CS840a Learning and Computer Vision Prof. Olga Veksler ## Lecture 3 ## **Today** - Discuss Paper (plus video!) - "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik - Support Vector Machines - Mutual Information - Preparation for the next time: - Read paper: "Object Recognition with Informative Features and Linear Classification" by M. Naquet and S. Ullman - Ignore section of tree-augmented network #### SVM - Said to start in 1979 with Vladimir Vapnik's paper - Major developments throughout 1990's - Elegant theory - Has good generalization properties - Have been applied to diverse problems very successfully in the last 10-15 years - One of the most important developments in pattern recognition in the last 10 years #### **Linear Discriminant Functions** A discriminant function is linear if it can be written as $$g(x) = w^t x + w_0$$ $$g(x) > 0 \Rightarrow x \in class 1$$ $$g(x) < 0 \Rightarrow x \in class 2$$ which separating hyperplane should we choose? #### **Linear Discriminant Functions** - Training data is just a subset of of all possible data - Suppose hyperplane is close to sample x_i - If we see new sample close to sample i, it is likely to be on the wrong side of the hyperplane Poor generalization (performance on unseen data) #### **Linear Discriminant Functions** Hyperplane as far as possible from any sample - New samples close to the old samples will be classified correctly - Good generalization #### **SVM** Idea: maximize distance to the closest example - For the optimal hyperplane - distance to the closest negative example = distance to the closest positive example ## SVM: Linearly Separable Case SVM: maximize the margin - margin is twice the absolute value of distance b of the closest example to the separating hyperplane - Better generalization (performance on test data) - in practice - and in theory ## SVM: Linearly Separable Case - Support vectors are the samples closest to the separating hyperplane - they are the most difficalt patterns to classify - Optimal hyperplane is completely defined by support vectors - of course, we do not know which samples are support vectors without finding the optimal hyperplane ## SVM: Formula for the Margin - $g(x) = w^t x + w_0$ - absolute distance between x and the boundary g(x) = 0 $$\frac{\left|\boldsymbol{w}^{t}\boldsymbol{x}+\boldsymbol{w}_{0}\right|}{\left\|\boldsymbol{w}\right\|}$$ distance is unchanged for hyperplane $$g_{1}(\mathbf{X}) = \alpha g(\mathbf{X}) \qquad \frac{\left|\alpha \mathbf{w}^{t} \mathbf{x} + \alpha \mathbf{w}_{0}\right|}{\|\alpha \mathbf{w}\|} = \frac{\left|\mathbf{w}^{t} \mathbf{x} + \mathbf{w}\right|}{\|\mathbf{w}\|}$$ - Let x_i be an example closest to the boundary. Set $|w^t x_i + w_0| = 1$ - Now the largest margin hyperplane is unique ## SVM: Formula for the Margin - For uniqueness, set $|w^t x_i + w_0| = 1$ for any example x_i closest to the boundary - now distance from closest sample x_i to g(x) = 0 is $$\frac{\left| \mathbf{w}^t \mathbf{x}_i + \mathbf{w}_0 \right|}{\| \mathbf{w} \|} = \frac{1}{\| \mathbf{w} \|}$$ Thus the margin is $$m = \frac{2}{\|\mathbf{w}\|}$$ ## SVM: Optimal Hyperplane - Maximize margin $m = \frac{2}{\|w\|}$ - subject to constraints $$\begin{cases} w^t x_i + w_0 \ge 1 & \text{if } x_i \text{ is positive example} \\ w^t x_i + w_0 \le -1 & \text{if } x_i \text{ is negative example} \end{cases}$$ - Let $\begin{cases} z_i = 1 & \text{if } x_i \text{ is positive example} \\ z_i = -1 & \text{if } x_i \text{ is negative example} \end{cases}$ - Can convert our problem to minimize $$J(w) = \frac{1}{2} ||w||^2$$ constrained to $z_i (w^t x_i + w_0) \ge 1 \quad \forall i$ J(w) is a quadratic function, thus there is a single global minimum ## SVM: Optimal Hyperplane Use Kuhn-Tucker theorem to convert our problem to: maximize $$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} x_{i}^{t} x_{j}$$ constrained to $\alpha_{i} \geq 0 \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} z_{i} = 0$ - $\alpha = \{\alpha_1, ..., \alpha_n\}$ are new variables, one for each sample - Can rewrite $L_D(\alpha)$ using n by n matrix H: $$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}^{t} H \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}$$ • where the value in the *i*th row and *j*th column of H is $H_{ii} = z_i z_j x_i^t x_i$ ## SVM: Optimal Hyperplane Use Kuhn-Tucker theorem to convert our problem to: maximize $$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} x_{i}^{t} x_{j}$$ constrained to $\alpha_{i} \geq 0 \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} z_{i} = 0$ - $\alpha = \{\alpha_1, ..., \alpha_n\}$ are new variables, one for each sample - L_D(α) can be optimized by quadratic programming - $L_D(\alpha)$ formulated in terms of α - it depends on w and w₀ indirectly ### SVM: Optimal Hyperplane - After finding the optimal $\alpha = {\alpha_1, ..., \alpha_n}$ - For every sample i, one of the following must hold - $\alpha_i = 0$ (sample *i* is not a support vector) - $\alpha_{i} \neq 0$ and $\mathbf{z}_{i}(\mathbf{w}^{t}\mathbf{x}_{i}+\mathbf{w}_{0}-1) = \mathbf{0}$ (sample i is support vector) - can find **w** using $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{z}_i \mathbf{x}_i$ - can solve for \mathbf{w}_0 using any $\alpha_i > 0$ and $\alpha_i [\mathbf{z}_i (\mathbf{w}^t \mathbf{x}_i + \mathbf{w}_0) 1] = 0$ $\mathbf{w}_0 = \frac{1}{\mathbf{z}_i} \mathbf{w}^t \mathbf{x}_i$ - Final discriminant function: $$g(x) = \left(\sum_{x_i \in S} \alpha_i z_i x_i\right)^t x + w_0$$ where S is the set of support vectors $$S = \{x_i \mid \alpha_i \neq 0\}$$ ## SVM: Optimal Hyperplane maximize $$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \mathbf{z}_i \mathbf{z}_j \mathbf{x}_i^t \mathbf{x}_j$$ constrained to $$\alpha_i \ge 0 \ \forall i \ and \sum_{i=1}^n \alpha_i z_i = 0$$ - $L_D(\alpha)$ depends on the number of samples, not on dimension of samples - samples appear only through the dot products $x_i^t x_j$ - This will become important when looking for a nonlinear discriminant function, as we will see soon - Code available on the web to optimize - I'll put a link on the web page in case you want to play with SVM for you final project ### SVM: Non Separable Case Data is most likely to be not linearly separable, but linear classifier may still be appropriate - Can apply SVM in non linearly separable case - data should be "almost" linearly separable for good performance ## SVM: Non Separable Case - Use slack variables ξ_1, \ldots, ξ_n (one for each sample) - Change constraints from $z_i(w^t x_i + w_0) \ge 1 \quad \forall i$ to $z_i(w^t x_i + w_0) \ge 1 \xi_i \quad \forall i$ - ξ_i is a measure of deviation from the ideal for sample i - ξ_i>1 sample i is on the wrong side of the separating hyperplane - 0< ξ_i<1 sample i is on the right side of separating hyperplane but within the region of maximum margin - ξ_i < 0 is the ideal case for sample i ## SVM: Non Separable Case Would like to minimize $$J(w,\xi_1,...,\xi_n) = \frac{1}{2} ||w||^2 + \beta \sum_{i=1}^n I(\xi_i > 0)$$ # of samples not in ideal location - where $I(\xi_i > 0) = \begin{cases} 1 & \text{if } \xi_i > 0 \\ 0 & \text{if } \xi_i \le 0 \end{cases}$ - constrained to $z_i(w^t x_i + w_0) \ge 1 \xi_i$ and $\xi_i \ge 0 \ \forall i$ - β is a constant which measures relative weight of the first and second terms - if β is small, we allow a lot of samples not in ideal position - if β is large, we want to have very few samples not in ideal positon ### SVM: Non Separable Case Unfortunately this minimization problem is NP-hard due to discontinuity of functions I(ξ_i) $$J(w,\xi_1,...,\xi_n) = \frac{1}{2} ||w||^2 + \beta \sum_{i=1}^n I(\xi_i > 0)$$ # of examples not in ideal location - where $I(\xi_i > 0) = \begin{cases} 1 & \text{if } \xi_i > 0 \\ 0 & \text{if } \xi_i \le 0 \end{cases}$ - constrained to $z_i(w^t x_i + w_0) \ge 1 \xi_i$ and $\xi_i \ge 0 \ \forall i$ ### SVM: Non Separable Case Instead we minimize $$J(w,\xi_1,...,\xi_n) = \frac{1}{2} ||w||^2 + \beta \sum_{i=1}^n \xi_i$$ a measure of of misclassified examples - constrained to $\begin{cases} z_i (w^t x_i + w_0) \ge 1 \xi_i & \forall i \\ \xi_i \ge 0 & \forall i \end{cases}$ - Can use Kuhn-Tucker theorem to converted to maximize $$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j x_i^t x_j$$ constrained to $0 \le \alpha_i \le \beta \quad \forall i \quad and \quad \sum_{i=1}^n \alpha_i z_i = 0$ - find \boldsymbol{w} using $\boldsymbol{w} = \sum_{i=1}^{n} \alpha_{i} \boldsymbol{z}_{i} \boldsymbol{x}_{i}$ - solve for \mathbf{w}_0 using any $0 < \alpha_i < \beta$ and $\alpha_i [\mathbf{z}_i (\mathbf{w}^t \mathbf{x}_i + \mathbf{w}_0) 1] = 0$ ### Non Linear Mapping - Cover's theorem: - "pattern-classification problem cast in a high dimensional space non-linearly is more likely to be linearly separable than in a low-dimensional space" - One dimensional space, not linearly separable • Lift to two dimensional space with $\varphi(x) = (x, x^2)$ ## Non Linear Mapping - To solve a non linear classification problem with a linear classifier - 1. Project data x to high dimension using function $\varphi(x)$ - 2. Find a linear discriminant function for transformed data $\varphi(x)$ - 3. Final nonlinear discriminant function is $g(x) = w^t \varphi(x) + w_0$ In 2D, discriminant function is linear $$g\left(\begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix}\right) = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix} + \mathbf{W}_0$$ In 1D, discriminant function is not linear $g(x) = w_1 x + w_2 x^2 + w_0$ #### Non Linear SVM - Can use any linear classifier after lifting data into a higher dimensional space. However we will have to deal with the "curse of dimensionality" - 1. poor generalization to test data - 2. computationally expensive - SVM avoids the "curse of dimensionality" problems by - 1. enforcing largest margin permits good generalization - It can be shown that generalization in SVM is a function of the margin, independent of the dimensionality - 2. computation in the higher dimensional case is performed only implicitly through the use of *kernel* functions #### Non Linear SVM: Kernels - Note this optimization depends on samples x_i only through the dot product x_i^tx_i - If we lift x_i to high dimension using $\varphi(x)$, need to compute high dimensional product $\varphi(x_i)^t \varphi(x_i)$ maximize $$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i z_j \varphi(x_i)^t \varphi(x_j)$$ Idea: find **kernel** function $K(x_i, x_j)$ s.t. $$K(x_i,x_j) = \varphi(x_i)^t \varphi(x_j)$$ #### Non Linear SVM: Kernels maximize $$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j \varphi(x_i)^t \varphi(x_j)$$ - Then we only need to compute $K(x_i, x_j)$ instead of $\varphi(x_i)^t \varphi(x_i)$ - "kernel trick": do not need to perform operations in high dimensional space explicitly #### Non Linear SVM: Kernels - Suppose we have 2 features and $K(x,y) = (x^ty)^2$ - Which mapping $\varphi(x)$ does it correspond to? $$K(x,y) = (x^{t}y)^{2} = \left(\begin{bmatrix} x^{(1)} & x^{(2)} \end{bmatrix} \begin{bmatrix} y^{(1)} \\ y^{(2)} \end{bmatrix} \right)^{2} = (x^{(1)}y^{(1)} + x^{(2)}y^{(2)})^{2}$$ $$= (x^{(1)}y^{(1)})^{2} + 2(x^{(1)}y^{(1)})(x^{(2)}y^{(2)}) + (x^{(2)}y^{(2)})^{2}$$ $$= \left[(x^{(1)})^{2} \sqrt{2}x^{(1)}x^{(2)} (x^{(2)})^{2} \right] \left[(y^{(1)})^{2} \sqrt{2}y^{(1)}y^{(2)} (y^{(2)})^{2} \right]^{t}$$ • Thus $\varphi(x) = [(x^{(1)})^2 \sqrt{2}x^{(1)}x^{(2)} (x^{(2)})^2]$ ### Non Linear SVM: Kernels - How to choose kernel function $K(x_i, x_i)$? - $K(x_i, x_j)$ should correspond to product $\varphi(x_i)^t \varphi(x_j)$ in a higher dimensional space - Mercer's condition tells us which kernel function can be expressed as dot product of two vectors - Some common choices: - Polynomial kernel $$K(x_i, x_j) = (x_i^t x_j + 1)^p$$ Gaussian radial Basis kernel (data is lifted in infinite dimension) $$K(x_i, x_j) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - x_j||^2\right)$$ #### Non Linear SVM - search for separating hyperplane in high dimension $w\varphi(x) + w_0 = 0$ - Choose $\varphi(x)$ so that the first ("0"th) dimension is the augmented dimension with feature value fixed to 1 $$\varphi(x) = \begin{bmatrix} 1 & x^{(1)} & x^{(2)} & x^{(1)}x^{(2)} \end{bmatrix}^{t}$$ Threshold parameter \mathbf{w}_0 gets folded into the weight vector \mathbf{w} ## Non Linear SVM • Will not use notation $\mathbf{a} = [\mathbf{w}_0 \ \mathbf{w}]$, we'll use old notation \mathbf{w} and seek hyperplane through the origin $$w\varphi(x)=0$$ - If the first component of $\varphi(x)$ is not 1, the above is equivalent to saying that the hyperplane has to go through the origin in high dimension - removes only one degree of freedom - But we have introduced many new degrees when we lifted the data in high dimension ## Non Linear SVM Recepie - Start with data x₁,...,x_n which lives in feature space of dimension d - Choose kernel $K(x_i, x_j)$ or function $\varphi(x_i)$ which takes sample x_i to a higher dimensional space - Find the largest margin linear discriminant function in the higher dimensional space by using quadratic programming package to solve: maximize $$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j K(x_i, x_j)$$ constrained to $0 \le \alpha_i \le \beta \ \forall i \ and \sum_{i=1}^n \alpha_i z_i = 0$ ### Non Linear SVM Recipe Weight vector w in the high dimensional space: $$w = \sum_{x_i \in S} \alpha_i z_i \varphi(x_i)$$ - where **S** is the set of support vectors $S = \{x_i \mid \alpha_i \neq 0\}$ - Linear discriminant function of largest margin in the high dimensional space: $$g(\varphi(x)) = w^t \varphi(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x)$$ Non linear discriminant function in the original space $$g(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x) = \sum_{x_i \in S} \alpha_i z_i \varphi^t(x_i) \varphi(x) = \sum_{x_i \in S} \alpha_i z_i K(x_i, x)$$ • decide class 1 if g(x) > 0, otherwise decide class 2 #### Non Linear SVM Nonlinear discriminant function $$g(x) = \sum_{x_i \in S} \alpha_i z_i K(x_i, x)$$ $$g(x) = \sum_{x \in X} g(x)$$ weight of support vector **x**_i **∓1** "inverse distance" from **x** to support vector **x**_i most important training samples, i.e. support vectors $$K(x_i, x) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - x||^2\right)$$ ## SVM Example: XOR Problem - Class 1: $\mathbf{x_1} = [1,-1], \ \mathbf{x_2} = [-1,1]$ - Class 2: $\mathbf{x_3} = [1,1], \ \mathbf{x_4} = [-1,-1]$ - Use polynomial kernel of degree 2: - $K(x_i, x_i) = (x_i^t x_i + 1)^2$ - This kernel corresponds to mapping $$\varphi(x) = \begin{bmatrix} 1 & \sqrt{2}x^{(1)} & \sqrt{2}x^{(2)} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(1)})^2 & (x^{(2)})^2 \end{bmatrix}$$ Need to maximize $$L_{D}(\alpha) = \sum_{i=1}^{4} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{i} z_{i} z_{j} (x_{i}^{t} x_{j} + 1)^{2}$$ constrained to $0 \le \alpha_i \ \forall i \ and \ \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4 = 0$ ### SVM Example: XOR Problem - Can rewrite $L_D(\alpha) = \sum_{i=1}^4 \alpha_i \frac{1}{2} \alpha^t H \alpha$ where $\alpha = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]^t$ and $H = \begin{bmatrix} 9 & 1 & -1 & -1 \\ 1 & 9 & -1 & -1 \\ -1 & -1 & 9 & 1 \\ -1 & -1 & 1 & 9 \end{bmatrix}$ - Take derivative with respect to α and set it to $\boldsymbol{0}$ $$\frac{d}{da}L_{D}(\alpha) = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} 9 & 1 & -1 & -1\\1 & 9 & -1 & -1\\-1 & -1 & 9 & 1\\-1 & -1 & 1 & 9 \end{bmatrix} \alpha = 0$$ - Solution to the above is $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.25$ - satisfies the constraints $\forall i$, $0 \le \alpha_i$ and $\alpha_1 + \alpha_2 \alpha_3 \alpha_4 = 0$ - all samples are support vectors ## SVM Example: XOR Problem $$\varphi(x) = \begin{bmatrix} 1 & \sqrt{2}x^{(1)} & \sqrt{2}x^{(2)} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(1)})^2 & (x^{(2)})^2 \end{bmatrix}^{T}$$ Weight vector w is: $$w = \sum_{i=1}^{4} \alpha_i z_i \varphi(x_i) = 0.25(\varphi(x_1) + \varphi(x_2) - \varphi(x_3) - \varphi(x_4))$$ $$= \begin{bmatrix} 0 & 0 & 0 & -\sqrt{2} & 0 & 0 \end{bmatrix}$$ Thus the nonlinear discriminant function is: $$g(x) = w\varphi(x) = \sum_{i=1}^{6} w_i \varphi_i(x) = -\sqrt{2} \left(\sqrt{2} x^{(1)} x^{(2)} \right) = -2 x^{(1)} x^{(2)}$$ ## **SVM Summary** - Advantages: - Based on nice theory - excellent generalization properties - objective function has no local minima - can be used to find non linear discriminant functions - Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space - Disadvantages: - tends to be slower than other methods - quadratic programming is computationally expensive ## Information theory - Let's think written numbers: - k digits → 10^k possible messages - How about written English? - k letters → 26^k possible messages - k words → D^k possible messages, where D is English dictionary size - ∴ Length ~ log(complexity) ## Shannon's Entropy $$H[p(x)] = \sum_{x} p(x) \frac{1}{\log p(x)} = E_x \left[\log_2 \frac{1}{p(x)} \right]$$ - weighs the information based on the probability that an outcome will occur - second term shows the amount of information an event provides is inversely proportional to its probability of occurring ## Interpretations of Entropy $$H[x] = \sum_{x} p(x) \frac{1}{\log p(x)} = E_x \left[\log_2 \frac{1}{p(x)} \right]$$ - How much randomness (or uncertainty) is there in the signal with distribution p(x) - For uniform distribution (every event is equally likely), H[x] is high - If p(x) = 1 for some event x, then H[x] = 0 - Systems with one very common event have less entropy than systems with many equally probable events - The expected length (encoded in binary bits) of a message following distribution p(x) # Conditional Entropy of X given Y $$H[x \mid y] = \sum_{x,y} p(x,y) \frac{1}{\log p(x \mid y)}$$ - Measures average uncertainty about x when y is known - Property: - H[x] ≥ H[x|y], which means after seeing new data (y), the uncertainty about x is not increased, on average #### Mutual Information of X and Y $$I[x,y] = H(x) - H(x \mid y)$$ - Measures the average reduction in uncertainty about x after y is known - or, equivalently, it measures the amount of information that x conveys about y - Properties - I(x,y) = I(y,x) - $I(x,y) \ge 0$ - If x and y are independent, then I(x,y) = 0 - I(x,x) = H(x) ## MI for Feature Selecton $$I[x,y] = H(x) - H(x \mid y)$$ - Let x be a proposed feature and y be the class - If I[x,y] is high, we can expect feature x be good at predicting class y