart |88.03 4 0.28/88.51 + 0.31/90.39 + 0.28|89.72+ 1.22| 89.34 + 1.6 |89.58 + 1.24
hepatitis | 85.25 + 8.6 | #83.16 +5.8|e83.03 4 5.6| ¢83.24:8.6 | ¢83.9+£8.8 |e83.84 £ 5.4
import | 98.994+ 1.7 | 98.90+ 0.0 | 98.98 + 3.6 | 98.73+ 0.0 | 98.68 + 5.2 | 98.88 & 0.0
liver |65.45+6.2|6644+4.1|6620+51|67.08+51|67.77+5.1|6629+ 5.1
pima | 7599+ 83|7492+81|7489+7.2| 7781+ 8.3 | 7799+ 65| 78.13+ 84
thyroid | 95.614+0.35| 9555 + 0.8 |95.64 + 0.27| 95.6540.18 |95.58 + 0.71|95.58 + 0.35
voting | 96.37+£2.9 | 96.324+2.9 | 96.39+ 33| 965+ 1.4 | 96.37+ 1.4| 96.37 £ 2.9
sick |97.02+1.56|97.08 + 1.51/97.07 + 1.43| 97.02 + 1.5|96.99 + 1.24|97.08 + 2.54
ionosphere| 94.56 +3.21|94.80 + 3.47|95.96 +4.37| 95.85+4.26 | 95.84+3.97 |95.84 + 3.68
german | 86.41+4.02|88.24 + 4.33| 88.21 + 4.1 | 88.214+4.21 | 88.19+4.2 |88.19+ 4.17
mushroom| 99.92 +0.04[99.79 + 0.04/99.88 -+ 0.04/99.90 + 0.04|99.89 + 0.04(99.89 + 0.04
widll 3/12/1 41171 5/10/1 5/10/1 41171

4 Conclusonsand Future Work

In this paper we propose a novel dynamic re-construction technique which amsto im-
provetheranking performance of any given ensemble. Thisisageneric techniquewhich
can be applied on any existing ensembles. The advantage isthat it isindependent of the



specific ensemble construction method. The empirical experiments show that this dy-
namic re-construction technique can achieve significant performance improvement in
term of ranking over the original Bagging and Adaboost ensembles, especially with an
intermediate number of partitions.

In our current study we use Naive Bayes as the base learner. For our futurework, we

plantoinvestigate how other learning a gorithmsperform with the DERC technique. We
also planto explorewhether DERC isa so effective whenit isapplied on other ensemble
methods.
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