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Abstract

In this paper we show that efficient object recognition can
be obtained by combining informative features with linear
classification. The results demonstrate the superiority of in-
formative class-specific features, as compared with generic
type features such as wavelets, for the task of object recog-
nition. We show that information rich features can reach
optimal performance with simple linear separation rules,
while generic feature based classifiers require more com-
plex classification schemes. This is significant because effi-
cient and optimal methods have been developed for spaces
that allow linear separation. To compare different strategies
for feature extraction, we trained and compared classifiers
working in feature spaces of the same low dimensionality,
using two feature types (image fragments vs. wavelets) and
two classification rules (linear hyperplane and a Bayesian
Network). The results show that by maximizing the indi-
vidual information of the features, it is possible to obtain
efficient classification by a simple linear separating rule, as
well as more efficient learning.

1. Introduction
Schemes for visual classification usually proceed in two
stages. First, features are extracted from the image, and the
object to be classified is represented using these features.
Second, a classifier is applied to the measured features to
reach a decision regarding the represented class. Powerful
methods have been developed for performing visual classi-
fication by linear separation, that is, when the representation
of class and non-class examples can be separated by a hy-
perplane in feature space. Early algorithms for separating
class from non-class images in this manner include the Per-
ceptron [12] and Winnow [10] algorithms. A more recent
method is the Support Vector Machine [21], which is com-
putationally efficient, and, under some general assumptions,
can determine the optimal separating hyperplane.

Unfortunately, in many cases, the representation of class
and non-class examples in feature space does not allow sim-

ple separation. For example, when the image intensity val-
ues are used as the basic features, the separating surface
between class and non-class images is usually highly non-
linear and therefore difficult to learn or to approximate. One
approach to obtain better classification, used by Support
Vector Machines, has been to map the data from the original
feature space to a much higher dimensional space in which
the classes become separable, as in [14]. However, there
is no simple method for obtaining a successful mapping.
In practice, one can try a number of different mappings
(e.g., different kernels in the case of SVMs) and test the
performance of the resulting classification. Another general
approach has been to develop more complex classification
methods, for example by multi-layer neural-network mod-
els [9, 16] that do not require linear separation between the
classes. Unlike linear separation, there is no general method
for obtaining optimal classification in this case. In practice,
one only obtains a local optimum and can test the perfor-
mance to determine the adequacy of the classification.

Regarding the issue of selecting the features and a classi-
fication scheme for object recognition, past approaches sug-
gest a trade-off between the complexity of features and the
complexity of the classification scheme. A first group of
methods uses simple generic features in very high dimen-
sional spaces, usually combined with elaborate classifica-
tion schemes. If the features themselves are simple and not
informative, then a large number of features is required and
the classification function must extract the relevant infor-
mation from the feature distributions. Such approaches are
proposed in [2, 9, 11, 14, 16, 18, 22, 24]. Representative
of these methods are [2] that uses edge type features com-
bined with a decision tree for character recognition and face
detection, and [9, 16] that plug the raw gray level inten-
sities into a multi-layer neural-network for face and char-
acter recognition as well. Conversely, for methods using
richer, class specific features, the separation becomes eas-
ier, the dimensionality of feature space is reduced and lin-
ear type classification functions or simple probability dis-
tribution models can be used. Such schemes are found in
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[1, 3, 13, 19, 20, 23]. [1, 20] use image patches as fea-
tures and combine them with a naive-Bayes scheme or with
a SNoW classifier; [19] generates a low dimensional sub-
space from an eigen-image basis and uses a simple nearest
neighbor classifier.

This trend raises the possibility that by explicitly maxi-
mizing the information content of the features with respect
to the class, it may be possible to obtain feature spaces
where simple linear classification is sufficient. The current
study tests and confirms this possibility. This is significant
because efficient and optimal methods have been developed
for spaces that allow linear separation. To test our approach,
we compared classification schemes using two types of fea-
tures and two types of classification rules. The features
could be either object fragments selected by maximizing
an information criterion, or simpler and more traditional
wavelet-like features. The classification rules could be ei-
ther a simple linear separating function, or a more complex
model of the feature distribution, that takes into account
higher order statistical dependencies between features.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the class-based informative features that
we used, together with the algorithm for their extraction.
In Section 3 we describe generic features that were used
successfully in other studies, and used in the current com-
parison. In Section 4 and 5, we describe the two classifica-
tion schemes used in the comparison, which were the Lin-
ear SVM and the Tree-Augmented Network. In Section 6,
we present experimental results for the problem of detecting
side-views of cars in low-resolution images, using the dif-
ferent classification approaches. Finally, Section 7 contains
a discussion of the results and conclusions.

In summary, we compared two feature types, generic
(wavelets) and informative (fragments), and two classifica-
tion schemes, a simple linear separator and a more complex
Tree-Augmented Network. The results show that simple
features require a more complex classification function that
relies on higher order aspects of the features distribution. In
contrast, with informative features, learning becomes eas-
ier and a simple linear separator can reach optimal classi-
fication performance. The advantages of using informative
features with linear classification rules are discussed in the
conclusion.

2. Informative features and their ex-
traction

Many of the more recent recognition systems use class spe-
cific image patches as visual features, such as patches ex-
tracted from images based on local image properties as in
[1], eigen-patches of similar parts as in [23], or parts defined
by the user as in [13]. A particularly useful set of features
are intermediate size image fragments, that arise naturally

Figure 1:Examples of low resolution, 14x21 pixel, car and non-
car images used to train and test the system.

Figure 2:Examples of informative, low-resolution car fragments
extracted automatically by the system (shown at higher resolution
for clarity).

when searching for a set of features that maximizes the in-
formation content of the set with respect to the class [20].
In extracting informative features, we follow the scheme in-
troduced in [20]. The feature selection process is described
in detail in Subsections 2.1-2.3 below.

2.1. The selection of informative features
We outline here the selection process of informative image
fragments as features for classification, performed during
the training stage. The goal is to select class-specific im-
age fragments that convey the maximal amount of infor-
mation about the class. Informative features are selected
from a large pool of parts, typically several tens of thou-
sands, cropped from images containing the class of interest,
rectangular in shape, of different sizes and from different
locations. We use a greedy-search algorithm along with an
information measure to select a set of features that, together,
convey the maximal amount of information about the class.
Feature selection is the computationally heavy stage of the
fragment-based scheme.

Here is the summary of the main steps for finding a set
of informative fragments:

• Generate a large set of candidate fragments{Fi}

• Compute, for each fragment, the optimal threshold that
determines the minimum visual similarity for it to be
detected in an image (Subsection 2.2).

• Select a set of maximally informative features (Sub-
section 2.3).

Figure 1 shows low resolution (14×21 pixels) images
that we used in the car side-views detection experiments,
and Figure 2 shows informative features extracted automat-
ically from the image training set.



2.2. Similarity measure and detection thresh-
old

The presence of the fragments in an image is determined by
the combined use of a similarity measure and a detection
threshold. Using a sliding window over the image, we mea-
sure the presence of the fragment in the window with nor-
malized cross-correlation, a common method used in com-
puter vision to measure visual similarity, and compare the
score to a threshold.

We treat a given fragmentXi as a binary random vari-
able expressing its presence or not in the image (Xi = 1
if the fragment is present, 0 otherwise). This requires a
thresholdθi that represents the minimal detection similarity.
The value ofXi depends on whether the maximal similarity
found in the image is larger thanθi or not.

The thresholdθi is set automatically by maximizing the
mutual information [6],I(Xi; C), between the fragmentXi

and the binary class variableC. The conditional probabil-
ities P (Xi(θi) = 0|C) andP (Xi(θi) = 1|C) required in
the calculation of the information are computed from the
training data. The class priors,P (C = 0) andP (C = 1),
are chosen a priori.

The detection threshold for a fragment is formally de-
fined by

θi = arg max
θ

I(Xi(θ); C) (1)

= arg max
θ

(H(C)−H(C|Xi(θ))) .

H(x) 1 andH(x|y) 2 are Shannon’s entropy and conditional
entropy; here,x andy take their values in{0, 1}.

This procedure automatically assigns to each fragment
in the pool a detection threshold that maximizes the infor-
mation delivered by the fragment. We next describe the se-
lection of an optimal subset of fragments from the pool.

2.3. Greedy-Search
The feature selection process is based on a greedy-search
algorithm [17] that adds fragments iteratively to the set of
informative features, in a greedy fashion, until adding more
fragments no longer increases the estimated information
content of the set.

Denote the initial fragment pool by the setP , from which
the fragments are to be chosen. After an initial filtering that
removes the least promising features, the algorithm is ini-
tialized by moving fromP the fragment with the highest
mutual information, obtained by eq. (1), to the set of se-
lected fragments, denoted byS1. P1 now represents the
pool after the transfer of the first fragment. In the next
step, we seek a second fragmentX2 from P to be added
to the set of selected features. At this stage, however,

1H(x) = −
∑

x
p(x) log(p(x))

2H(x|y) = −
∑

x,y
p(x, y) log(p(x|y))

the selection criterion is not the mutual information ofX2

alone, but how much informationX2 can add with respect
to the already existingX1. Therefore,X2 should maximize
I(Xi, X1; C)− I(X1; C). Following the same scheme, we
iteratively add the fragment that brings the highest increase
of information content contained in the setS. The next frag-
mentXk to be added at iterationn + 1 is defined by:

Xk = arg max
Xi∈Pn

min
Xj∈Sn

(I(Xi, Xj ;C)− I(Xj ; C)) . (2)

The updates of the pool and the set of selected fragments
are defined by:

Pn+1 = Pn \Xk and Sn+1 = Sn ∪ {Xk} . (3)

With eq. (2), the fragment that we add toSn is the one,
among those inPn, that yields the maximal increase in the
estimated information content of the set.

The informative fragments selected in this way are used
together with one or the other combination schemes de-
scribed later in Sections 4 and 5. We next describe the other
type of features, simple and generic, used in our study.

3. Simple generic features
Many state of the art recognition systems are based on the
use of generic, non class-specific visual features, e.g. [22,
14, 18]. In this section, we describe the simple features we
used in our comparison, generally following [14, 18].

The generic features used for object classification are de-
signed to capture local frequency and orientation informa-
tion of the image. The individual features therefore convey
limited information about the class on their own. It is the
right combination of these features that enables the system
to capture the visual properties that are specific to the dif-
ferent classes of objects.

3.1. Wavelet transform
A class of features commonly used for object recognition
tasks is the wavelet family, applied for pedestrian, face and
car detection [14, 24, 18]. The wavelet transform captures
frequency and orientation properties at all locations in the
image within an analysis window, at different scales. It
is characterized by a kernel function, whose choice influ-
ences the type of visual features to which the transform is
sensitive. Figure 3 shows some examples of wavelet fea-
tures that can be used. The first line of features represents
Gabor-wavelets as used in [24]. The second line shows a
set of biorthogonal 5/3 wavelets as in [18]. The third line
displays 1/1 biorthogonal wavelets, used in [14], that work
as simple discrete differential operators. These degenerate
wavelets are also similar to the rectangular features used in
[22], in the framework of fast face detection. In our tests
using low-resolution car images, they performed better than



Figure 3:Typical wavelet features used in recent work on object
recognition. Top: four oriented gabor-wavelet filters, used in [24].
Middle: biorthogonal 5/3 wavelets, used in [18]. Bottom: simpli-
fied wavelets, also used in [14], that we chose for our experiments
for the generic feature type classifiers.

alternative wavelet features and were therefore selected for
our experiments. Note that the features generated from the
wavelet transform are defined at every location in the im-
age or in the analysis window, as opposed to the fragments
whose presence or absence is defined in a given area.

3.2. Quantization
In [18], the coefficients of the wavelet transform are
quantized into 3 levels. For the purpose of comparison
with fragment-based classification, we binarize the wavelet
transform so as to interpret the resulting transform as ex-
pressing the presence or absence of the different wavelet
features at different locations in the image. The binariza-
tion process is done by thresholding the coefficients of the
wavelet transform by their measured average in the set of
training images. In the experiments, the use of thresholds
other than the average led to a decrease in the classification
performance.

4. Classification by linear separation
During classification, the system generates a feature vector
X = [X1, ..Xn] that represents the encoding of the image
in feature space. For example, it can be obtained by mea-
suring the presence of specific visual features in the image.
Final decision about the class is performed by plugging the
feature vector into a classification functionf(X) that re-
turns 1 or 0, depending on whether the object is estimated
to be present or not.

The simple feature combination rule we tested is a lin-
ear discriminant, learned with a Linear Support Vector Ma-
chine (LSVM). The linear discriminant has the following
functional form:

f(X) =
{

1 if
∑

i αiXi ≥ θ,
0 otherwise.

(4)

where theXi represent the measured value of the individual
features. Theαi are the weights of the features and are
obtained during the learning phase.θ is a bias term.

Linear SVM training is used to learn the optimal dis-
criminant function. SVMs are classifiers that learn a lin-

ear decision surface in feature space, the Maximum Margin
Surface (MMS), which is optimal in the sense that it lies as
far as possible from the class and non-class data points in
feature space. When the data is not linearly separable, the
function to minimize is not just the margin but the margin
combined with a cost depending on the number of misclas-
sifications. Finding the MMS is a quadratic programming
problem and is therefore attractive because computationally
efficient and guaranteed to reach the optimal solution un-
der general conditions. Detailed descriptions of SVMs can
be found in [4, 21]. Linear SVM training yields a vector
α = [α1, ..αn], normal to the decision surface, and used in
eq. (4) during classification.

A more typical use of SVMs is to find non-linear deci-
sion surfaces in feature space. This is obtained by projecting
non-linearly the feature space onto a very high dimensional
projective space and finding a maximal margin hyperplane
there. Here also, a cost can be used when the data is not
separable in the projective space. We present some recog-
nition results using a polynomial SVM, for comparison, in
the experiments Section 6.

5. The Tree-Augmented Network
In this section, we present the more complex classification
scheme we tested, the Tree-Augmented Network (TAN).

Unlike the LSVM scheme in which, during classifica-
tion, features are used independently of each other, the TAN
takes into account some pairwise statistical dependencies
between features, thereby enabling a better approximation
of their underlying distribution. The TAN is therefore a
richer model than linear discriminants. It is a particular
Bayesian network [15, 8], where the features, represented
by the nodes of the graph, are connected to the class vari-
able and are organized in a tree structure, as shown in figure
4. The edges in the tree express statistical correlation be-
tween connected features. In this probabilistic model, the
probability for a featureXi to have a specific value depends
not only on the value of the class variableC, but also on the
value of its parent featureXΠ(i). Imposing a tree structure
on the network restricts the modelling power but enables
straightforward computation of the probability of an input,
given by eq. (5), which is not the case with loopy networks
[15]. The structure of the tree is found during learning by
searching for the maximum weighted spanning tree, where
the weight of an edge connecting featuresXi andXj is the
mutual informationI(Xi; Xj) betweenXi andXj [5].

Formally, the class-conditional distributions modelled by
the TAN have the following form:

P (X1, ..XN |C) =
N∏

i=1

P (Xi|XΠ(i), C) . (5)

The optimal Bayes decision rule [7] obtained with the TAN



.  .  .

X1

Xn

X2

C

Figure 4: The Tree-Augmented Network classifier. The model
assumes some pairwise dependencies between the features. The
features are organized in a tree, i.e., connected to the class node
and at most one other feature node.

model is:

f(X) =
{

1 if
∏N

i=1
P (Xi|XΠ(i),C=1)

P (Xi|XΠ(i),C=0) ≥ θ,

0 otherwise.
(6)

XΠ(i) is the parent feature ofXi. The probabilities
P (Xi|XΠ(i), C) that parameterize the model are learned
from the training data.

Note that for binary features, i.e.,Xi ∈ {0, 1}, it can be
shown that the decision rule in eq. (6) defines a quadratic
surface in feature space, in contrast to the linear surface ob-
tained with the LSVM.

6. Experiments
We now describe the experiments comparing the different
classifiers and features discussed. The first part of the sec-
tion describes the experimental setup. The second part con-
cerns the recognition performance of classifiers using the
different possibilities between the LSVM or the TAN clas-
sification functions, and wavelet or fragment type features.
For comparison, we also added recognition results using a
non-linear SVM. The third part deals with the training ef-
fectiveness, for both fragments or wavelets.

6.1. Training and testing the classification
schemes

We compared the performance of the two feature types,
fragments and wavelets, and two combination schemes,
LSVM and TAN. The classification task consisted of the
detection of side-views of cars in 14x21 pixel images. The
image database comprised a total of 573 car images and 461
non-car images. The cars occupied approximately a 10x15
pixel box inside the image. From this data, we trained and
tested four classifiers corresponding to the different possi-
bilities obtained by choosing fragments or wavelets as fea-
tures, and the LSVM or the TAN for the classification func-
tion. The performance of the classifiers was estimated by
a cross-validation method: we repeatedly trained and tested
the classifier on independent data sets, that were reshuffled
at each iteration. We performed 20 cross-validation itera-
tions to generate the ROC curves presented in Section 6.2.

The initial selection of the fragments, on a Pentium com-
puter, took several hours, using Matlab. The bottleneck of
the method is the measurement of the features on the train-
ing images and their selection. The computation time can
be significantly reduced, however, to 10 or 30 minutes, if
we restrict the search to the intermediate sized features, as
in [23, 1], rather than features with sizes ranging from very
small to full templates. Learning the TAN takes less than a
minute, while learning the LSVM is virtually instantaneous,
for 168 features.

The dimension of the binary feature vector representing
the detection of features, was taken to be the same for the
fragment-based and the wavelet-based classifiers, 168, for
comparisons in spaces of same dimension.

6.1.1. Fragment-based classifiers

The initial pool of fragmentsP contained 59200 fragments,
extracted from the first 100 cars. Their sizes varied from
4×4 pixels to 10×14 pixels and were taken from all the
possible locations in the 10x15 pixel region surrounding
the car. Each fragment was labelled with the rough loca-
tion from which it was extracted, enabling us to restrict the
detection zone to a limited area. This gives the fragments
a certain degree of translation invariance, while capturing
rough spatial relations between the different fragments. In
the experiments, the fragments were allowed to move in a
5x5 pixel area surrounding their original location.

We used the remaining 473 car images and the 461 non-
car images for training and testing. At every iteration of the
cross-validation process, we randomly selected 200 car and
200 non-car images for training. The complementary 273
cars and 261 non-cars were used to test the classifier. The
training images served to select the useful fragments and for
the learning of the classification functions.

6.1.2. Wavelet-based classifiers

We used the simplified wavelet operators shown on line 3 in
Figure 3, at 2 different scales. We also tested the biorthog-
onal 5/3 wavelets that were used in [18], but they gave
poorer results. They were probably too large for the im-
ages we used, and smeared the orientation and frequency
information. The performance of the wavelet-based classi-
fiers was assessed in the same way as the fragment-based
classifiers. At each iteration of the cross-validation process,
we used 200 car and 200 non-car images, limited to the
10×15 car area to learn the classification functions, LSVM
or TAN. The rest of the images used for performance assess-
ment were taken in their 14×21 format to impose a degree
of translational invariance similar to the one tested in the
fragment-based scheme. The decision about the class of an
image was based on the maximal response of the classifier
over each the 10×15 pixel windows in the image.
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Figure 5: ROC curves for the different classifiers, using a TAN
classifier, an LSVM classifier (Lin), or a Non-Linear SVM (Poly).
The fragment-based scheme performs better. The complexity of
the classification method influences substantially the performance
for the wavelet-based classifier: the TAN curve is significantly
higher than both SVM methods, that have overlapping curves. The
classification scheme does not affect the fragment-based classifier,
where the three curves virtually overlap.

6.2. Classification results
The classification results for each classifier are presented
in the form of the Receiver Operating Characteristic (ROC)
curves shown in Figure 5. ROC curves represent the abil-
ity of classifiers to combine the constraints of having a low
false-positive rate and a high detection rate. The higher the
curve, the better the classifier. The curves were obtained by
averaging the results of the cross-validation iterations.

The graph shows that the fragment-based scheme per-
forms better than the scheme using wavelets. For example,
at a 5% false-alarm rate, detection rates for the fragment
based classifier are over 92% when using the different clas-
sification functions. For the wavelet-based classifiers, the
detection rate is around 70% with the LSVM combination,
and reaches 80% with the TAN. More important to the cur-
rent discussion is the influence of the classification func-
tions. The use of the TAN scheme versus LSVM enhanced
substantially the performance of the wavelet-based classi-
fier, while the performance of the fragment-based classifier
was virtually unaffected.

We also show ROC curves obtained with a Non-Linear
SVM, using a polynomial kernel of degree 3, for compar-
ison. The performance of the Polynomial SVM was sim-
ilar to the LSVM and the TAN when using the fragments
features. With wavelets, the Polynomial SVM had a per-
formance equivalent to the LSVM, and both were outper-
formed by the TAN.

Figure 6 summarizes the recognition results in terms of
information. The diagram shows the information content
gain of the TAN combination scheme for wavelets (cross)
and fragments (square), averaged over the cross-validation
iterations. The information was computed at a 5% false-
alarm rate. The information gain is defined as the difference
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Figure 6:Information gain∆I in bits using the complex combi-
nation scheme, for wavelets (×) and fragments (2). The gain is
much higher for the wavelet-based classifier than for the fragment-
based classifier.

between the information provided about the class by the
TAN classifier and the information provided by the LSVM
classifier:

∆I = I(C; ĈTAN)− I(C; ĈLSVM) (7)

whereI(C; Ĉ) is the information provided by a classifier
(simple or complex), defined as the mutual information be-
tween the final decision of the classifierĈ and true class of
the image,C:

I(C; Ĉ) =
∑

C,Ĉ∈{0,1}
p(C, Ĉ) log

p(C, Ĉ)

p(C)p(Ĉ)
(8)

For perfect classification, withP (C = 0) = P (C = 1) =
0.5, I(C; Ĉ) = 1. For random decision,I(C; Ĉ) = 0.

The graph shows that the more complex combination
scheme contributes significantly to the information deliv-
ered by the wavelet-based classifier, while for the fragment-
based classifier, the complex combination scheme adds lit-
tle or no information, and may even reduce it, as can be
seen by the error bar falling under0 in Figure 6. The oc-
casional loss of information when using the more complex
scheme stems from over-fitting the classifier parameters,
that are also harder to learn because they involve second
order statistics and require more training data to be accu-
rate, thereby affecting its generalization capacity. In the
fragment-based classifier, the useful information for classi-
fication is already contained in the features themselves, and
consequently, the scheme relies less on higher-order inter-
actions.

We considered the possibility that the poor performance
of the wavelet-based classifier may be caused by the loss
of information due to the binarization process, rather than
the expressiveness of the features. We therefore tested
linear and non-linear SVMs with the full wavelet coeffi-
cients, rather than their binarized values, but this actually
led to a decrease in classification performance, in our low-
resolution application.



Note also that the performance of the wavelet-based clas-
sifier could eventually be increased by using yet higher-
order statistics in the feature distribution model. However,
this would require heavier computations and more training
data to learn the higher-order interactions correctly.

The experiments reported above were supported by sim-
ilar additional experiments, using different object classes
and different simple features. We performed the same fea-
ture extraction procedure and classification to face rather
than car images. Classification of the face images (face vs.
non-face images) based on informative fragments was per-
formed with linear classification, and the improvement us-
ing non-linear classification was not significant. In addi-
tion, we trained a back-propagation neural network to ex-
tract face features and classify face vs. non-face images.
The information content of the features extracted by the net-
work was low on average, less than 10% of the information
obtained by fragments. We then tested the features extracted
by the backpropagation network, but with linear classifica-
tion. This resulted in a severe decrease in recognition per-
formance. We conclude that the extraction of class-specific
informative fragments is a practical method to obtain fea-
ture spaces in which linear separation is effective. In con-
trast, for simpler and more generic features of the type used
by many current classifiers, the use of a simple separating
hyperplane is far from optimal.

6.3. Feature type and the difficulty of training

We measured how the amount of training images influences
the generalization capacity of the wavelet-based and the
fragment-based classifiers. For this purpose, we measured
I(C; Ĉ) (eq. 8), at a false-alarm rate of 5%, for the wavelet-
based and the fragment-based classifiers on a set of unseen
images, as a function of the number of training images. As
in Subsection 6.1, the measurements were performed with
20 cross validation loops, using part of the database for
training and the complement for testing and displaying the
results, presented in Figure 7. The classification rule for the
wavelet-based classifier was the TAN, while the classifica-
tion rule for the fragment-based classifier was the LSVM.

The increase in information between using 50 and 250
training images per class is more substantial for the wavelet
based-classifier than for the fragment-based classifier, with
an increase of 0.14 bit and 0.065 bit on average respectively.
Also, the fragment based scheme with 50 training images
per class still performs significantly better than the wavelet-
based classifier with 250 training images per class.

From these results, it appears that the learning strategy
using fragments is more efficient than the wavelet-based
strategy, in that it learns faster, i.e., from fewer examples,
the common structure of images that discriminates between
the class.
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Figure 7: Information versus the number of training images per
class, for wavelets (×) and fragments (2). The fragment-based
scheme performs better than the wavelet-based scheme, even when
learning is done using less data. The increase in information be-
tween 50 and 250 training images per class is more significant for
the wavelet scheme than for the fragment scheme.

7. Discussion and Conclusion
We can compare our approach to two main strategies that
use simple features for object recognition. Since simple
generic features that are not selected specifically for the
class of images at hand usually do not allow effective lin-
ear classification, one general approach is to develop more
complex classification stages, such as multi-layer neural
networks. There is no general optimal method for this task,
but a variety of techniques can be developed and tested for
a given application. A second approach, which led to the
Support Vector Machine and the different kernel based tech-
niques, has been to use a mapping to a higher dimensional
space where the linear separation becomes more effective.
There is no straightforward method for finding a good map-
ping, and different mappings must usually be applied and
evaluated. A third approach, supported by the comparisons
in this study, is to first extract during learning a set of in-
formation rich features, selected for the specific class to be
recognized, followed by the use of a simple classifier, con-
structed for example by a linear SVM.

Our comparative study shows that linear separation can
be obtained in low dimensional feature space if the features
are chosen to be highly informative. If the individual fea-
tures themselves have a low information content, it can be
expected that the required number of features will be large.
This is also supported by the following consideration. For
features that are conditionally independent (the fragments
and other features used for classification are often selected
to reduce conditional dependence), it can be shown that

I(X1, ..XN ;C) ≤
N∑

i

I(Xi; C) = NĪ (9)

whereĪ is the average mutual information of the fragments
andN is the number of fragments. To obtain perfect clas-
sification,I(X1, ..XN ; C) must be equal toH(C), the en-



tropy of the class variable. From this we conclude that

N ≥ H(C)
Ī

(10)

For correlated features, the required number will usually
be higher. This supports the conclusion that the number of
features used for classification is related to the information
content of the individual features. In addition, our com-
parisons show that for simple generic features the classifier
had to use higher-order properties of their distribution. Con-
versely, when the individual features were by themselves in-
formative, the relative contribution of the higher-order inter-
actions was reduced and a linear decision rule was enough
for efficient classification.

We showed how informative features can be automati-
cally extracted. This requires an extensive search but the
procedure is straightforward, and it is performed as an off-
line stage. Recognition schemes using such features can
then take advantage of known techniques that are guaran-
teed to find an optimal separating hyperplane. Taken to-
gether, the results show that a practical method to obtain
efficient recognition is to combine the extraction of infor-
mative features with linear classification.

Finally, it would be interesting to examine in future stud-
ies the useful combination of both simple and complex fea-
tures in multi-stage classification schemes. The informative
features allow reliable classification with simple decision
rules, but their extraction over the entire image may be more
demanding than the extraction of some families of features
designed for fast extraction, such as integral features [22].
A combined scheme could use the simpler features for ini-
tial filtering and the identification of sub-regions in the im-
ages that may contain an object of interest, followed by the
application of the reliable and informative features to the
selected regions.
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