CS840a Learning and Computer Vision Prof. Olga Veksler

Lecture 2

Some Slides are from Cornelia, Fermüller, Mubarak Shah,

> Gary Bradski, Sebastian Thrun

Last Time: Supervised Learning

- Training samples (or examples) X¹,X²,...Xⁿ
- Each example is typically multi-dimensional
 - Xⁱ₁, Xⁱ₂,..., Xⁱ_d are typically called *features*, Xⁱ is sometimes called a *feature vector*
- How many features and which features do we take?
- Know desired output for each example (labeled samples) $Y^1, Y^2, \dots Y^n$
 - This learning is supervised ("teacher" gives desired outputs).
- Yⁱ are often one-dimensional, but can be multidimensional
- Two types of supervised learning:
 - Classification:
 - Yⁱ takes value in finite set and typically called a *label* or a *class* • Example: Y \in {sunny,cloudy,raining}
 - Regression, or function fitting:
 Yⁱ continuous. In this case, it is typically called an *output value*
 - Y' continuous. In this case, it is typically called an *outp* Example: Y=temperature ∈ [-60,60]

Today

- Finish nearest neighbors
- Linear Machines
- Start preparation for the first paper
 - "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - there should be a link to PDF file on our web site
- Next time:
 - Discuss the paper and watch video
 - Prepare for the second paper

Last Time: Supervised Learning

- Wish to design a machine f(X,W) s.t.
 f(X,W) = true output value at X
 - In classification want f(X,W) = label of X
 - How do we choose f?
 - when we choose a particular f, we are making implicit assumptions about our problem
 - W is typically multidimensional vector of weights (also called *parameters*) which enable the machine to "learn"
 - $W = [W_1, W_2, \dots, W_k]$

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples X¹, X²,...Xⁿ into 2 sets, training set and testing set
 - Training phase is for "teaching" our machine (finding optimal weights W)
 - Testing phase is for evaluating how well our machine works on unseen examples
- Training phase
 - Find the weights W s.t. f(Xⁱ,W) = Yⁱ "as much as possible" for the training samples Xi
 - "as much as possible" needs to be defined
 - Training can be guite complex and time-consuming

Generalization and Overfitting

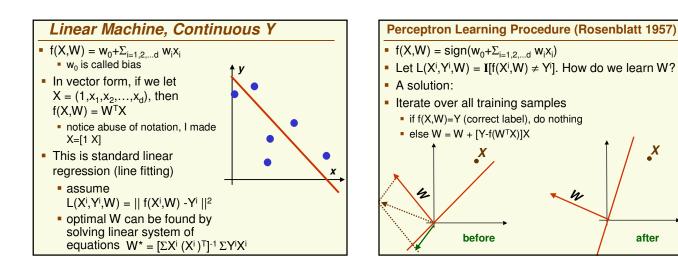
- Generalization is the ability to produce correct output on previously unseen examples
 - In other words, low error (loss) on unseen examples
 - Good generalization is the main goal of ML
- Low train error does not necessarily imply that we will have low test error
 - Very easy to produce f(X,W) which is perfect on training samples
 - "memorize" all the training samples and output their correct label
 - random label on unseen examples
 - No training error but horrible test error
- Overfitting
 - when the machine performs well on training data but poorly on testing data

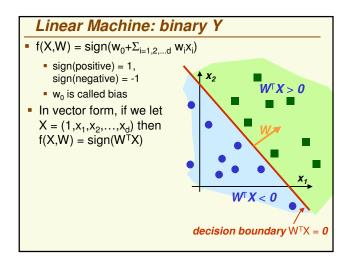
Testing

- Testing phase
 - The goal is to design machine which performs well on unseen examples (which are typically different from labeled examples)
 - Evaluate the performance of the trained machine f(X,W) on the testing samples (unseen labeled samples)
 - Testing the machine on unseen labeled examples lets us approximate how well it will perform in practice
 - If testing results are poor, may have to go back to the training phase and redesign f(X,W)

Loss Function

- How do we quantify what it means for the machine f(X,W) do well in the training and testing phases?
- f(X,W) has to be "close" to the true output on X
- Define Loss (or Error) function L
 - This is up to the designer (that is you)
- Typically first define per-sample loss L(Xⁱ, Yⁱ, W)
 - Some examples:
 - for classification, $L(X^{i}, Y^{i}, W) = I[f(X^{i}, W) \neq Y^{i}]$, where I[true] = 1, I[false] = 0
 - we just care if the sample has been classified correctly For continuous Y, L(Xⁱ,Yⁱ,W) =|| f(Xⁱ,W) -Yⁱ ||²,
 how far is the estimated output from the correct one?
- Then loss function $L = \Sigma_i L(X^i, Y^i, W)$
 - Number of missclassified example for classification
 - Sum of distances from the estimated output to the correct output



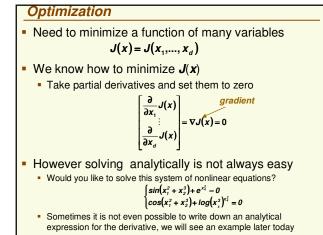


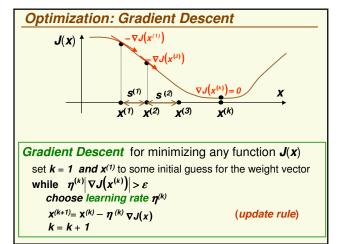
Perceptron Learning Procedure (Rosenblatt 1957)

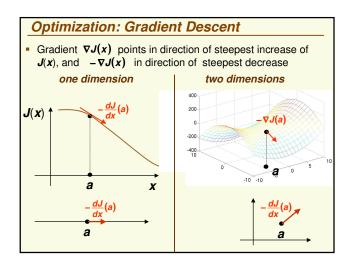
X

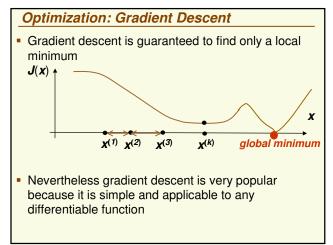
after

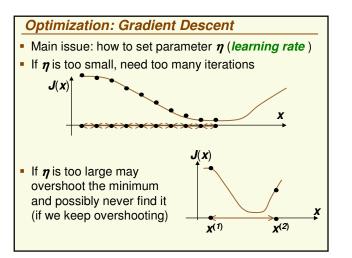
- Amazing fact: If the samples are linearly separable, the perceptron learning procedure will converge to a solution (separating hyperplane) in a finite amount of time
- Bad news: If the samples are not linearly separable, the perceptron procedure will not terminate, it will go on looking for a solution which does not exist!
- For most interesting problems the samples are not linearly separable
- Is there a way to learn W in non-separable case?
 - Remember, it's ok to have training error, so we don't have to have "perfect" classification

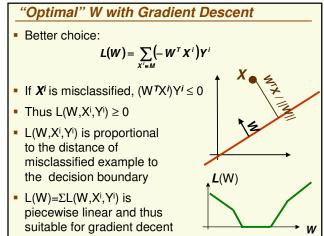


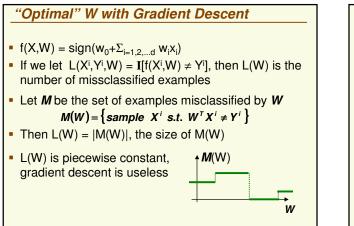


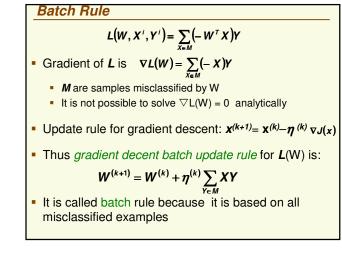












Single Sample Rule

Thus gradient decent single sample rule for L(W) is: $W^{(k+1)} = W^{(k)} + \eta^{(k)}(XY)$

- apply for any sample X misclassified by W^(k)
- must have a consistent way of visiting samples

Learning by Gradient Descent

- Suppose we suspect that the machine has to have functional form f(X,W), not necessarily linear
- Pick differentiable per-sample loss function L(Xⁱ,Yⁱ,W)
- We need to find W that minimizes $L = \Sigma_i L(X^i, Y^i, W)$
- Use gradient-based minimization:
 - Batch rule: W = W $\eta \nabla L(W)$
 - Or single sample rule: $W = W \eta \nabla L(X^i, Y^i, W)$

Convergence

- If classes are linearly separable, and $\eta^{(k)}$ is fixed to a constant, i.e. $\eta^{(1)} = \eta^{(2)} = \dots = \eta^{(k)} = c$ (fixed learning rate)
 - both single sample and batch rules converge to a correct *solution* (could be any **W** in the solution space)
- If classes are not linearly separable:
 - Single sample algorithm does not stop, it keeps looking for solution which does not exist
 - However by choosing appropriate learning rate, heuristically stop algorithm at hopefully good stopping point

 $\eta^{(k)} \rightarrow 0 \text{ as } k \rightarrow \infty$

for example,

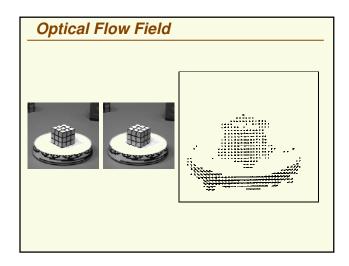
- for this learning rate convergence in the linearly separable case can also be proven

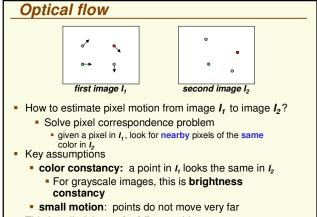
Important Questions

- How do we choose the feature vector X?
- How do we split labeled samples into training/testing sets?
- How do we choose the machine f(X,W)?
- How do we choose the loss function L(Xⁱ, Yⁱ, W)?
- How do we find the optimal weights W?

Background Preparation for Paper

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - Optical Flow Field (related to motion field)
 - Correlation





• This is called the optical flow problem

Optical Flow and Motion Field

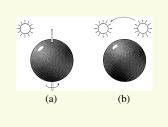
- Optical flow field is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
- Why does brightness change between frames?
- Assuming that illumination does not change:
 - changes are due to the RELATIVE MOTION between the scene and the camera
 - There are 3 possibilities:
 - Camera still, moving scene
 - Moving camera, still scene
 - Moving camera, moving scene

Motion Field (MF)

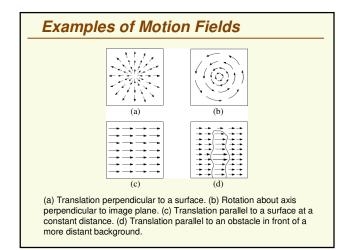
- The MF assigns a velocity vector to each pixel in the image
- These velocities are INDUCED by the RELATIVE MOTION between the camera and the 3D scene
- The MF is the <u>projection</u> of the 3D velocities on the image plane

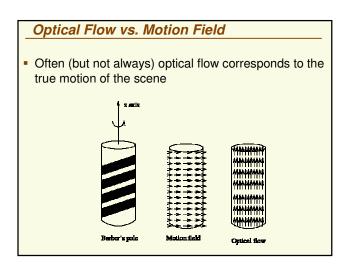
Optical Flow vs. Motion Field

- Recall that Optical Flow is the apparent motion of brightness patterns
- We equate Optical Flow Field with Motion Field
 Frequently works, but now always:



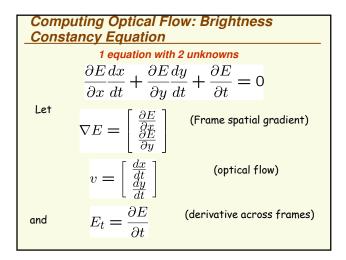
- (a) A smooth sphere is rotating under constant illumination. Thus the optical flow field is zero, but the motion field is not
- (b) A fixed sphere is illuminated by a moving source—the shading of the image changes. Thus the motion field is zero, but the optical flow field is not





Computing Optical Flow: Brightness Constancy Equation

- Let P be a moving point in 3D:
 - At time t, P has coords (X(t),Y(t),Z(t))
 - Let p=(x(t),y(t)) be the coords. of its image at time t
 - Let E(x(t),y(t),t) be the brightness at p at time t.
- Brightness Constancy Assumption:
 - As P moves over time, E(x(t),y(t),t) remains constant



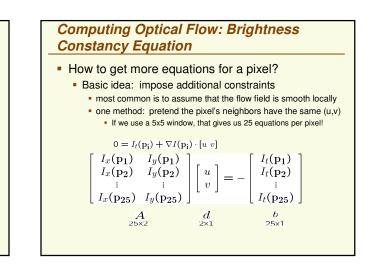
Computing Optical Flow: Brightness Constancy Equation

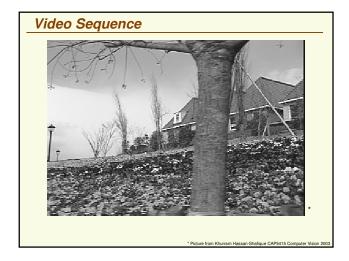
$$E(x(t), y(t), t) = Constant$$

Taking derivative wrt time:

$$\frac{dE(x(t), y(t), t)}{dt} = 0$$
$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} =$$

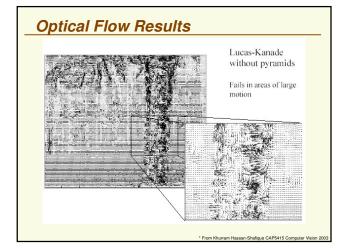
0

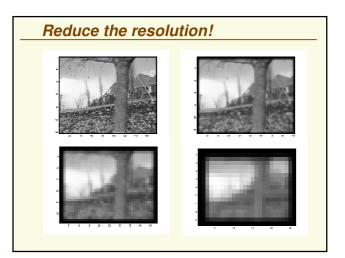


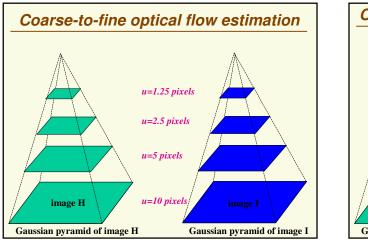


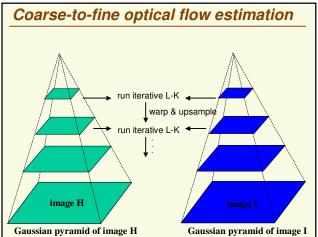
 Revisiting the small motion assumption

 Image: State of the small motion assumption



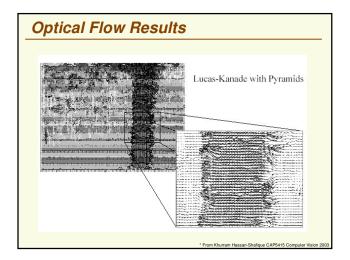


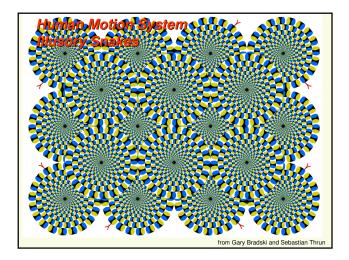


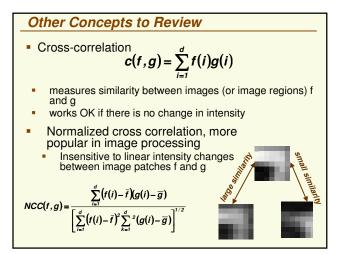


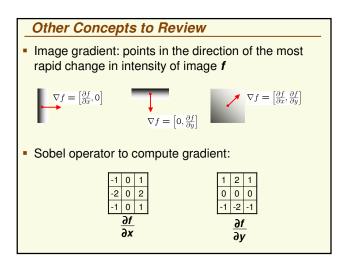
Iterative Refinement

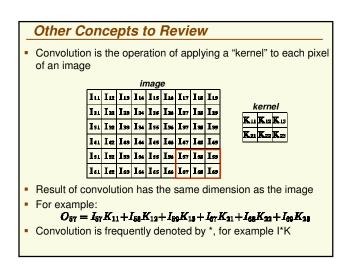
- Iterative Lukas-Kanade Algorithm
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using the estimated flow field use image warping techniques
 - 3. Repeat until convergence

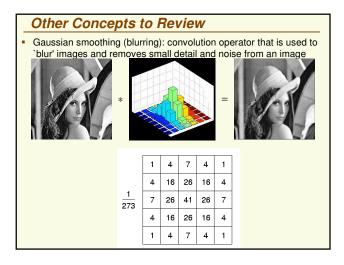












Next Time

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
- When reading the paper, think about following:
 - Your discussion should have the following:
 - very short description of the problem paper tries to solve
 - What makes this problem difficult?
 - Short description of the method used in the paper to solve the problem
 - What is the contribution of the paper (what new does it do)?
 - Do the experimental results look "good" to you?

