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Abstract

We propose a framework for learning good prototypes, called prototype generation and �ltering (PGF), by integrating9
the strength of instance-�ltering and instance-abstraction techniques using two di3erent integration methods. The two
integration methods di3er in the �ltering granularity as well as the degree of coupling of the techniques. In order to11
characterize the behavior of the e3ect of integration, we categorize instance-�ltering techniques into three kinds, namely,
(1) removing border instances, (2) retaining border instance, (3) retaining center instances. The e3ect of using di3erent13
kinds of �ltering in di3erent variants of our PGF framework are investigated. We have conducted experiments on 35
real-world benchmark data sets. We found that our PGF framework maintains or achieves better classi�cation accuracy15
and gains a signi�cant improvement in data reduction compared with pure �ltering and pure abstraction techniques as
well as KNN and C4.5. ? 2001 Published by Elsevier Science Ltd on behalf of Pattern Recognition Society.17
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1. Introduction

The nearest neighbor (NN) algorithm and its deriva-
tives have been proven to perform well in pattern classi-21
�cation on many domains [1,2]. These algorithms store
the entire training set and classify unseen cases by �nd-23
ing the class labels of instances which are closest to them.
Despite their high generalization accuracy, they su3er25
from high storage requirement, computational cost and
sensitivity to noise.27
One method for solving this problem is to develop ad-

vanced data structure and search techniques to speed up29
NN searching [3]. If the number of data instances is very
large, it still requires high computational cost. Another31
method is to reduce the large data set to a small, rep-
resentative prototype set. Removing non-representative33
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and noisy instances can reduce storage requirement and 35
computational cost while maintaining or even improving
the classi�cation accuracy. Two lines of research have 37
been proposed to learn good prototypes. One technique is
known as instance-�ltering approach. Instance-�ltering 39
techniques reduce data set by retaining representative
instances from the original data set. The other line of 41
research can be regarded as instance-abstraction ap-
proach which reduces the data set by generating arti�cial 43
prototypes summarizing representative characteristics
of similar instances. 45
The two techniques are used independently in the past.

An initial examination on the integration of the two meth- 47
ods has been carried out by the authors [4]. In this paper,
we conduct a thorough and in-depth investigation on the 49
integrating technique. We propose a framework for dis-
covering good prototypes, called prototype generation 51
and �ltering (PGF), which combines instance-�ltering
and instance-abstraction techniques by integrating 53
the strength of both techniques using two di3erent
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integration methods. The two integration methods di3er1
in the �ltering granularity as well as the degree of the
coupling of the components. In order to characterize the3
behavior of the e3ect of integration, we categorize di3er-
ent kinds of instance-�ltering techniques according to the5
locations of instances retained or removed, namely, (1)
retaining center instances, (2) retaining border instances7
and (3) removing border instances. The e3ects of using
di3erent kinds of �ltering in di3erent variants of our9
PGF framework are investigated. In experiments on 35
real-world benchmark data sets, the classi�cation accu-11
racy and data retention rate of each variant of our method
are investigated. The results are compared with those13
of pure instance-�ltering and pure instance-abstraction
techniques as well as KNN and C4.5. Empirical results15
show that the PGF framework maintains or achieves
better classi�cation accuracy and gains a signi�cant17
improvement in data reduction compared with existing
methods.19

2. Our proposed algorithm

2.1. Motivation21

Some works have been done on selecting representa-
tive instances. In instance-�ltering methods, editing rules23
are used to determine whether an instance should be re-
tained as a prototype or not. These methods di3er from25
search direction and locations of instances retained. For
example, Hart proposes a condensed nearest neighbor27
(CNN) which is probably the earliest method to select
representative instances [5]. CNN starts by randomly29
storing one instance for each class as the initial subset
and stores instances misclassi�ed by the current subset.31
A top-down variant of CNN, called reduced nearest
neighbor (RNN) is proposed by Gates which removes33
instance if the removal does not cause any misclassi�-
cation of other instances [6]. The edited nearest neigh-35
bor (ENN) algorithm proposed by Wilson eliminates
instances misclassi�ed by their k-nearest neighbors [7].37
A noise-tolerant instance �ltering called NTGrowth is
proposed by Aha and Kibler [8]. Later, Aha et al. formal-39
ize NTGrowth to the well-know IB2 and IB3 algorithm
which is based on CNN storing misclassi�ed instances41
[9]. IB2 is similar to CNN except that instances are nor-
malized by the range of attributes and missing value are43
tackled while IB3 only accepts instances with a relatively
high classi�cation accuracy compared with the frequency45
of the observed class. The two algorithms provide noise
tolerance. Zhang introduces typical instance-based learn-47
ing which stores typical instance in the region centers
[10]. Wilson and Martinez introduce an instance pruning49
technique called RT3 removing an instance by consid-
ering its associates, instances in the current selected51
instance set having it as one of their k-nearest neighbors

[11]. RT3 employs ENN to �lter out noise �rst and 53
removes an instance if most of its associates are cor-
rectly classi�ed without it. They further re�ne this tech- 55
nique to form DROP1–DROP5 [12] and the integrated
decremental instance-based learning which combines 57
con�dence and cross-validation accuracy in the distance
measure [13]. 59
Another approach for �nding representative instances

is the instance-abstraction method which generates 61
prototypes by abstracting or averaging the original in-
stances. Chang’s method learns representative instances 63
by merging similar ones. It iteratively merges two closest
instances and summarizes them by taking the weighted 65
average of them [14]. Bradshaw introduces the disjunc-
tive spanning (DS) which merges instances with the ones 67
they can be correctly classi�ed [15]. Kibler and Aha im-
prove DS by using an adaptive threshold to limit the dis- 69
tance between two merged instances [16]. An algorithm
called nested generalized exemplar (NGE) is proposed 71
by Salzberg which stores instances as hyperrectangles
[17]. Wettschereck combines the NGEwith KNN to form 73
a hybrid algorithm [18]. However, this algorithm stores
the entire data set in memory. Domingos also proposes 75
an integrated technique, the RISE algorithm, combining
instance-based learning and rule induction [19]. Under 77
this algorithm, instances are treated as rules and data
reduction is achieved using speci�c rules formed by 79
generalization of instances. Datta and Kibler introduce
the prototype learner (PL) which learns arti�cial in- 81
stances for each class by generalization of representative
instances in nominal domains [20]. Then they propose the 83
symbolic nearest mean classi�ers (SNMC) [21] which
attempts to learn a single prototype for each class using 85
a modi�ed Value Di3erence Metric proposed by Cost
and Salzberg to weigh symbolic features [22]. SNMC 87
uses k-means clustering to group instances of the same
class and create arti�cial instances using cluster means. 89
Bezdek et al. modify Chang’s method which averages
instances using simple mean and merges instances of the 91
same class only [23]. Recently, an instance-abstraction
algorithm called FAMBL in language learning task is 93
proposed by Van den Bosch. It forms hyperrectangles
like NGE but a di3erent instance merging procedure is 95
used [24]. A technique known as squashing is proposed
to scale down the data set by exploiting the statistical 97
property of the instances [25]. However, this technique
does not make use of the class label information if it is 99
employed in classi�cation problems.
We observe that instance-�ltering and instance- 101

abstraction approaches can be bene�cial to each other.
Filtering methods do not conduct generalization on 103
instances so that they usually cannot gain a satis-
factory level of data reduction [7]. With the help of 105
instance-abstraction methods, instances in compact re-
gions can be generalized to a few or single prototypes 107
leading to a signi�cant improvement in data reduction
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rate. Also, the representative power of �ltering meth-1
ods will be limited if the truly representative instances
cannot be found in original data set. As abstraction3
approaches summarize the most representative charac-
teristics of similar instances, the generated instances can5
be more representative than original ones. Therefore,
the representation power of �ltering approaches can be7
improved if abstraction technique is suitably integrated.
Instance-�ltering can assist instance-abstraction9

too. Non-prototypical instances will be formed if
distant instances, especially for outliers and exceptions,11
are grouped in abstraction methods. To avoid this, spe-
cially designed �ltering rules can be applied to remove13
outliers and exceptions �rst before applying abstraction.
Filtering techniques can also be helpful in the middle15
of or after the abstraction process. We can design a �l-
tering rule to remove any non-representative prototypes17
formed when the abstraction process is in progress.
We observe that there are two main factors a3ecting19

the performance of the integration of the two approaches.
The �rst factor is the type of �ltering techniques. We21
can classify �ltering techniques into three types accord-
ing to [11]. The �rst type of �ltering methods retains23
central instances as representative instances in a cluster
of data points. The second type of �ltering retains bor-25
der instances of a cluster as representative instances. The
third type of �ltering removes border instances and treats27
the remaining ones as representative. As abstraction tech-
niques attempt to generalize similar instances in compact29
regions, they work di3erently on instances in di3erent re-
gions. For example, center instances will be generalized31
to a larger extent compared with border instances.
The second factor a3ecting the performance of the33

integration is the �ltering granularity. Filtering can be
conducted on the original instances. To do this, one can35
employ a loose coupling by applying �ltering as a
preprocessing task and conduct abstraction subsequently.37
Alternatively, �ltering can be conducted on the interme-
diate prototypes generated when the abstraction process39
is in progress. We can design a tight coupling technique
incorporating �ltering into the abstraction process.41
Furthermore, the two factors will interact with each
other leading to di3erent behaviors of the integration43
algorithm.
We develop a general framework for the integration45

called PGF. Then we investigate di3erent integration
algorithms under our PGF framework.47

2.2. The framework of our approach

A simple PGF framework has been �rst proposed by49
the authors in previous work [4]. In this paper, PGF is
further developed into two variants which di3er from the51
integration method of �ltering and abstraction tech-
niques. PGF consists of an instance-abstraction com-53
ponent and an instance-�ltering component. We �rst

describe the abstraction component and each of 55
the three �ltering methods used. Then we present
two di3erent ways to integrate the two compo- 57
nents in our PGF framework. We will also illus-
trate the e3ect of di3erent components using a 59
hypothetic data set of two classes as shown in
Fig. 1. 61

2.2.1. Instance-abstraction component
Our instance-abstraction method is based on an 63

agglomerative clustering technique. A prototype is
represented by a set of data instances together with 65
the suMcient statistics, namely, the total number,
mean and standard deviation of the instances. Fig. 67
2 shows the pseudo-code of the instance abstrac-
tion component, called ABS. Let P be the cur- 69
rent prototype set. At each iteration, two proto-
types with the shortest distance are merged to form 71
a new prototype. The majority class of all the in-
stances in the new prototype becomes the class of 73
it. The prototype set is then evaluated by a pro-
totype set score function (PROT SET SCORE) to 75
predict the quality of the prototypes. After the al-
gorithm terminates, the output prototype set will be 77
used for classifying unseen cases using the simple NN
algorithm. 79
There are many ways to develop the prototype set

score function. As our objective is to learn prototypes 81
to classify unlabeled instances, classi�cation accuracy
on unseen cases is a reasonable indicator to predict the 83
quality of prototypes. We divide the training set into a
sub-training set and a tuning set. Prototypes are gener- 85
ated using the sub-training set. The tuning set is used for
calculating the prototype set score using classi�cation ac- 87
curacy. The prototype set with the highest classi�cation
accuracy is the output. 89
To measure the distance between instances with con-

tinuous and nominal feature types, we adopt a hetero- 91
geneous distance function similar to the one proposed
by [11]. We �rst normalize all the continuous attributes 93
by their feature ranges. Euclidean distance is employed
to calculate distances between continuous feature val- 95
ues whereas a simpli�ed version of value di3erence
metric (vdm) [26] is used to handle nominal features. 97
The distance function vdmi for feature i is de�ned
as: 99

vdmi(a; b)=
C∑
c=1

(
N (i; a; c)
N (i; a)

− N (i; b; c)
N (i; b)

)2

;

where N (i; a) is the number of occurrences of instances
with value a for feature i and N (i; a; c) is the number of 101
occurrences of instances with value a for feature i and
class label c. C is the total number of classes in the data 103
set. Our distance measure, Dist(x; y) for two prototypes 105
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Fig. 1. A data set of two classes.

x=(x1; : : : ; xn) and y=(y1; : : : ; yn), is de�ned as:1

Dist(x; y)=

√√√√ n∑
i=0

dist2i (xi; yi);

where n is the number of attributes, and disti(xi; yi)
equals to vdmi(xi; yi) for nominal features and (x − y)3
for continuous features. We �nd that vdm and Euclidean
distance have di3erent ranges of values leading to dif-5
ferent weights for each feature in our distance measure.
To ensure an even contribution of each feature, we �rst7
calculate the maximum distance of each feature. For
continuous feature, the maximum distance is the range9
of the feature. For discrete feature, the maximum value
of vdm among all the possible value pairs of that feature11
becomes its maximum distance. Then we normalize dist
for each feature by its maximum distance.13
In abstraction, we attempt to �nd common charac-

teristics for each class. Therefore, prototypes will be15
more representative if only homogeneous instances are
grouped. To this end, some previous works just split the17

Fig. 2. The ABS component in PGF.

training set by each class and learn prototypes for each 19
of them separately [21]. These methods guarantee fully
homogeneous prototypes but the entire data distribution 21
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Fig. 3. The prototypes found by applying ABS on the data set in Fig. 1.

is distorted. Besides, the advantage of the abstraction1
method to generalize away mislabeled instances is dis-
abled. In view of this, we introduce a component, called3
entropy, into our distance measure. The entropy, Ent(x),
of a prototype x is related to the class distribution of the5
instances contained in the prototype. It is de�ned as:

Ent(x)=−
c∑
i=1

R(x; i)logR(x; i);

where R(x; i) is the relative frequency of the occurrence7
of the class label i in the prototype x. When two proto-
types x and y are considered to merge, the entropy dis-9
tance between x and y; E(x; y), is de�ned as:

E(x; y)=Ent(z);

where z is a hypothetic prototype generated by merging11
x and y. If a small entropy is obtained, most instances
in the merged prototypes are of the same class. As the13
entropy is of range from 0 to 1, we normalize Dist by
the distance calculated from the maximum distance for15

each feature. After the two components are calculated, 17
a parameter � (06 �6 1) is then used to control the
weight of their contributions. The �nal distance function 19
FDist of PGF is:

FDist(x; y)= �Dist(x; y) + (1− �)E(x; y):

This distance measure favors the merging of homoge- 21
neous instances while preserving the original data distri-
bution. Fig. 3 illustrates the prototypes found by applying 23
ABS on the data set in Fig. 1.

2.2.2. Instance-:ltering component 25
Di3erent types of �ltering methods target at retaining

instances in di3erent locations leading to di3erent behav- 27
iors when integrated with abstraction techniques. We in-
vestigate three �ltering techniques in our PGF algorithm. 29

Removing Border Instances. The �rst one is the ENN
method introduced by [7]. This method discards instances 31
misclassi�ed by their k nearest neighbors. As outliers and
noise are seldom classi�ed correctly by their neighbors, 33
they will usually be removed. This method also removes 35
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Fig. 4. The prototypes found by applying RT3 on the data set in Fig. 1.

border instances as they usually have neighbors of di3er-1
ent classes. It retains intermediate and center instances.

Retaining Border Instances. The second �ltering rule3
is called RT3 proposed by [11]. Initially, each instance
is considered as a prototype. ENN is applied �rst to �lter5
out noisy instances. Then the presentation order of in-
stances is sorted in descending order by the distance of7
an instance to its nearest unlike neighbor. It ensures in-
stances further away from decision borders are processed9
�rst. It then removes an instance if most of its associates,
instances in the training set having it as one of their11
k nearest neighbors, are classi�ed correctly without it.
Noisy instances are usually removed as they can hardly13
classify their associates correctly while border instances
will be retained as their associates tend to be classi�ed15
correctly with their contribution in KNN classi�cation.
Fig. 4 illustrates the prototypes found by applying RT317
on the data set in Fig. 1.

Retaining Center Instances. The third �ltering tech-19
nique, called ACC developed by us, tries to �nd center
instances of compact regions by considering the classi-21
�cation performance of each prototype in the prototype

set. Each instance in the training set are classi�ed by its 23
NN. If it is correctly classi�ed, classi�cation accuracy of
its NN will be increased. After classifying all the training 25
instances, ACC discards instances with accuracy lower
than a certain threshold Q. As center instances are usu- 27
ally neighbors of other instances with the same class,
they usually gain high accuracy and thus being retained 29
by ACC. Noisy and non-representative instances such as
outliers and exceptions, will be e3ectively removed as 31
they usually have lower accuracy.

2.2.3. The PGF algorithm 33
We propose two di3erent integration algorithms which

di3er in the �ltering granularity as well as the degree of 35
coupling of the �ltering component and the abstraction
component. 37

PGF1. The �rst algorithm, called PGF1, conducts
�ltering on the original instances. As shown in Fig. 5, 39
it �rst applies an instance-�ltering method as a pre-
processing step before prototype generation. Step 3 is 41
the prototype generation based on ABS, our proposed
instance-abstraction method. In prototype generation, 43
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Fig. 5. The PGF1 algorithm.

Fig. 6. The PGF2 algorithm.

grouping of outliers leads to the creation of poor proto-1
types. These poor prototypes will likely result in degra-
dation in classi�cation accuracy. If outliers or exceptions3
can be removed before the prototype generation is ap-
plied, the result prototypes will have a better quality.5
Moreover, the computational cost of prototype genera-
tion can be signi�cantly reduced as the size of original7
data set becomes smaller after �ltering. To achieve
such a purpose, we add the procedure “FILTER(P)”.9
just before the abstraction task. Thus, PGF1 essentially
conducts �ltering on the original instances.11

PGF2. The second algorithm, called PGF2, conducts
�ltering on the intermediate prototypes in the process of13
prototype generation. As shown in Fig. 6, the �ltering
and the abstraction methods are more tightly coupled in15
PGF2 compared with PGF1. After two prototypes are
merged to form a new intermediate prototype, we con-17
duct �ltering on the current prototype set. The procedure
“FILTER(temp)”. conducts the �ltering.19
Unlike PGF1 which �lters on the original instances,

PGF2 performs �ltering on the prototype set. The pro-21
totype set usually contains intermediate prototypes and
original instances. The purpose of �ltering is to dis-23
card less representative prototypes and outliers which can
further increase the data reduction rate. On top of this,25

�ltering can also remove noisy prototypes or instances
and hence improving the classi�cation accuracy. Fig. 7 27

depicts the prototypes found by applying PGF2 on
the data set shown in Fig. 1. PGF2 can produce good 29
abstraction prototypes at the bottom half of the �gure
where the decision boundary is smooth in this region. 31
PGF2 is also able to produce good �ltering prototypes at
the upper half of the �gure where the decision boundary 33
is rugged in this region.

3. Empirical evaluation 35

3.1. Experimental setup

We have conducted a series of experiments to investi- 37
gate the performance of our PGF framework. Thirty-�ve
real-world benchmark data sets from the widely used UCI 39
Repository [27] were tested in the experiments. These
data sets are collected from di3erent real-world applica- 41
tion in various domains, such as the city-cycle fuel con-
sumption (Am), Wisconsin breast cancer (Bc) and the 43
famous iris plant database (Ir). Table 1 shows the data
sets and their corresponding code used in this paper. 45
For each data set, we randomly partitioned the data

into ten even portions. Ten trials derived from 10-fold 47
cross-validation were conducted for every set of ex-
periments. The mean of the data retention rate and the 49
classi�cation accuracy of 10-fold cross-validation were
obtained for each data set. Note that higher classi�- 51
cation accuracy and smaller data retention rate imply
better performance. In the �rst set of experiments, we 53
investigate the performance of di3erent variants of our
PGF framework. Each variant is constructed by integrat- 55
ing a particular PGF method with a �ltering algorithm.
PGF1–ENN, PGF1–RT3 and PGF1–ACC refer to the 57
integration of abstraction with ENN, RT3 and ACC
�ltering methods, respectively, using PGF1 algorithm. 59
PGF2–ENN, PGF2–RT3 and PGF2–ACC have the sim-
ilar interpretation. We have also conducted some trials 61
on pure �ltering and pure abstraction methods using the
same data partitions so that comparative analysis can be 63
conducted. In the second set of experiments, we com-
pare our algorithm with existing learning algorithms, 65
namely, C4.5 and KNN.

3.2. Results on PGF framework 67

Table 2 shows the average classi�cation accuracy
and data retention rate of 10-fold cross-validation across 69
35 real-world data sets for di3erent variants of the
PGF. A range of parameters for these algorithms were 71
tested and the best performance of each algorithm is
presented. We observe that the performance of PGF 73
remains quite stable across di3erent parameters. We
also obtained the performance of pure �ltering and pure 75
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Fig. 7. The prototypes found by applying PGF on the data set in Fig. 1.

abstraction methods so that comparative analysis can be1
conducted. Table 3 shows the average classi�cation ac-
curacy and data retention rate of pure instance-�ltering3
and instance-abstraction (ABS) methods, as well as C4.5
and KNN. The detailed performance of each algorithm5
for each individual data set can be found in Tables 4, 5,
6 and 7.7
To investigate the behavior of integrating the two

methods, for each variant of PGF, we �rst compare it9
with the pure �ltering method used in the integration
and followed by the pure abstraction method. We �rst11
analyze the behavior of PGF1 and followed by PGF2.

3.2.1. Analysis on PGF113
PGF1–ENN. We investigate ENN and PGF1–ENN

to analyze how the abstraction method can help ENN in15
PGF1. From Tables 2 and 3, it is found that the data reten-
tion rate of ENN is dramatically improved from 87.1%17
to 16.3% with less than 2% degradation in classi�cation
accuracy. ENN retains instances which can be correctly19
classi�ed by their k nearest neighbors. We can imagine
that if most of the instances are closely and homoge-21

neously packed, a large portion of data will be retained
as they are usually correctly classi�ed. This accounts for 23
the large data retention rate in ENN. On the contrary, our
prototype abstraction method is strong in generalizing 25
data sets with this kind of structure. Instances in closely
packed regions will be generalized to a few representa- 27
tive prototypes resulting in signi�cant reduction in data
retention rate. 29
When comparing PGF1–ENN with ABS, we �nd that

ENN can assist the abstraction method in PGF1 too. If 31
ENN is performed before abstraction, noise, outliers and
exceptions can be removed �rst. The removal of these 33
instances can avoid the formation of non-representative
prototypes in abstraction. Furthermore, a smoother deci- 35
sion boundary can also be obtained by the removal of bor-
der instances. It may help the generalization of instances 37
in abstraction. We can see from Tables 2 and 3 that the
data retention rate of ABS is improved from 21.6% to 39
16.3% while keeping a similar classi�cation accuracy.

PGF1–RT3. When comparing PGF1–RT3 with RT3, 41
we �nd that the abstraction method reduces the average
data retention rate of RT3 from 14.2% to 6.6% with a 43
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Table 1
Data sets and their codes

Data set Code

Automobile Ab
Auto-Mpg Am
Audiology Au
Balance-scale Ba
Breast-cancer-w Bc
Car Ca
Credit screening Cs
Ecoli Ec
Glass1 Gl
Hepati He
Ionosphere Io
Iris Ir
Letter Le
Liver Li
Monk-1 M1
Monk-2 M2
Monk-3 M3
Mushroom Mu
New-thyroid Ne
Nursery Nu
Optdigits Op
Pendigits Pe
Pima Pi
Segmentation Se
Shuttle Sh
Sonar Sn
Soyabean Sb
Tic-tac-toe Tt
Voting Vo
Vowel Vw
Wdbc Wd
Wine Wi
Wpbc Wp
Yeast Ye
Zoo Zo

2.1% decrease in classi�cation accuracy. RT3 retains1
border instances and discards center and intermediate
ones. If abstraction technique is applied on those remain-3
ing border instances, the structure of the border may be
severely distorted resulting in large degradation in clas-5
si�cation accuracy. However, as our ABS algorithm ap-
plies classi�cation accuracy as the prototype set evalua-7
tion function, a prototype set with such kind of distorted
boundaries will be eliminated. The above results suggest9
that our abstraction technique can generalize the remain-
ing border instances without severely reducing the rep-11
resentative power of them.
In PGF1, RT3 is found to be bene�cial to ABS by com-13

paring PGF1–RT3 with ABS. The data retention rate of
ABS is signi�cantly improved from 21.6% to 6.6%. RT315
retains border instances only. The elimination of center
instances, noise and outliers results in the improvement in17
data retention rate. However, with the absence of center

instances, the representative power of generalized proto- 19
types formed in abstraction will be decreased. It accounts
for the 2.4% degradation in classi�cation accuracy. 21

PGF1–ACC. ACC retains instances with classi�ca-
tion accuracy higher than a certain threshold. As center 23
instances usually gain high accuracy, they will be re-
tained. When comparing ABS and PGF1–ACC, we �nd 25
that data retention rate of ABS is improved from 21.6%
to 5.5%. Despite the signi�cant improvement in data 27
retention rate, the classi�cation accuracy of ABS is
degraded from 85.8% to 79.8%. We know that ABS 29
discovers representative instances by generalizing the
common characteristics of similar instances. How- 31
ever, in PGF1–ACC, about 90% of instances are
discarded by ACC before ABS is applied. There- 33
fore the prototypes generated in abstraction will
be less representative leading to the degradation 35
in classi�cation accuracy. We suggest that �lter-
ing methods retaining center instances should not 37
be used in PGF1 if classi�cation accuracy is the main
concern. 39
On the contrary, ABS can help ACC in PGF1. When

comparing PGF1–ACC with ABS, we can see that the 41
data retention rate of ACC is improved from 12.0%
to 5.5% while maintaining similar classi�cation ac- 43
curacy. It shows that instances selected by ACC is
further re�ned by ABS to form more representative 45
prototypes.

3.2.2. Analysis on PGF2 47
PGF2–ENN. We investigate how abstraction tech-

nique bene�ts to ENN in PGF2. According to the results 49
of PGF2–ENN and ENN, the data retention rate of ENN
is signi�cantly improved by the abstraction technique, 51
from 87.1% to 30.0%, with only little degradation in clas-
si�cation accuracy. ENN removes border instances only 53
so that a low data reduction rate is yielded. However, our
abstraction technique can generalize similar instances in 55
compact regions using a few or single abstracted proto-
types. Therefore, if instances are generalized using ab- 57
straction before, ENN can be performed on a relatively
smaller set of generalized prototypes. It results in signif- 59
icant improvement in data retention rate without a large
degradation in classi�cation accuracy. 61
We now compare PGF2–ENN with ABS. As ENN

discards noise and exceptions, any non-representative 63
and mislabeled prototypes formed in abstraction will be
removed. However, after abstraction, clusters of similar 65
instances of the same class will be grouped to form gener-
alized prototypes and neighbors of these prototypes may 67
probably be abstracted prototypes of di3erent classes.
Then these representative prototypes will be discarded 69
by ENN as they are not correctly classi�ed by their k
nearest neighbors leading to degradation in classi�cation 71
accuracy. However, this undesirable e3ect is eliminated
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Table 2
The average classi�cation accuracy (acc.) and data retention rate (size) of 10-fold cross-validation across 35 real-world data sets
for di3erent variants of PGF1 and PGF2

PGF1 PGF2

PGF1–ENN PGF1–RT3 PGF1–ACC PGF2–ENN PGF2–RT3 PGF2–ACC

Acc. Size Acc. Size Acc. Size Acc. Size Acc. Size Acc. Size
0.846 0.163 0.834 0.066 0.798 0.055 0.851 0.300 0.837 0.085 0.848 0.103

Table 3
The average classi�cation accuracy (acc.) and data retention rate (size) of 10-fold cross-validation across 35 real-world data sets
for pure �ltering methods, pure abstraction method, C4.5 and KNN

Pure �ltering Pure abstraction Other methods

ENN RT3 ACC ABS C4.5 KNN

Acc. Size Acc. Size Acc. Size Acc. Size Acc. Size Acc. Size
0.865 0.871 0.855 0.142 0.800 0.120 0.858 0.216 0.836 — 0.870 1.000

in our PGF framework. As classi�cation accuracy is used1
as the prototype set score function in PGF, prototype sets
with low accuracy will not be returned as output. From3
the above tables, we can see that ABS gains almost the
same level of classi�cation accuracy when integrated5
with ENN in PGF2. It is interesting to see that ABS
retains more prototypes, from 21.6% to 30.0%, when7
integrated with ENN. Formation of isolated and
representative prototypes are usually done at later stages9
in the abstraction process. If ENN is applied during
these stages, useful prototypes will be discarded. To11
avoid degradation in classi�cation accuracy, PGF will
select prototype sets formed in earlier abstraction stages.13
Therefore, the number of prototypes formed is even
larger than pure prototype abstraction method. These15
results suggest that �ltering techniques removing bor-
der instances cannot improve the performance of the17
abstraction technique in PGF2.

PGF 2–RT 3. In PGF2–RT3, RT3 is applied in the19
abstraction process. During abstraction process, similar
instances, including border instances, are merged to form21
arti�cial prototypes which are as representative as the
original instances. Therefore, RT3 can retain fewer pro-23
totypes to represent the decision boundaries. Compared
with RT3, PGF2–RT3 stores 5.7% fewer of the total25
instances with a 1.8% degradation in classi�cation
accuracy.27
When comparing PGF2–RT3 with ABS, we �nd that

the data retention rate of ABS is improved from 21.6%29
to 8.5% without large degradation in classi�cation accu-
racy. It is because RT3 can eliminate non-representative31
prototypes formed by ABS e3ectively in PGF2. Besides,
RT3 also further reduces the data retention rate of ABS33
by removing center prototypes which usually do not af-
fect the decision boundaries. These reasons account for35
the fact that the removal of these kinds of prototypes do

not result in a large decrease in classi�cation accuracy in 37
PGF2.

PGF 2–ACC. We �rst investigate how �ltering tech- 39
nique assists the abstraction component. From the results
of PGF2–ACC and ABS, we can see that the data reten- 41
tion rate of ABS is improved from 21.6% to 10.3% with
only 1% decrease in classi�cation accuracy when it is in- 43
tegrated with ACC using PGF2. ACC retains instances
with accuracy higher than a certain threshold. Therefore, 45
highly representative instances will be retained and noise
and exceptions can be discarded. If we apply ACC in the 47
process of abstraction, representative generalized proto-
types will be selected and less representative and misla- 49
beled ones will be discarded. These reasons account for
the improvement in data reduction rate in PGF2–ACC 51
with only a little degradation in classi�cation accuracy.
For the �ltering component ACC in PGF2, ABS can 53

also help. The results of PGF2–ACC and ACC show that
ACC improves its classi�cation accuracy from 80.0% to 55
84.8% using even 1.7% fewer prototypes when integrated
with ABS. In abstraction, the most common character- 57
istics of similar instances are found by generalization of
those instances. Therefore, the representative power of 59
those generalized prototypes will often be higher than
original instances in the data set. When these highly 61
representative prototypes are selected, the classi�cation
accuracy of �ltering technique can be improved as 63
shown from the experiment results.

3.2.3. Overall behavior of PGF 65
In conclusion, we �nd that �ltering techniques and

abstraction techniques are bene�cial to each other in 67
our PGF framework. In PGF1, �ltering techniques
can remove noisy instances and outliers. It avoids the 69
formation of non-representative prototypes in abstrac-
tion techniques. Also, as di3erent �ltering techniques 71
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Table 4
The average classi�cation accuracy and data retention rate (size) of 10-fold cross-validation for PGF1–ENN, PGF1–RT3, and
PGF1–ACC. The standard deviation of classi�cation accuracy is given inside the bracket

PGF1–ENN PGF1–RT3 PGF1–ACC

Data Accuracy Size Accuracy Size Accuracy Size

Ab 0.552 (0.078) 0.147 0.555 (0.154) 0.090 0.489 (0.094) 0.049
Am 0.789 (0.045) 0.226 0.797 (0.083) 0.049 0.766 (0.035) 0.032
Au 0.614 (0.113) 0.237 0.606 (0.113) 0.155 0.575 (0.168) 0.118
Ba 0.861 (0.047) 0.152 0.831 (0.069) 0.039 0.824 (0.084) 0.015
Bc 0.960 (0.041) 0.121 0.957 (0.031) 0.009 0.961 (0.041) 0.026
Ca 0.932 (0.036) 0.208 0.931 (0.019) 0.048 0.902 (0.022) 0.069
Cs 0.832 (0.044) 0.058 0.845 (0.040) 0.023 0.845 (0.042) 0.023
Ec 0.860 (0.040) 0.101 0.872 (0.074) 0.036 0.806 (0.087) 0.034
Gl 0.588 (0.184) 0.058 0.570 (0.172) 0.047 0.523 (0.051) 0.033
He 0.813 (0.090) 0.027 0.819 (0.079) 0.033 0.805 (0.138) 0.019

Io 0.880 (0.077) 0.109 0.838 (0.089) 0.035 0.855 (0.065) 0.022
Ir 0.913 (0.090) 0.038 0.940 (0.054) 0.038 0.927 (0.112) 0.023
Le 0.710 (0.045) 0.335 0.659 (0.032) 0.189 0.521 (0.075) 0.084
Li 0.559 (0.121) 0.152 0.577 (0.081) 0.074 0.545 (0.089) 0.067
M1 0.919 (0.070) 0.238 0.928 (0.110) 0.151 0.826 (0.109) 0.173
M2 0.939 (0.079) 0.125 0.968 (0.022) 0.106 0.915 (0.044) 0.097
M3 0.948 (0.055) 0.055 0.950 (0.052) 0.055 0.914 (0.096) 0.065
Mu 0.997 (0.008) 0.011 0.996 (0.012) 0.009 0.993 (0.011) 0.010
Ne 0.926 (0.032) 0.060 0.889 (0.110) 0.031 0.852 (0.098) 0.028
Nu 0.847 (0.057) 0.156 0.834 (0.049) 0.074 0.841 (0.043) 0.089

Op 0.958 (0.027) 0.328 0.916 (0.036) 0.041 0.911 (0.018) 0.042
Pe 0.973 (0.030) 0.234 0.960 (0.031) 0.064 0.928 (0.025) 0.066
Pi 0.722 (0.063) 0.209 0.759 (0.121) 0.007 0.706 (0.116) 0.059
Se 0.948 (0.007) 0.236 0.936 (0.028) 0.071 0.911 (0.028) 0.076
Sh 0.984 (0.042) 0.209 0.974 (0.034) 0.022 0.981 (0.036) 0.061
Sn 0.833 (0.201) 0.472 0.697 (0.075) 0.107 0.716 (0.142) 0.051
Sb 0.889 (0.046) 0.221 0.867 (0.058) 0.090 0.757 (0.061) 0.069
Tt 0.881 (0.037) 0.326 0.859 (0.046) 0.136 0.821 (0.037) 0.083
Vo 0.919 (0.039) 0.104 0.915 (0.038) 0.025 0.924 (0.030) 0.025
Vw 0.959 (0.035) 0.252 0.914 (0.029) 0.198 0.632 (0.069) 0.096

Wd 0.954 (0.036) 0.195 0.949 (0.038) 0.014 0.933 (0.037) 0.037
Wi 0.938 (0.033) 0.112 0.948 (0.094) 0.032 0.932 (0.100) 0.021
Wp 0.747 (0.135) 0.033 0.703 (0.220) 0.056 0.728 (0.143) 0.019
Ye 0.560 (0.050) 0.067 0.516 (0.079) 0.074 0.524 (0.044) 0.067
Zo 0.920 (0.101) 0.077 0.900 (0.100) 0.089 0.830 (0.201) 0.077

Average 0.846 0.163 0.834 0.066 0.798 0.055

remove instances in di3erent regions, we can �nd dif-1
ferent improvements in data retention rate when com-
paring di3erent variants of PGF1 with pure abstrac-3
tion method. Empirical results show that the �ltering
technique discarding border instances (ENN) seems5
to be most bene�cial when integrated with the ab-
straction technique as it signi�cantly reduces the data7
retention rate of abstraction method while maintain-
ing similar classi�cation accuracy. Though we �nd9
that the �ltering technique retaining border instances

(RT3) obtains similar bene�ts from the abstraction 11
technique in PGF1, it may not work equally well if
other abstraction techniques are used. It is because 13
abstraction of border instances often leads to severe
destruction of class boundaries and such prototype 15
sets may be returned as output if classi�cation accu-
racy is not used in the prototype set evaluation. The 17
�ltering technique retaining center instances (ACC)
is found not suitable in PGF1 as it reduces the rep- 19
resentative power of generated prototypes in the
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Table 5
The average classi�cation accuracy and data retention rate (size) of 10-fold cross-validation for PGF2–ENN, PGF2–RT3 and PGF2–
ACC. The standard deviation of classi�cation accuracy is given inside the bracket

PGF2–ENN PGF2–RT3 PGF2–ACC

Data Accuracy Size Accuracy Size Accuracy Size

Ab 0.616 (0.125) 0.273 0.542 (0.117) 0.137 0.586 (0.163) 0.202
Am 0.774 (0.084) 0.346 0.772 (0.156) 0.090 0.786 (0.076) 0.101
Au 0.644 (0.271) 0.334 0.588 (0.154) 0.169 0.672 (0.135) 0.130
Ba 0.855 (0.045) 0.178 0.855 (0.060) 0.033 0.853 (0.041) 0.012
Bc 0.960 (0.049) 0.087 0.966 (0.062) 0.012 0.963 (0.037) 0.026
Ca 0.933 (0.021) 0.633 0.946 (0.020) 0.076 0.935 (0.019) 0.176
Cs 0.829 (0.061) 0.054 0.826 (0.040) 0.034 0.842 (0.041) 0.019
Ec 0.854 (0.100) 0.194 0.852 (0.084) 0.079 0.833 (0.074) 0.117
Gl 0.644 (0.128) 0.108 0.550 (0.283) 0.066 0.649 (0.213) 0.051
He 0.832 (0.121) 0.081 0.805 (0.097) 0.031 0.818 (0.097) 0.031

Io 0.858 (0.135) 0.203 0.872 (0.088) 0.060 0.874 (0.074) 0.035
Ir 0.933 (0.104) 0.115 0.907 (0.089) 0.050 0.933 (0.104) 0.073
Le 0.716 (0.081) 0.609 0.661 (0.057) 0.240 0.701 (0.059) 0.206
Li 0.570 (0.165) 0.271 0.620 (0.076) 0.078 0.585 (0.119) 0.072
M1 0.889 (0.074) 0.623 0.944 (0.092) 0.243 0.939 (0.082) 0.250
M2 0.957 (0.032) 0.488 0.960 (0.029) 0.165 0.951 (0.062) 0.120
M3 0.953 (0.067) 0.190 0.951 (0.036) 0.055 0.950 (0.081) 0.093
Mu 0.997 (0.009) 0.114 0.990 (0.010) 0.007 0.995 (0.008) 0.010
Ne 0.934 (0.113) 0.206 0.934 (0.087) 0.036 0.925 (0.075) 0.059
Nu 0.842 (0.031) 0.346 0.844 (0.024) 0.077 0.853 (0.035) 0.144

Op 0.951 (0.038) 0.350 0.919 (0.037) 0.059 0.946 (0.032) 0.114
Pe 0.979 (0.009) 0.417 0.954 (0.007) 0.071 0.972 (0.028) 0.104
Pi 0.709 (0.086) 0.223 0.716 (0.111) 0.026 0.715 (0.078) 0.046
Se 0.950 (0.012) 0.593 0.941 (0.016) 0.086 0.952 (0.015) 0.143
Sh 0.986 (0.039) 0.295 0.983 (0.042) 0.023 0.985 (0.042) 0.142
Sn 0.818 (0.103) 0.468 0.740 (0.062) 0.122 0.789 (0.090) 0.131
Sb 0.895 (0.034) 0.445 0.891 (0.054) 0.121 0.861 (0.068) 0.156
Tt 0.874 (0.045) 0.473 0.845 (0.032) 0.139 0.865 (0.061) 0.197
Vo 0.915 (0.070) 0.123 0.915 (0.033) 0.042 0.926 (0.047) 0.061
Vw 0.968 (0.040) 0.686 0.923 (0.045) 0.275 0.944 (0.039) 0.210

Wd 0.940 (0.051) 0.291 0.942 (0.052) 0.023 0.942 (0.053) 0.092
Wi 0.955 (0.035) 0.177 0.955 (0.025) 0.043 0.949 (0.050) 0.086
Wp 0.763 (0.148) 0.093 0.717 (0.080) 0.037 0.748 (0.120) 0.015
Ye 0.549 (0.052) 0.292 0.561 (0.041) 0.081 0.523 (0.056) 0.103
Zo 0.930 (0.108) 0.120 0.920 (0.071) 0.098 0.920 (0.101) 0.085

Average 0.851 0.300 0.837 0.085 0.848 0.103

abstraction method. On the other hand, the abstrac-1
tion method also helps �ltering techniques to improve
their data reduction rates e3ectively in PGF1. The three3
�ltering techniques achieve signi�cant improvements
in data reduction when comparing with their PGF15
variants.
In PGF2, we �nd that both �ltering techniques re-7

moving border instances (ENN) and retaining bor-
der instances (RT3) perform better by reducing their9
data retention rate while maintaining similar classi�-
cation accuracy when integrated with ABS in PGF2.11

For the �ltering technique retaining center instances 13
(ACC), in addition to the data retention rate, the classi�-
cation accuracy is also signi�cantly improved in PGF2. 15
It seems to be the most suitable �ltering technique to
integrate with ABS in PGF2. On the other hand, ABS 17
cannot be bene�cial from all the �ltering techniques.
The data retention rate of ABS is signi�cantly reduced 19
by �ltering techniques retaining border (RT3) and center
(ACC) instances without severely sacri�cing the classi- 21
�cation accuracy. However, for the �ltering technique
removing border instances (ENN), we �nd that both the 23
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Table 6
The average classi�cation accuracy and data retention rate (size) of 10-fold cross-validation for pure �ltering methods, namely,
ENN, RT3, ACC, as well as the pure abstraction method. The standard deviation of classi�cation accuracy is given inside the bracket

Pure �ltering Pure abstraction

ENN RT3 ACC ABS

Data Accuracy Size Accuracy Size Accuracy Size Accuracy Size

Ab 0.640 (0.094) 0.763 0.621 (0.152) 0.319 0.489 (0.093) 0.084 0.723 (0.150) 0.535
Am 0.799 (0.110) 0.787 0.794 (0.067) 0.136 0.764 (0.086) 0.094 0.746 (0.056) 0.188
Au 0.680 (0.175) 0.773 0.667 (0.116) 0.247 0.579 (0.187) 0.147 0.725 (0.102) 0.406
Ba 0.864 (0.044) 0.784 0.837 (0.065) 0.103 0.818 (0.038) 0.091 0.779 (0.076) 0.103
Bc 0.967 (0.039) 0.953 0.958 (0.039) 0.034 0.965 (0.035) 0.122 0.964 (0.028) 0.091
Ca 0.939 (0.015) 0.959 0.952 (0.018) 0.112 0.901 (0.019) 0.114 0.954 (0.014) 0.349
Cs 0.823 (0.048) 0.815 0.826 (0.035) 0.085 0.833 (0.034) 0.101 0.822 (0.057) 0.022
Ec 0.866 (0.056) 0.808 0.878 (0.059) 0.108 0.818 (0.090) 0.092 0.828 (0.069) 0.163
Gl 0.719 (0.267) 0.695 0.672 (0.341) 0.211 0.532 (0.101) 0.059 0.584 (0.173) 0.068
He 0.856 (0.157) 0.809 0.856 (0.208) 0.093 0.825 (0.095) 0.097 0.819 (0.128) 0.049

Io 0.846 (0.048) 0.868 0.869 (0.047) 0.068 0.866 (0.032) 0.099 0.892 (0.061) 0.196
Ir 0.953 (0.063) 0.954 0.947 (0.114) 0.080 0.933 (0.091) 0.118 0.927 (0.087) 0.097
Le 0.740 (0.054) 0.815 0.696 (0.050) 0.282 0.524 (0.085) 0.099 0.774 (0.048) 0.456
Li 0.597 (0.067) 0.623 0.566 (0.110) 0.218 0.563 (0.092) 0.080 0.571 (0.098) 0.153
M1 0.928 (0.082) 0.966 0.971 (0.071) 0.296 0.831 (0.099) 0.247 0.975 (0.040) 0.303
M2 0.979 (0.021) 0.997 0.984 (0.014) 0.182 0.933 (0.070) 0.271 0.962 (0.074) 0.129
M3 0.950 (0.069) 0.957 0.955 (0.069) 0.086 0.939 (0.074) 0.243 0.960 (0.050) 0.128
Mu 0.998 (0.007) 1.000 0.998 (0.007) 0.015 0.992 (0.011) 0.149 0.997 (0.008) 0.011
Ne 0.963 (0.048) 0.967 0.948 (0.073) 0.111 0.833 (0.097) 0.115 0.944 (0.042) 0.153
Nu 0.844 (0.032) 0.857 0.837 (0.052) 0.150 0.840 (0.046) 0.101 0.850 (0.023) 0.271

Op 0.959 (0.036) 0.981 0.928 (0.027) 0.100 0.919 (0.023) 0.104 0.956 (0.045) 0.254
Pe 0.985 (0.014) 0.987 0.959 (0.016) 0.098 0.930 (0.033) 0.109 0.977 (0.012) 0.279
Pi 0.753 (0.104) 0.704 0.719 (0.097) 0.141 0.711 (0.101) 0.076 0.730 (0.043) 0.050
Se 0.956 (0.011) 0.967 0.953 (0.032) 0.105 0.919 (0.033) 0.147 0.965 (0.016) 0.325
Sh 0.985 (0.048) 0.996 0.983 (0.045) 0.037 0.982 (0.036) 0.115 0.987 (0.045) 0.214
Sn 0.833 (0.231) 0.860 0.812 (0.046) 0.226 0.716 (0.195) 0.097 0.866 (0.084) 0.552
Sb 0.909 (0.066) 0.913 0.889 (0.051) 0.155 0.760 (0.051) 0.132 0.908 (0.043) 0.439
Tt 0.887 (0.031) 0.916 0.876 (0.025) 0.181 0.824 (0.040) 0.100 0.896 (0.018) 0.418
Vo 0.936 (0.048) 0.924 0.922 (0.098) 0.062 0.913 (0.060) 0.136 0.915 (0.099) 0.075
Vw 0.987 (0.015) 0.989 0.956 (0.017) 0.293 0.635 (0.071) 0.110 0.971 (0.033) 0.252

Wd 0.958 (0.031) 0.954 0.952 (0.041) 0.056 0.950 (0.022) 0.106 0.938 (0.045) 0.191
Wi 0.954 (0.054) 0.951 0.938 (0.125) 0.114 0.887 (0.107) 0.101 0.938 (0.075) 0.112
Wp 0.733 (0.104) 0.712 0.723 (0.153) 0.138 0.738 (0.170) 0.071 0.747 (0.129) 0.018
Ye 0.562 (0.031) 0.528 0.544 (0.040) 0.173 0.522 (0.038) 0.076 0.505 (0.068) 0.404
Zo 0.910 (0.087) 0.963 0.931 (0.059) 0.169 0.830 (0.201) 0.199 0.920 (0.101) 0.109

Average 0.865 0.871 0.855 0.142 0.800 0.120 0.858 0.216

data retention rate and classi�cation accuracy of ABS1
are degraded in PGF.

3.2.4. Comparisons with other approaches3
In the second set of experiments, we compare PGF

with existing algorithms, namely, C4.5 and KNN. In5
KNN, a range of k (k =1; 3; 5; 7; 9; 11; 13; 15; 20) is
tested and the best results are reported. Tables 2 and7
3 show the average classi�cation accuracy and data9

retention rate of 10-fold cross-validation of these algo-
rithms across the same 35 data sets. 11
PGF (PGF2–ACC) performs slightly better than C4.5

in the average classi�cation accuracy across all the data 13
sets. When compared with KNN, PGF2–ACC stores
only 10% of total data and gains a comparable accuracy. 15
Hence, PGF2–ACC achieves comparable classi�cation
performance with state-of-the-art learning algorithms 17
such as C4.5 and KNN. More importantly, PGF2–ACC 19
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Table 7
The average classi�cation accuracy and data retention rate (size) of 10-fold cross-validation for C4.5, KNN, PGF1–RT3, PGF2–RT3
and PGF2–ACC. The standard deviation of classi�cation accuracy is given inside the bracket

PGF

C4.5 KNN PGF1–RT3 PGF2–RT3 PGF2–ACC
Accuracy Accuracy

Data Accuracy Size Accuracy Size Accuracy Size

Ab 0.794 (0.156) 0.766 (0.076) 0.555 (0.154) 0.090 0.542 (0.117) 0.137 0.586 (0.163) 0.202
Am 0.776 (0.056) 0.771 (0.082) 0.797 (0.083) 0.049 0.772 (0.156) 0.090 0.786 (0.076) 0.101
Au 0.756 (0.064) 0.761 (0.102) 0.606 (0.113) 0.155 0.588 (0.154) 0.169 0.672 (0.135) 0.130
Ba 0.792 (0.066) 0.775 (0.066) 0.831 (0.069) 0.039 0.855 (0.060) 0.033 0.853 (0.041) 0.012
Bc 0.939 (0.041) 0.960 (0.014) 0.957 (0.031) 0.009 0.966 (0.062) 0.012 0.963 (0.037) 0.026
Ca 0.928 (0.012) 0.956 (0.016) 0.931 (0.019) 0.048 0.946 (0.020) 0.076 0.935 (0.019) 0.176
Cs 0.832 (0.054) 0.807 (0.047) 0.845 (0.040) 0.023 0.826 (0.040) 0.034 0.842 (0.041) 0.019
Ec 0.822 (0.060) 0.822 (0.095) 0.872 (0.074) 0.036 0.852 (0.084) 0.079 0.833 (0.074) 0.117
Gl 0.666 (0.083) 0.681 (0.300) 0.570 (0.172) 0.047 0.550 (0.283) 0.066 0.649 (0.213) 0.051
He 0.773 (0.182) 0.805 (0.186) 0.819 (0.079) 0.033 0.805 (0.097) 0.031 0.818 (0.097) 0.031

Io 0.900 (0.032) 0.866 (0.058) 0.838 (0.089) 0.035 0.872 (0.088) 0.060 0.874 (0.074) 0.035
Ir 0.953 (0.063) 0.947 (0.043) 0.940 (0.054) 0.038 0.907 (0.089) 0.050 0.933 (0.104) 0.073
Le 0.692 (0.043) 0.810 (0.034) 0.659 (0.032) 0.189 0.661 (0.057) 0.240 0.701 (0.059) 0.206
Li 0.642 (0.054) 0.632 (0.089) 0.577 (0.081) 0.074 0.620 (0.076) 0.078 0.585 (0.119) 0.072
M1 0.960 (0.084) 0.969 (0.039) 0.928 (0.110) 0.151 0.944 (0.092) 0.243 0.939 (0.082) 0.250
M2 0.625 (0.079) 0.993 (0.016) 0.968 (0.022) 0.106 0.960 (0.029) 0.165 0.951 (0.062) 0.120
M3 0.988 (0.033) 0.955 (0.045) 0.950 (0.052) 0.055 0.951 (0.036) 0.055 0.950 (0.081) 0.093
Mu 0.997 (0.006) 0.999 (0.002) 0.996 (0.012) 0.009 0.990 (0.010) 0.007 0.995 (0.008) 0.010
Ne 0.921 (0.081) 0.972 (0.031) 0.889 (0.110) 0.031 0.934 (0.087) 0.036 0.925 (0.075) 0.059
Nu 0.909 (0.018) 0.863 (0.024) 0.834 (0.049) 0.074 0.844 (0.024) 0.077 0.853 (0.035) 0.144

Op 0.824 (0.029) 0.962 (0.045) 0.916 (0.036) 0.041 0.919 (0.037) 0.059 0.946 (0.032) 0.114
Pe 0.914 (0.015) 0.987 (0.009) 0.960 (0.031) 0.064 0.954 (0.007) 0.071 0.972 (0.028) 0.104
Pi 0.694 (0.085) 0.706 (0.114) 0.759 (0.121) 0.007 0.716 (0.111) 0.026 0.715 (0.078) 0.046
Se 0.951 (0.015) 0.967 (0.016) 0.936 (0.028) 0.071 0.941 (0.016) 0.086 0.952 (0.015) 0.143
Sh 0.989 (0.045) 0.987 (0.050) 0.974 (0.034) 0.022 0.983 (0.042) 0.023 0.985 (0.042) 0.142
Sn 0.706 (0.094) 0.876 (0.152) 0.697 (0.075) 0.107 0.740 (0.062) 0.122 0.789 (0.090) 0.131
Sb 0.930 (0.034) 0.908 (0.053) 0.867 (0.058) 0.090 0.891 (0.054) 0.121 0.861 (0.068) 0.156
Tt 0.862 (0.036) 0.914 (0.027) 0.859 (0.046) 0.136 0.845 (0.032) 0.139 0.865 (0.061) 0.197
Vo 0.960 (0.021) 0.935 (0.031) 0.915 (0.038) 0.025 0.915 (0.033) 0.042 0.926 (0.047) 0.061
Vw 0.779 (0.046) 0.992 (0.016) 0.914 (0.029) 0.198 0.923 (0.045) 0.275 0.944 (0.039) 0.210

Wd 0.944 (0.031) 0.945 (0.028) 0.949 (0.038) 0.014 0.942 (0.052) 0.023 0.942 (0.053) 0.092
Wi 0.888 (0.081) 0.954 (0.054) 0.948 (0.094) 0.032 0.955 (0.025) 0.043 0.949 (0.050) 0.086
Wp 0.676 (0.168) 0.701 (0.108) 0.703 (0.220) 0.056 0.717 (0.080) 0.037 0.748 (0.120) 0.015
Ye 0.545 (0.049) 0.524 (0.054) 0.516 (0.079) 0.074 0.561 (0.041) 0.081 0.523 (0.056) 0.103
Zo 0.926 (0.101) 0.970 (0.034) 0.900 (0.100) 0.089 0.920 (0.071) 0.098 0.920 (0.101) 0.085

Average 0.836 0.870 0.834 0.066 0.837 0.085 0.848 0.103

can drastically reduce the data size to less than 10% of1
the original size on average.

4. Conclusions

We have presented a new prototype generation
method, called PGF, which integrates the strength of5

instance-�ltering and instance-abstraction techniques.
We investigate classi�cation performance and the 7
data retention rate of di3erent variants of PGF on 35
real-world benchmark data sets. We have also conducted 9
experiments using pure �ltering, pure abstraction, as
well as C4.5 and KNN. PGF is found to be e3ective 11
in reducing the data set size while maintaining or even
improving the classi�cation accuracy.

13
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