CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 16

Today

Continue Clustering

- Last Time
 - "Flat Clustring"
- Today
 - Hierarchical Clustering
 - Divisive
 - Agglomerative
- Applications of Clustering

Hierarchical Clustering: Dendogram

- preferred way to represent a hierarchical clustering is a dendrogram
 - Binary tree
 - Level k corresponds to partitioning with n-k+1 clusters
 - if need k clusters, take clustering from level n-k+1
 - If samples are in the same cluster at level *k*, they stay in the same cluster at higher levels
 - dendrogram typically shows the similarity of grouped clusters

Hierarchical Clustering: Venn Diagram

 Can also use Venn diagram to show hierarchical clustering, but similarity is not represented quantitatively

Hierarchical Clustering

- Algorithms for hierarchical clustering can be divided into two types:
 - 1. Agglomerative (bottom up) procedures
 - Start with *n* singleton clusters
 - Form hierarchy by merging most similar clusters

- 2. Divisive (top bottom) procedures
 - Start with all samples in one cluster
 - Form hierarchy by splitting the "worst" clusters

Divisive Hierarchical Clustering

- Any "flat" algorithm which produces a fixed number of clusters can be used
 - set *c* = *2*

Agglomerative Hierarchical Clustering

- 2. merge them

- Four common ways to measure cluster distance
 - $\boldsymbol{d}_{\min}(\boldsymbol{D}_i, \boldsymbol{D}_j) = \min_{\boldsymbol{x} \in \boldsymbol{D}_i, \boldsymbol{y} \in \boldsymbol{D}_j} || \boldsymbol{x} \boldsymbol{y} ||$ 1. minimum distance
 - 2. maximum distance $d_{max}(D_i, D_j) = \max || x y ||$ $x \in D_i, y \in D_i$
 - 3. average distance
 - 4. mean distance

$$d_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{y \in D_j} || x - y ||$$
$$d_{mean}(D_i, D_j) = || \mu_i - \mu_j ||$$

Single Linkage or Nearest Neighbor

• Agglomerative clustering with minimum distance $d_{\min}(D_i, D_j) = \min_{\substack{i \le j \le j}} ||x - y||$

- generates minimum spanning tree
- encourages growth of elongated clusters
- disadvantage: very sensitive to noise

Complete Linkage or Farthest Neighbor

• Agglomerative clustering with maximum distance $d_{max}(D_i, D_j) = \max || x - y ||$

 $x \in D_i, y \in D_i$

- encourages compact clusters
- Does not work well if elongated clusters present

- $d_{\max}(D_1, D_2) < d_{\max}(D_2, D_3)$
- thus D_1 and D_2 are merged instead of D_2 and D_3

Average and Mean Agglomerative Clustering

 Agglomerative clustering is more robust under the average or the mean cluster distance

$$\boldsymbol{d}_{avg}(\boldsymbol{D}_i, \boldsymbol{D}_j) = \frac{1}{n_i n_j} \sum_{\boldsymbol{x} \in \boldsymbol{D}_i} \sum_{\boldsymbol{y} \in \boldsymbol{D}_j} || \boldsymbol{x} - \boldsymbol{y} ||$$

 $\boldsymbol{d}_{mean}(\boldsymbol{D}_i, \boldsymbol{D}_j) = \parallel \mu_i - \mu_j \parallel$

- mean distance is cheaper to compute than the average distance
- unfortunately, there is not much to say about agglomerative clustering theoretically, but it does work reasonably well in practice

Agglomerative vs. Divisive

- Agglomerative is faster to compute, in general
- Divisive may be less "blind" to the global structure of the data

Divisive

when taking the first step (split), have access to all the data; can find the best possible split in 2 parts

Agglomerative

when taking the first step merging, do not consider the global structure of the data, only look at pairwise structure

First (?) Application of Clustering

- John Snow, a London physician plotted the location of cholera deaths on a map during an outbreak in the 1850s.
- The locations indicated that cases were clustered around certain intersections where there were polluted wells -- thus exposing both the problem and the solution.

From: Nina Mishra HP Labs

- Astronomy
 - SkyCat: Clustered 2x10⁹ sky objects into stars, galaxies, quasars, etc based on radiation emitted in different spectrum bands.

From: Nina Mishra HP Labs

- Image segmentation
 - Find interesting "objects" in images to focus attention at

From: Image Segmentation by Nested Cuts, O. Veksler, CVPR2000

- Image Database Organization
 - for efficient search

Data Mining

- Technology watch
 - Derwent Database, contains all patents filed in the last 10 years worldwide
 - Searching by keywords leads to thousands of documents
 - Find clusters in the database and find if there are any emerging technologies and what competition is up to
- Marketing
 - Customer database
 - Find clusters of customers and tailor marketing schemes to them

- gene expression profile clustering
 - similar expressions, expect similar function

U18675 4CL -0.151 -0.207 0.126 0.359 0.208 0.091 -0.083 -0.209 M84697 a-TUB 0.188 0.030 0.111 0.094 -0.009 -0.173 -0.119 -0.136 M95595 ACC2 0.000 0.041 0.000 0.000 0.000 0.000 0.000 0.000 X66719 ACO1 0.058 0.155 0.082 0.284 0.240 0.065 -0.159 -0.010 U41998 ACT 0.096 -0.019 0.070 0.137 0.089 0.038 0.096 -0.070 AF057044 ACX1 0.268 0.403 0.679 0.785 0.565 0.260 0.203 0.252 AF057043 ACX2 0.415 0.000 -0.053 0.114 0.296 0.242 0.090 0.230 U40856 AIG1 0.096 -0.106 -0.027 -0.026 -0.005 -0.052 0.054 0.006 U40857 AIG2 0.311 0.140 0.257 0.261 0.158 0.056 -0.049 0.058 AF123253 AIM1 -0.040 0.002 -0.202 -0.040 0.077 0.081 0.088 0.224 X92510 AOS 0.473 0.560 0.914 0.625 0.375 0.387 0.019 0.141

From:De Smet F., Mathys J., Marchal K., Thijs G., De Moor B. & Moreau Y. 2002. *Adaptive Quality-based clustering of gene expression profiles*, Bioinformatics, **18**(6), 735-746.

- Profiling Web Users
 - Use web access logs to generate a feature vector for each user
 - Cluster users based on their feature vectors
 - Identify common goals for users
 - Shopping
 - Job Seekers
 - Product Seekers
 - Tutorials Seekers
 - Can use clustering results to improving web content and design

Summary

- Clustering (nonparametric unsupervised learning) is useful for discovering inherent structure in data
- Clustering is immensely useful in different fields
- Clustering comes naturally to humans (in up to 3 dimensions), but not so to computers
- It is very easy to design a clustering algorithm, but it is very hard to say if it does anything good
- General purpose clustering does not exist, for best results, clustering should be tuned to application at hand