CS840a Learning and Computer Vision Prof. Olga Veksler

Lecture 4

Bagging and Boosting

Some slides are due to Robin Dhamankar Vandi Verma & Sebastian Thrun

- We evaluate performance of the classifier on the testing set
- With large labeled dataset, we would typically take 2/3 for training, 1/3 for testing
- What can we do if we have a small dataset?
 - Can't afford to take 1/3 for testing
 - Small testing set means predicted error (error on the test set) will be far from the true error (error on the unseen data)

Ensemble Learning: Bagging and Boosting

- So far we have talked about design of a single classifier that generalizes well (want to "learn" f(x))
- From statistics, we know that it is good to average your predictions (reduces variance)
- Bagging
 - reshuffle your training data to create k different training sets and learn f₁(x),f₂(x),...,f_k(x)
 - Combine the k different classifiers by majority voting

 $f_{FINAL}(x) = sign[\Sigma \ 1/k \ f_i(x)]$

Boosting

- Assign different weights to training samples in a "smart" way so that different classifiers pay more attention to different samples
- Weighted majority voting, the weight of individual classifier is proportional to its accuracy
- Ada-boost (1996) was influenced by bagging, and it is superior to bagging

Boosting: motivation

- It is usually hard to design an accurate classifier which generalizes well
- However it is usually easy to find many "rule of thumb" weak classifiers
 - A classifier is weak if it is only slightly better than random guessing
- Can we combine several weak classifiers to produce an accurate classifier?
 - Question people have been working on since 1980's

Ada Boost

- Let's assume we have 2-class classification problem, with y_i∈ {-1,1}
- Ada boost will produce a discriminant function:

$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$

- where f_t(x) is the "weak" classifier
- As usual, the final classifier is the sign of the discriminant function, that is f_{final}(x) = sign[g(x)]

Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially distribution of weights is uniform
- At successive iterations, the weight of misclassified examples is increased, forcing the weak learner to focus on the hard examples in the training set

Ada Boost
 At each iteration t : Find best weak classifier f_l(x) using weights d_l(x) Compute ε_t the error rate as ε_t = Σ d(x_i) · I(y_i ≠ f_t(x_i)
• assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 - \varepsilon_t)/\varepsilon_t)$
• For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$ • Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$ • $f_{FINAL}(x) = \text{sign} [\sum \alpha_t f_t(x)]$
 Recall that ε_t < 1/2 Thus (1- ε_t)/ε_t > 1 ⇒ α_t > 0 The smaller is ε_t, the larger is α_t, and thus the more importance (weight) classifier f_t(x) gets in the final classifier f_{FINAL}(x) =sign [Σα_t f_t(x)]

Boosting As Additive Model
• The final prediction in boosting
$$g(x)$$
 can be expressed as an additive expansion of individual classifiers

$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x; \gamma_t)$$
• The process is iterative and can be expressed as follows:

$$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x; \gamma_t)$$
• Typically we would try to minimize a loss function on the N training examples

$$\lim_{\{\alpha_t, \gamma_t\}_{t=1}^{T}} \sum_{i=1}^{N} L\left(y_i, \sum_{t=1}^{M} \alpha_t f_t(x_i; \gamma_t)\right)$$

Boosting As Additive Model It can be shown that AdaBoost uses forward stage-wise modeling under the following loss

function:
•
$$L(y, f(x)) = \exp(-y \cdot f(x))$$
 - the exponential loss function
 $\underset{f}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f(x_i))$

$$= \underset{\alpha, f_i}{\operatorname{argmin}} \sum_{i=1}^{N} \exp(-y_i \cdot [g_{m-1}(x_i) + \alpha \cdot f_m(x_i)])$$
$$= \operatorname{argmin} \sum_{i=1}^{N} \exp(-y_i \cdot g_{m-1}(x_i)) \cdot \exp(-y_i \cdot \alpha \cdot f_m(x_i))$$

کے i=1

α,f,

