

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples X¹,X²,...Xⁿ into 2 sets, training set and testing set
 - Training phase is for "teaching" our machine (finding optimal weights W)
 - Testing phase is for evaluating how well our machine works on unseen examples
- Training phase
 - Find the weights W s.t. f(Xⁱ,W) = Yⁱ "as much as possible" for the *training* samples Xⁱ
 - "as much as possible" needs to be defined
 - Training can be quite complex and time-consuming

Perceptron Learning Procedure (Rosenblatt 1957)

- Amazing fact: If the samples are linearly separable, the perceptron learning procedure will converge to a solution (separating hyperplane) in a finite amount of time
- Bad news: If the samples are not linearly separable, the perceptron procedure will not terminate, it will go on looking for a solution which does not exist!
- For most interesting problems the samples are not linearly separable
- Is there a way to learn W in non-separable case?
 - Remember, it's ok to have training error, so we don't have to have "perfect" classification

Single Sample Rule Thus gradient decent single sample rule for L(W) is: W^(k+1) = W^(k) + η^(k)(XY) apply for any sample X misclassified by W^(k) must have a consistent way of visiting samples

Convergence If classes are linearly separable, and η^(k) is fixed to a constant, i.e. η⁽¹⁾ = η⁽²⁾ = ... = η^(k) = c (fixed learning rate) both single sample and batch rules converge to a correct solution (could be any W in the solution space) If classes are not linearly separable: Single sample algorithm does not stop, it keeps looking for solution which does not exist However by choosing appropriate learning rate, heuristically stop algorithm at hopefully good stopping point η^(k) → 0 as k → ∞ for example, η^(k) = η⁽¹⁾/k for this learning rate convergence in the linearly separable case can also be proven

$$\frac{Computing Optical Flow: Brightness}{Constancy Equation}$$

$$E(x(t), y(t), t) = Constant$$
Taking derivative wrt time:

$$\frac{dE(x(t), y(t), t)}{dt} = 0$$

$$\frac{\partial E}{\partial x} \frac{dx}{dt} + \frac{\partial E}{\partial y} \frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

Other Concepts to Review

 Convolution is the operation of applying a "kernel" to each pixel of an image

> *kernel* K11 K12 K13 K21 K22 K23

image								
I11	I 12	I13	I 14	I 15	I 16	I 17	I 18	I 19
I 21	12	I 23	I 24	I 25	I26	I 27	I 28	I 29
Iзт	I32	Ізз	I 34	I35	I36	I 37	I 38	I 39
I 41	I 42	I43	I44	I45	I46	I 47	I 48	I 49
Tsi	I 52	I 53	T 54	T 55	I 56	I 57	I 58	1 59
Ισι	Icz	Ios	I 184	I os	Ico	I 67	I ob	Io9

- Result of convolution has the same dimension as the image
- For example:

 $O_{57} = I_{57}K_{11} + I_{58}K_{12} + I_{59}K_{13} + I_{67}K_{21} + I_{68}K_{23} + I_{69}K_{23}$

Convolution is frequently denoted by *, for example I*K

Next Time

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
- When reading the paper, think about following:
 - Your discussion should have the following:
 - very short description of the problem paper tries to solve
 - What makes this problem difficult?
 - Short description of the method used in the paper to solve the problem
 - What is the contribution of the paper (what new does it do)?
 - Do the experimental results look "good" to you?