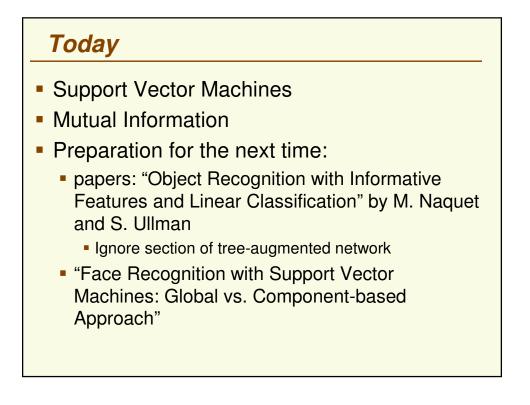
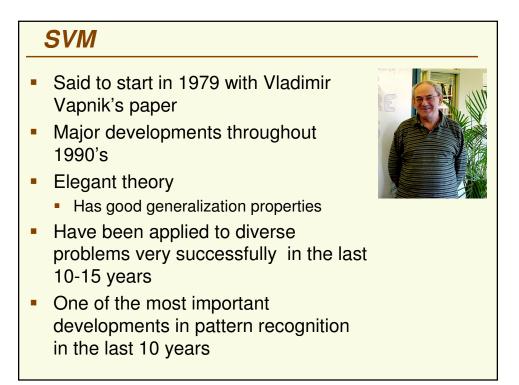
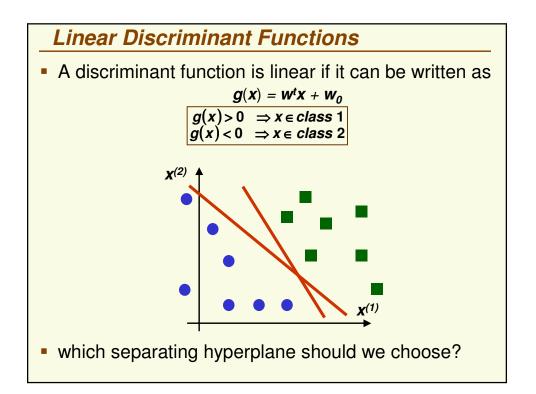
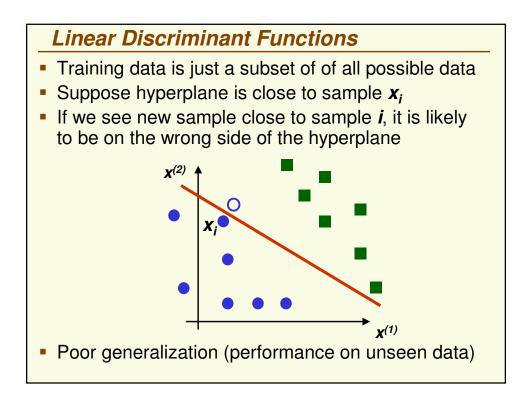
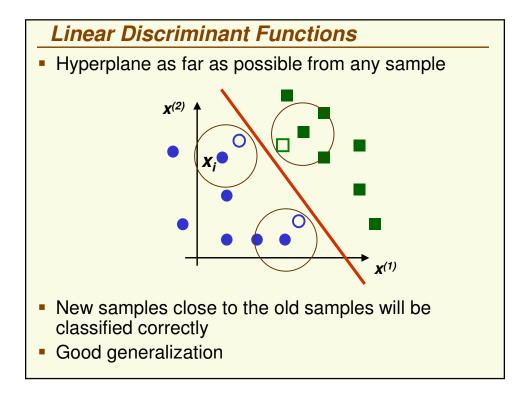
CS840a Fall 2006 Learning and Computer Vision Prof. Olga Veksler Lecture 3 SVM Information Theory (a little BIT) Some pictures from C. Burges

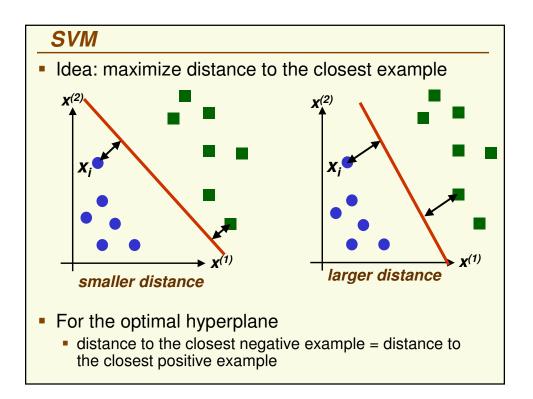


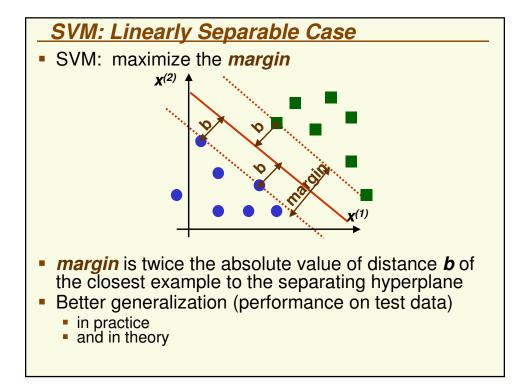


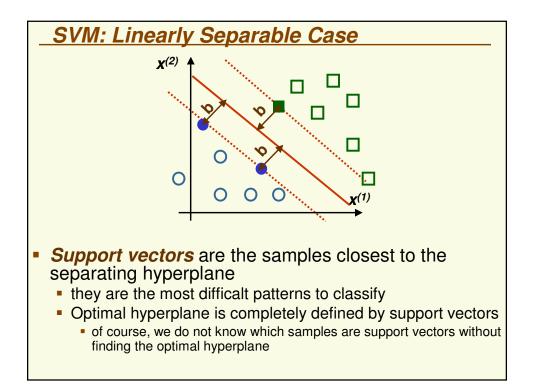


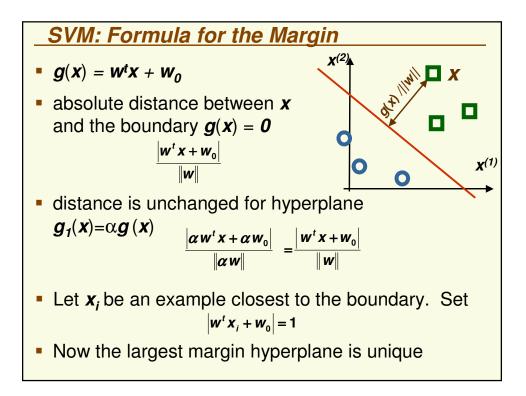


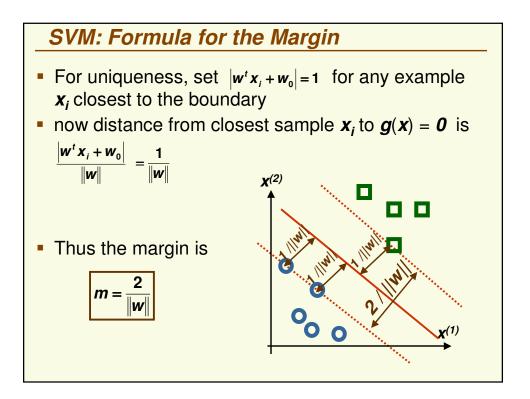


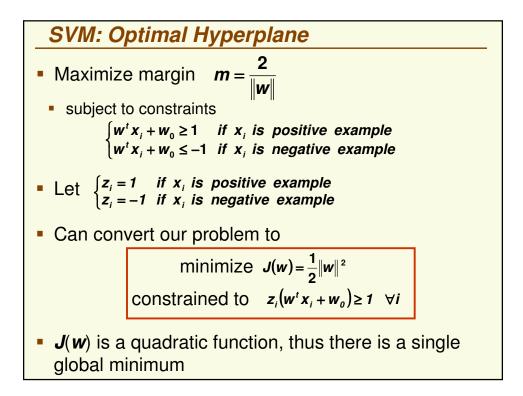


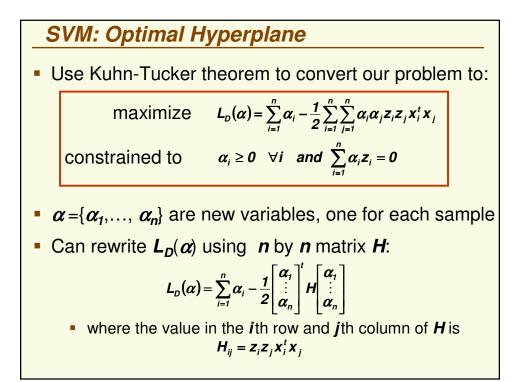


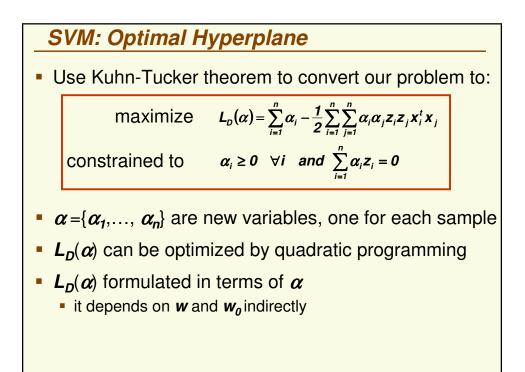












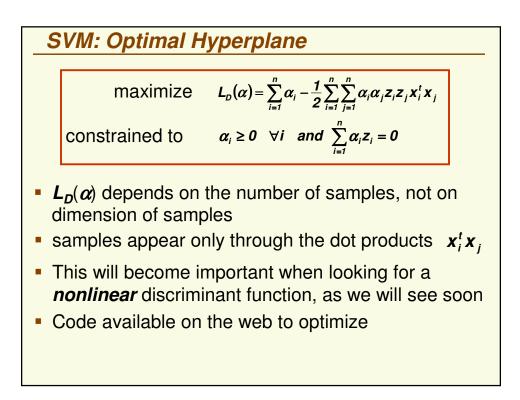
SVM: Optimal Hyperplane

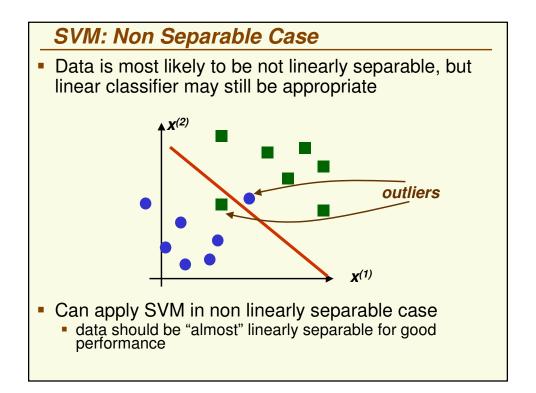
- After finding the optimal $\alpha = \{\alpha_1, ..., \alpha_n\}$
 - For every sample *i*, one of the following must hold
 - $\alpha_i = 0$ (sample *i* is not a support vector)
 - $\alpha_i \neq 0$ and $z_i(w^t x_i + w_0 1) = 0$ (sample *i* is support vector)
 - can find **w** using $w = \sum_{i=1}^{n} \alpha_i z_i x_i$
 - can solve for w_0 using any $\alpha_i > 0$ and $\alpha_i [z_i (w^t x_i + w_0) 1] = 0$ $w_0 = \frac{1}{z_i} - w^t x_i$
 - Final discriminant function:

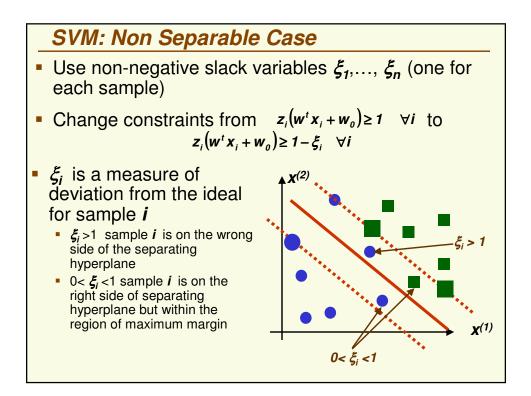
$$g(\mathbf{x}) = \left(\sum_{\mathbf{x}_i \in S} \alpha_i \mathbf{z}_i \mathbf{x}_i\right)^t \mathbf{x} + \mathbf{w}_i$$

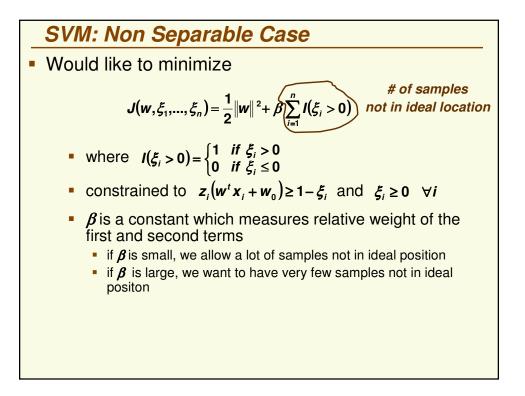
where S is the set of support vectors

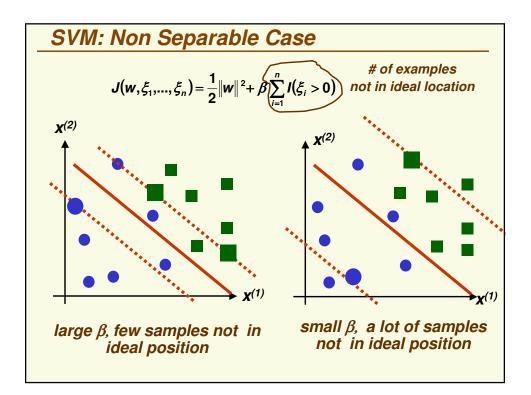
$$\mathbf{S} = \{ \mathbf{x}_i \mid \boldsymbol{\alpha}_i \neq \mathbf{0} \}$$

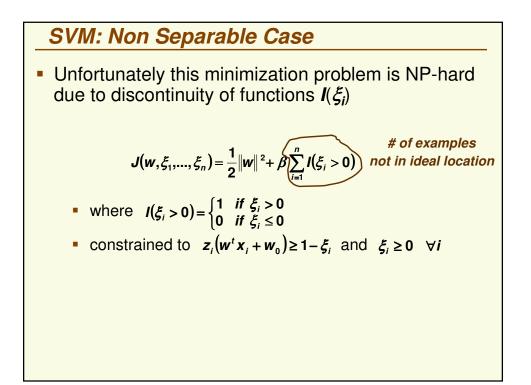


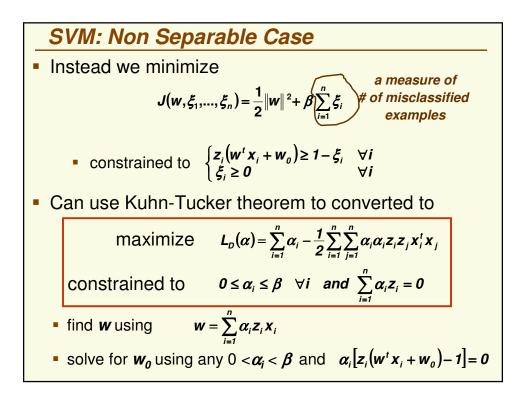


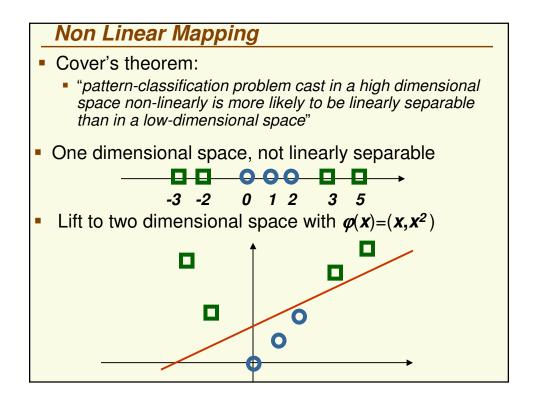


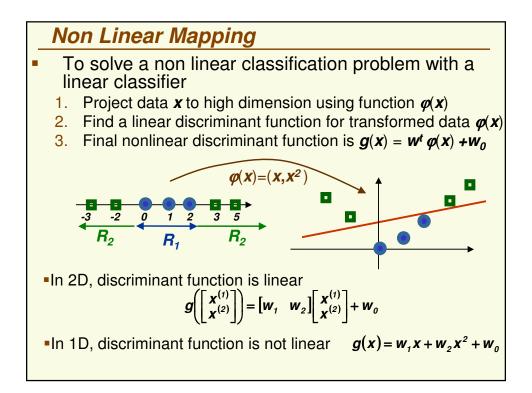


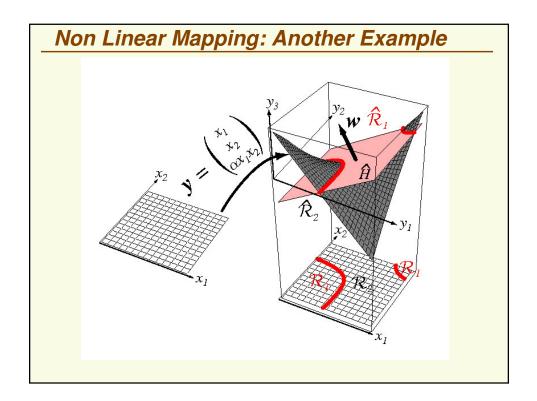


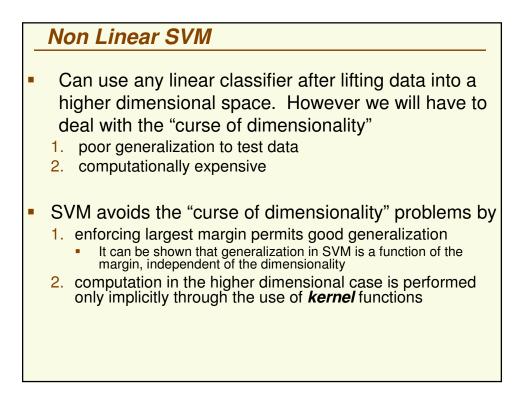


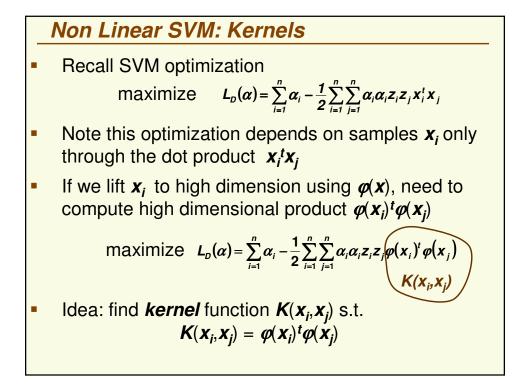


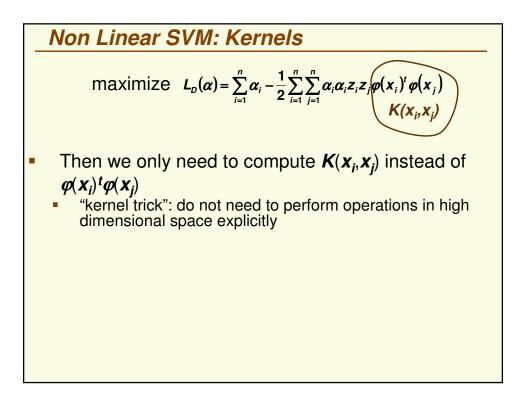








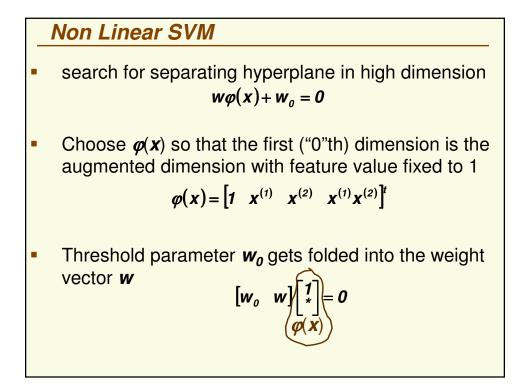


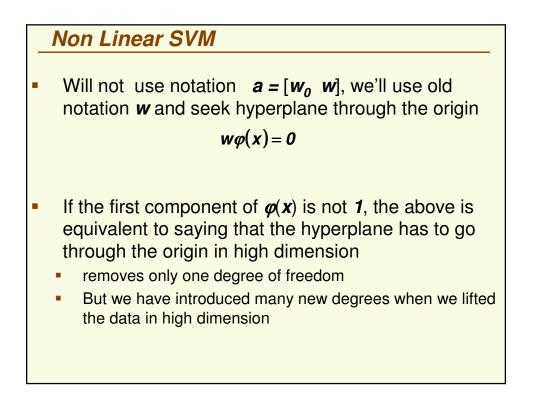


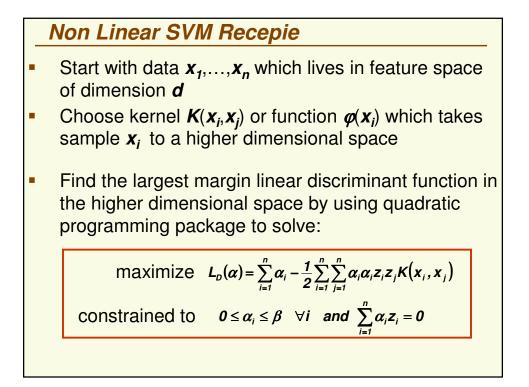
Non Linear SVM: Kernels
Suppose we have 2 features and
$$K(x,y) = (x^{t}y)^{2}$$

Which mapping $\varphi(x)$ does it correspond to?
 $K(x,y) = (x^{t}y)^{2} = \left(\begin{bmatrix} x^{(1)} & x^{(2)} \end{bmatrix} \begin{bmatrix} y^{(1)} \\ y^{(2)} \end{bmatrix} \right)^{2} = (x^{(1)}y^{(1)} + x^{(2)}y^{(2)})^{2}$
 $= (x^{(1)}y^{(1)})^{2} + 2(x^{(1)}y^{(1)})(x^{(2)}y^{(2)}) + (x^{(2)}y^{(2)})^{2}$
 $= \begin{bmatrix} (x^{(1)})^{2} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(2)})^{2} \end{bmatrix} \begin{bmatrix} (y^{(1)})^{2} & \sqrt{2}y^{(1)}y^{(2)} & (y^{(2)})^{2} \end{bmatrix}^{t}$
Thus
 $\varphi(x) = \begin{bmatrix} (x^{(1)})^{2} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(2)})^{2} \end{bmatrix}$

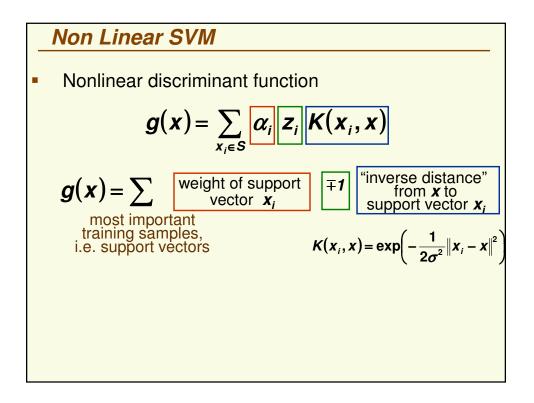
Non Linear SVM: Kernels• How to choose kernel function $K(x_i, x_j)$?• $K(x_i, x_j)$ should correspond to product $\varphi(x_i)^t \varphi(x_j)$ in a
higher dimensional space• Mercer's condition tells us which kernel function can be
expressed as dot product of two vectors• Kernel's not satisfying Mercer's condition can be
sometimes used, but no geometrical interpretation• Some common choices (satisfying Mercer's
condition):• Polynomial kernel $K(x_i, x_j) = (x_i^t x_j + 1)^p$ • Gaussian radial Basis kernel (data is lifted in infinite
dimension) $K(x_i, x_j) = \exp(-\frac{1}{2\sigma^2} ||x_i - x_j||^2)$

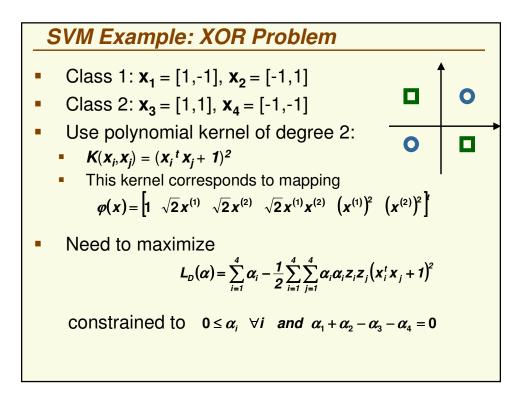






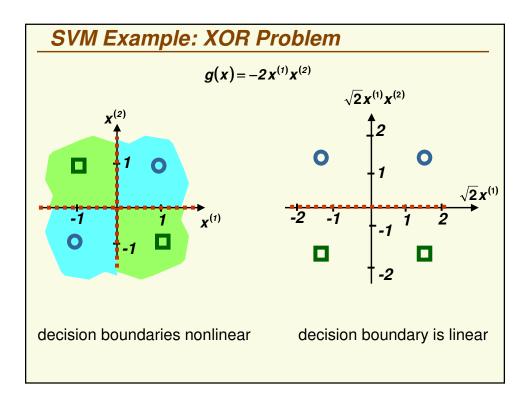
Non Linear SVM Recipe• Weight vector w in the high dimensional space:
 $w = \sum_{x_i \in S} \alpha_i z_i \varphi(x_i)$
• where S is the set of support vectors $S = \{x_i \mid \alpha_i \neq 0\}$ • Linear discriminant function of largest margin in the
high dimensional space:
 $g(\varphi(x)) = w^t \varphi(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x)$ • Non linear discriminant function in the original space
 $g(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x) = \sum_{x_i \in S} \alpha_i z_i \varphi^t(x_i) \varphi(x) = \sum_{x_i \in S} \alpha_i z_i \mathcal{K}(x_i, x)$ • decide class 1 if g(x) > 0, otherwise decide class 2

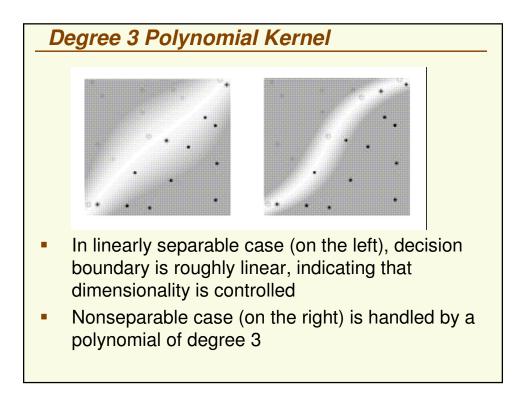




SVM Example: XOR Problem
• Can rewrite
$$L_{D}(\alpha) = \sum_{i=1}^{4} \alpha_{i} - \frac{1}{2} \alpha^{i} H \alpha$$

• where $\alpha = [\alpha_{1} \ \alpha_{2} \ \alpha_{3} \ \alpha_{4}]^{i}$ and $H = \begin{bmatrix} 9 & 1 & -1 & -1 \\ 1 & 9 & -1 & -1 \\ -1 & -1 & 1 & 9 \end{bmatrix}$
• Take derivative with respect to α and set it to 0
 $\frac{d}{da} L_{D}(\alpha) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 9 & 1 & -1 & -1 \\ 1 & 9 & -1 & -1 \\ -1 & -1 & 1 & 9 \end{bmatrix} \alpha = 0$
• Solution to the above is $\alpha_{1} = \alpha_{2} = \alpha_{3} = \alpha_{4} = 0.25$
• satisfies the constraints $\forall i, \ 0 \le \alpha_{i}$ and $\alpha_{1} + \alpha_{2} - \alpha_{3} - \alpha_{4} = 0$
• all samples are support vectors





SVM Summary

- Advantages:
 - Based on nice theory
 - excellent generalization properties
 - objective function has no local minima
 - can be used to find non linear discriminant functions
 - Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space
- Disadvantages:
 - tends to be slower than other methods
 - quadratic programming is computationally expensive
 - Not clear how to choose the Kernel

Information theory

- Information Theory regards information as only those symbols that are uncertain to the receiver only infrmatn esentil to understnd mst b tranmitd
- Shannon made clear that uncertainty is the very commodity of communication
- The amount of information, or uncertainty, output by an information source is a measure of its entropy
- In turn, a source's entropy determines the amount of bits per symbol required to encode the source's information
- Messages are encoded with strings of 0 and 1 (bits)

Information theory

- Suppose we toss a fair die with 8 sides
 - need 3 bits to transmit the results of each toss
 - 1000 throws will need 3000 bits to transmit
- Suppose the die is biased
 - side A occurs with probability 1/2, chances of throwing B are 1/4, C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
 - Encode A= 0, B = 10, C = 110, D = 1110,..., so on until G = 11111110, H = 1111111
 - We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128
 = 1.984 bits to encode results of a toss
 - 1000 throws require 1984 bits to transmit
 - Less bits to send = less "information"
 - Biased die tosses contain less "information" than unbiased die tosses (know in advance biased sequence will have a lot of A's)
 - What's the number of bits in the best encoding?
- Extreme case: if a die always shows side A, a sequence of 1,000 tosses has no information, 0 bits to encode

Information theory

- if a die is fair (any side is equally likely, or uniform distribution), for any toss we need log(8) = 3 bits
- Suppose any of n events is equally likely (uniform distribution)
 - P(x) = 1/n, therefore $-\log P = -\log(1/n) = \log n$
- In the "good" encoding strategy for our biased die example, every side x has -log p(x) bits in its code
- Expected number of bits is

$$-\sum_{x} p(x) \log p(x)$$

