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Abstract

Face detection systems have recently achieved high detec-
tion rates[11, 8, 5] and real-time performance[11]. How-
ever, these methods usually rely on a huge training database
(around 5, 000 positive examples for good performance).
While such huge databases may be feasible for building a
system that detects a single object, it is obviously problem-
atic for scenarios where multiple objects (or multiple views
of a single object) need to be detected. Indeed, even for mul-
tiview face detection the performance of existing systems is
far from satisfactory.

In this work we focus on the problem of learning to detect
objects from a small training database. We show that per-
formance depends crucially on the features that are used
to represent the objects. Specifically, we show that using
local edge orientation histograms (EOH) as features can
significantly improve performance compared to the stan-
dard linear features used in existing systems. For frontal
faces, local orientation histograms enable state of the art
performance using only a few hundred training examples.
For profile view faces, local orientation histograms enable
learning a system that seems to outperform the state of the
art in real-time systems even with a small number of train-
ing examples.

1 Introduction

In recent years, considerable progress has been made on the
problem of frontal face detection [11, 8, 5]. Existing sys-
tems achieve roughly 90% detection rate with a tolerable
amount of false positives and can operate in real time [11].
One might be tempted, therefore, to declare frontal face de-
tection a “solved” problem.

Despite this first impression, most of the frontal face de-
tection systems require a huge training database to achieve
good results. Furthermore, most of these systems can not
be easily applied for other types of objects. Even the sim-
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Figure 1: Frontal face detection rates as a function of the
size of the training database (with about 100 false positives
on the MIT-CMU test set). The two curves show systems
trained using an identical learning algorithm (AdaBoost)
and with the same training set but with different feature rep-
resentations of the input patch. In the bottom curve, the
features were the ones suggested by Viola and Jones [11],
namely edge filter responses at different sizes and locations
(see figure 2). The top curve shows the performance where
features include the edge filter responses as well as local ori-
entation histograms. We also tested a third type of features,
the average intensity of image sub-patches. With these fea-
tures we got poor results (30.2% with 100 examples and
34% with 250 examples).

ilar problem of detecting profile view faces, is found to be
much harder.

In this paper we focus on achieving good results (in
terms of detection rates) from small training databases. We
would also like to refrain from limiting the system to the
frontal face detection problem but rather to find a more
generic solution, that could be applied to other types of ob-
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jects.
There are some advantages to learning from small

databases. Obviously, the system’s ability to achieve good
results from few examples is strong evidence for its gener-
alization abilities.

There are also some practical problems when using large
databases. Although it takes only a few days to gather thou-
sands of frontal faces, it is much harder to create such large
databases for less common objects. Moreover, as mentioned
above, one of the major problems in object detection is
their diversified appearance from different points of view.
Most studies overcome this problem by training a classi-
fier for each point of view [12, 8, 1]. However, this creates
many classifiers, and therefore makes it hard to gather large
databases for each point of view.

As the size of the database increases, the running time of
the training phase also increases. Usually we only require
that the running time of the detection phase be reasonable.
However, this is not always the case. For example, assum-
ing we want to train a face detector on a customer’s site in
order to customize the system to the sites’ specific condi-
tions. In such cases, not only do we have few examples
but we would also like the training phase to be as short as
possible.

Learning systems usually consist of two elements, the
learning algorithm and the features. In this paper we show
that the type of feature has great impact on the results (see
figure 1). In particular, we show that using local edge ori-
entation histograms (EOH) as features in the AdaBoost al-
gorithm greatly improves the learning of frontal faces from
a small database and enables improving the state-of-the art
real-time systems for learning profile faces. We also show
that the EOH features are not limited to faces and can sig-
nificantly improve results on different types of objects such
as chairs.

1.1 Previous work

In the last few years, major advances have been made to-
ward a real-time, reliable and accurate face detection sys-
tem. The most common approach was to use statistical
learning tools, mainly from the field of supervised learn-
ing, in which the input of the algorithm is a labeled set of
examples, containing images of faces as well as non-face
images [7, 11, 8].

One of the earliest works on face detection was presented
by Rowley, Baluja and Kanade [7]. They trained a neural
network with a database of 1050 faces. They manipulated
this database (mainly by applying rotations) and their final
database included more than 10,000 faces. Later on, they
extended their work such that it would be invariant to in-
plane rotation[6].

Schneiderman and Kanade[8] use a Naive Bayes ap-

proach with wavelets coefficients or eigenvectors as the at-
tributes. Their method achieves excellent results in terms of
detection rate, yet is not applicable in real-time. Their work
was the first to successfully address the problem of detect-
ing faces from profile point of view (profile faces). Schnei-
derman and Kanade created a training database containing
over 2000 frontal view faces (frontal faces). They extended
their database by applying small changes in rotation, scale,
position etc. on each of the 2000 faces. All together their fi-
nal training database contained more than 80,000 examples.

Viola and Jones [11] presented the first highly accurate
as well as real-time frontal face detector. In their work they
presented a set of very simple features and used the Ad-
aBoost algorithm to build a cascade of classifiers. The cas-
cade data structure decreases the running time of the system
by rejecting at the beginning of the cascade most of the ar-
eas in the image which do not contain a face. They used
more than 5000 examples to train their system and their fi-
nal detector achieves over 90% detection rate in real-time
performance (15 frames per second).

Although many studies deal with the frontal face de-
tection problem, only few have addressed the problem of
detecting profile faces [12, 8, 1]. As mentioned before,
Schneiderman and Kanade [8] were the first to present a
relatively accurate (but not real-time) profile face detector.
Some work has been done to extend Viola and Jones’ work
for the profile face detection problem. Li et al. [1] presented
a profile face detector but did not publish the detection rates.
Lately, Viola and Jones presented small variations in their
feature set and applied it on profile faces.[12]. Despite the
fact that their profile detector is less accurate than Schnei-
derman and Kanade’s it does work in real-time.

Orientation histograms have already been identified as
an informative tool for various vision tasks. C.Sun and
D.Si [10] used orientation histograms to find the symme-
try axis in an image. W.Freeman and M.Roth [2] developed
a method for hand gesture recognition based on the global
orientation histogram of the image. Lowe [4] developed
a recognition method which is based on local orientation
histograms. However, this method is targeted in scenarios
where a specific instance should be recognised rather than
in generalisation to the object class.

2 System description

Since our intention is to find visual attributes which will be
useful in detection tasks rather than developing a new algo-
rithm, we adopted Viola and Jones’ [11] framework which
proved itself to be both accurate and fast. We will briefly
describe this framework.

In order to detect a face in an image we need to examine
each possible sub-window and determine whether it con-
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linear edges mean intensity edge orientation histogram (EOH)

Figure 2: The three types of features we are comparing in this paper. We show that using local orientation histograms over
a subarea of the face greatly improves the performance in comparison to Viola and Jones’ linear edges. On the other hand
using only mean intensity features greatly decreases the performance.

tains a face or not. In a regular image of 320*240 pixels
there are up to 500,000 sub-windows.

In order to reduce the total running time of the system,
we need to radically bound the average time that the sys-
tem spends on each sub-window. For this purpose, Viola
and Jones [11] suggested using a cascade of classifiers. The
idea of a cascade is based on the observation that we need
very few features to create a classifier that accepts almost
all (more than 99%) positive examples while rejecting many
(20 - 50%) of the false examples. Linking many such clas-
sifiers one after the other will create a cascade of classifiers
that separates true from false examples almost perfectly.
This is done with a very low cost per tested window be-
cause most of the non-face sub-windows will be rejected in
the early classifiers of the cascade. Viola and Jones use the
discrete version of Adaboost [3] to select features and de-
termine their weights. Therefore at stage t of the cascade
the classifier is:

Ht(x) = sign(
n∑

i=1

αihi(x)) (1)

where hi(x) is a weak hypothesis and αi is its weight.
In the Viola and Jones framework, each weak hypothesis

is associated with a certain feature:

hj(x) =
{

1 if Fj(x) ≥ Tj

−1 otherwise
(2)

where Fj(x) is the value of the feature j and Tj is its cor-
responding learned threshold. For each such feature, we can
create a second weak hypothesis by replacing the condition
F (x) ≥ T with its dual F (x) < T .

We deviate slightly from the framework of Viola and
Jones in that we found that we can improve detection rates
of frontal faces by using a second cascade, which contains
the vertical mirror image of the features in the cascade that
was created. Using the original cascade and the mirrored

cascade at the same time, we can gain up to 2% more detec-
tion rates with the same false detection rate.

3 Features for AdaBoost

Every weak learner in the Viola and Jones framework is a
thresholded feature detector. During boosting, a subset of
features is chosen from this pool of features. We compared
three types of feature pools:

• Linear edge detectors as used originally by Viola and
Jones. These features measure the response of linear
edge detectors at different subareas of the input image.

• Average intensity detectors. These features simply
measure the mean intensity at a subarea of the input
image.

• Local edge orientation histograms (EOH).

Figure 2 illustrates the three types of features. While global
orientation histograms have been used extensively in a wide
range of vision applications (e.g. [2, 10, 9]) the use of local-
ized orientation histograms for object detection, is to the
best of our knowledge, novel.

Our reason for using local orientation histograms was
our belief that they would give much better generalization
than simple linear edge filters. First, the orientation his-
togram is largely invariant to global illumination changes.
Second, local orientation histograms are capable of captur-
ing geometric properties of faces that are difficult to capture
with linear edge filters. Figure 3 shows some examples. We
will now explain the calculation of the local orientation his-
tograms in detail.

3.1 Preprocessing

We begin by performing edge detection on the image. We
use Sobel masks due to their simplicity and efficiency.
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a) b) c) d)

Figure 3: Global vs. Local statistics of frontal faces. Using the orientation histograms we can gather both global statistics of
the object as well as local statistics. (a,b) show some global characteristic of a face. (c,d) show important local features. a)
The inner part of the face as a whole includes much more horizontal edges than vertical edges. b) The ratio between vertical
and horizontal edges is bounded. c) The area of the eyes includes mainly horizontal edges. d) The chin has more or less the
same number of oblique edges on both sides.

The gradients at the point (x,y) in the image I can be
found by convolving Sobel masks with the image.

Gx(x, y) = Sobelx ∗ I(x, y) (3)

and
Gy(x, y) = Sobely ∗ I(x, y) (4)

Where Sobelx and Sobely are the x and y Sobel masks
respectively. The strength of the edge at the point (x, y)

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2 (5)

In order to ignore noise we threshold G(x,y) such that

G′(x, y) =
{

G(x, y) if G(x, y) ≥ T
0 otherwise

(6)

A major drawback of Sobel masks is that we have to
manually set the value of the threshold T. In our experi-
ments the value of T was set to be between 80 and 110.

The orientation of the edge is

θ(x, y) = arctan(
Gy(x, y)
Gx(x, y)

) (7)

We then divide the edges into K bins. We denote the
value of the kth bin to be

ψk(x, y) =
{

G′(x, y) if θ(x, y) ∈ bink

0 otherwise
(8)

We found that when K values between 4 to 8 the sys-
tem generalizes well and consumes only a limited amount
of memory.

3.2 Edge Orientation Histogram Features

Viola and Jones introduced the ’Integral Image’ [11] and
used it to calculate the sum of the pixels for any rectangle

in the image at only four table lookup operations. However,
the Integral Image can be used on any non negative arrays
such as the ψk and thus we can calculate equation 9 at only
four table lookup operations.

Ek(R) =
∑

(x,y)∈R

ψk(x, y) (9)

Where R is some sub-window in the image.
We then define a set of features, A, such that:

Ak1,k2(R) =
Ek1(R) + ε

Ek2(R) + ε
(10)

For each R we have
(
K
2

)
features. Assuming that our

sub-window is of size n ∗ n the number of features is
bounded by O(n4

(
K
2

)
). We add ε both to the numerator

and to the denominator for smoothing purposes.
Notice that Ak1,k2(R) ∈ � and therefore each feature

yields two potential weak hypotheses Ak1,k2(R) ≥ T and
Ak1,k2(R) < T for some threshold T ∈ �. For the first
weak hypothesis (Ak1,k2(R) ≥ T ) these features capture
R’s were k1’s orientation is dominant in respect to k2’s ori-
entation relation.

3.2.1 Dominant Orientation Features

We are sometimes interested in finding the dominant edge
orientation in a specific area rather than the ratio between
two different orientations. Therefore we define a slightly
different set of features, which measures the ratio between
a single orientation and the others, i.e.

Bk(R) =
Ek(R) + ε∑
i Ei(R) + ε

(11)

The size of this feature group is bounded by O(K ∗ n4).
When there is a dominant edge orientation these features
are superior to the previous set of features, A.
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3.2.2 Symmetry Features

It has been suggested before (see C.Sun and D.Si[10]), that
symmetry plays an important role in object recognition. We
therefore define a third set of features which captures sym-
metry in the image. The symmetry axes are located at the
center of the image.

Symm(R1, R2) =
∑

k∈K |Ek(R1) − Ek(R2)|
sizeof(R1)

(12)

Where R1 and R2 are rectangles of the same size and are
positioned at opposite sides of the symmetry axes. The size
of this group of features is bounded by O(n4). The L1 norm
between the two histograms is divided by the size of R1

such as to preserve the scale invariance property. As for
the previous types of features, the symmetry features can be
used not just to find symmetry but also to find places were
symmetry is absent. For example, the lower and the upper
part of the face are not symmetric to each other.

4 Experimental results

4.1 Frontal faces

We collected about 3000 frontal faces mainly from the In-
ternet and from a database that we obtained from Henry
Schneiderman. All faces were cropped and rescaled to
a size of 24*24 pixels. As false examples we randomly
downloaded over 10,000 images containing more than
100,000,000 sub-windows. We used MIT-CMU test set to
test our system. This test set contains 130 images with 507
frontal view faces. However, some of these faces are line
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Number of features in the cascade as a function of the training set size
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Figure 4: The number of features in the cascade increases
as the training database size grows.

drawn and they have an interesting influence on the results.
As the accuracy of the detector grows, i.e. as the training
database size grows, the detection rates of the line drawn
faces decrease. This implies that the system learned to sep-
arate between line drawn faces and real faces. However,
since most previous papers presented their results for the
entire database so did we.

4.1.1 The influence of the training database size

In order to demonstrate the influence of the size of the train-
ing database we randomly created training databases each
of them containing between 10 and 2500 examples. We then
trained the system on each of these databases. In figure 1
we show the detection rates (with 100 false positives) as a
function of the training database size. Already with only
250 positive examples we can see above 90% detection rate
when using both EOH and Viola and Jones’ features.

These results show that the type of features that we use
has a crucial role in the ability of the system to generalize
from a small number of examples. Furthermore, we can see
that the difference between the detection rates of the two
methods decreases as the database size grows yet it does not
vanish. With 2500 features we achieved 92.5% detection
with 100 false positives while using Viola and Jones’ set
of features the system achieved on the same database only
90.5%.

In figure 5 we show some of the features chosen by Ad-
aBoost at the first stages (1-3) of the cascade. We can see
that it chooses mainly local features (5 - 10% of the face’s
area) but also global features. We also see that some of these
features are internal while others capture the outline of the
face.

A key advantage of using small databases is that the re-
sulting classifier, is usually shorter, and thus faster. In fig-
ure 4 we present the number of features that the final clas-
sifiers contain. We can see that the cascade created after
training on 250 faces contains only 363 features, which are
enough for reaching more than 90% detection rate. Our best
classifier, which was trained on 2500 faces, is 10 times big-
ger but introduces only a moderate improvement in the de-
tection rates. Not only does the small database reduce the
size of the cascade (in terms of number of features), but
moreover, using the EOH features reduces this number al-
most by half.

Small cascades improve the running time of the detector,
as well as tremendously affect the running time of the train-
ing phase. We found that training the system on a database
of 250 images, is 10 times faster than training it over 2500
images.

In figure 6 we present a ROC curve of our results on
a database of 2500 images compared with the results we
achieved using only Viola and Jones’ features. With 99
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| vs. / | vs. \ | vs. − | vs. − | vs. − | dominant
(a) (b) (c) (d) (e) (f)

− vs. \ | vs. − / vs. \ − vs. | symmetry symmetry
(g) (h) (i) (j) (k) (l)

Figure 5: Examples of the most informative features. AdaBoost selects these features at the first stages (1-3) of the cascade.
The feature in (a) determines that the average face includes more vertical edges than slant edges. In (b) the system learned
that the ratio between vertical edges and slant edges is upper bounded by a threshold T . In (j) the system uses the fact that
the internal part of the face contains more horizontal edges than vertical edges. Some of these features (see (a) and (c) ) are
useful to reject non-face images rather than to accept a face.

false detection, we achieved 92.5% detection rate, while us-
ing only Viola and Jones’ features we achieved only 90.5%
detection rate (with the same number of false detections).
Viola and Jones [11] trained their system on 4116 face and
their vertical mirror images (so that the total number of
faces in the training database is 8232). They reported a de-
tection rate of 92.1% detection (with 78 false detections).

As mentioned above, some of the images in the
MIT-CMU database are line drawn. Schneiderman and
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Figure 6: ROC curves on the 2500 examples database. The
advantage of using EOH does not vanish on large training
databases. The results of the system when using the EOH
is constantly superior to the results we achieved using only
Viola and Jones’ features.

Kanade’s [8] results refer to the dataset excluding these im-
ages. They achieved a detection of 94.4% with 65 false
detections. Our system achieves a detection rate of 92.9%
with 56 false detection (on the MIT-CMU database exclud-
ing the line drawn images). However, Schneiderman and
Kanade’s [8] system was trained on more than 80,000 faces
and is not a real-time system.

4.2 Profile Faces

Our profile faces database contains only 300 faces that were
taken from the Internet and from Henry Schneiderman’s
training database. All faces in the training database are
between 3/4 view and full profile. We manually cropped
and rescaled these images to a size of 36*36 pixels. As
a test set we obtained a database from Schneiderman and
Kanade at CMU. This database contains 208 images with
347 faces. This test set was previously used by Schneider-
man and Kanade [8] and by Viola and Jones [12] as a test
set.

In figure 7 we show the ROC curve of our profile detector
along with the results achieved using only Viola and Jones’
features. As can be seen, the EOH features significantly
improve the results. Our classifier achieves a detection rate
of 84.1% with 246 false detections while using only Viola
and Jones’ features we achieved only 73.9% with 313 false
detections.

Not many previous works have addressed the problem of
detecting profile faces. In [12] Viola and Jones extended
their set of features and included also diagonal filters. Their
training database includes 2868 profile faces. In figure 7
we also include their ROC curve. Despite the differences in
the training database size, our results are significantly better
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Figure 7: ROC curves of profile face detectors. We com-
pare our detector to Viola and Jones’[12] results. We also
compare to the results achieved using only the basic feature
set of Viola and Jones on the same database.

than Viola and Jones’ results. With 389 false detection we
achieved a detection rate of 90.2% while Viola and Jones
achieved a detection rate of 81.5% with 400 false detection.

Schneiderman and Kanade [8] achieved a detection rate
of 92.8% with 700 false positives, 86.4% with 91 false pos-
itives and 78.6% with 12 false positives. Schneiderman and
Kanade’s results are slightly better than ours. However,
their training database was huge and our system is real-time.

4.3 Chairs

In order to demonstrate that the EOH features are not lim-
ited to faces, we used our system to create a chair detector.
We collected a set of 185 chair images, mainly from the In-
ternet. We rescaled these images to a size of 17 ∗ 25 pixels
and divided them into two sets: training set which contained
100 images and testing set which contained 85 images. We
used the same negative examples as we used in the face de-
tectors.

The results achieved by the chair detector are shown in
figure 8. It is clear from the results that the EOH features
are very efficient and show superior performance over Viola
and Jones’ features.

5 Discussion

Despite the impressive progress in the field of object de-
tection, current methods still depend on huge databases to
compensate for the vast variety in the appearance of objects.

In this work we have showed that learning from a small
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Figure 8: ROC curves of chair detectors. the improvement
achieved by the EOH features is not limited to faces. EOH
features perform better also on different tasks such as the
chair detector.

database is not only needed but also a more difficult prob-
lem. We showed that good features are crucial to the
system’s ability to learn from a small number of exam-
ples. Specifically, we suggested the use of local histograms
of orientation as features for object detection tasks. We
showed that these histograms significantly improve the abil-
ity of the system to learn from small training databases. We
also showed that these histograms are well suitable for other
detection tasks such as profile face and chair detection.

We achieved excellent results on frontal faces using only
250 examples. We also exceeded state of the art results on
profile face detection for real time systems.

In future, we intend to extend this work by finding more
visual features, e.g. corner detectors. We would also like
to apply this method on other categories of objects such as
animals and buildings. We would like to investigate the pos-
sibility of combining the EOH with other types of features
such as color and texture features in order to create a pool
of features that can cope with many types of objects.
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