Fall 2006 CS840a Learning and Computer Vision Prof. Olga Veksler

Lecture 2

Linear Machines, Optical Flow

Some Slides are from Cornelia, Fermüller, Mubarak Shah.

Gary Bradski, Sebastian Thrun

Last Time: Supervised Learning

- Training samples (or examples) X¹,X²,...Xⁿ
- Each example is typically multi-dimensional
 - X₁, X₂,..., X_d are typically called features, X_i is sometimes called a feature vector
 - How many features and which features do we take?
- Know desired output for each example (labeled samples) Y¹,Y²,...Yⁿ
 - This learning is supervised ("teacher" gives desired outputs).
 - Yⁱ are often one-dimensional, but can be multidimensional

Outline

- Linear Machines
- Start preparation for the first paper
 - "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - there should be a link to PDF file on our web site
- Next time:
 - Discuss the paper and watch video
 - Prepare for the second paper

Last Time: Supervised Learning

- Wish to design a machine f(X,W) s.t. f(X,W) = true output value at X
 - In classification want f(X,W) = label of X
 - How do we choose f?
 - when we choose a particular f, we are making implicit assumptions about our problem
 - W is typically multidimensional vector of weights (also called parameters) which enable the machine to "learn"
 - $\bullet \ W = [w_1, w_2, \dots w_k]$

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples X¹,X²,...Xⁿ into 2 sets, training set and testing set
 - Training phase is for "teaching" our machine (finding optimal weights W)
 - Testing phase is for evaluating how well our machine works on unseen examples
- Training phase
 - Find the weights W s.t. f(Xi,W) = Yi "as much as possible" for the training samples Xi
 - "as much as possible" needs to be defined
 - Training can be quite complex and time-consuming

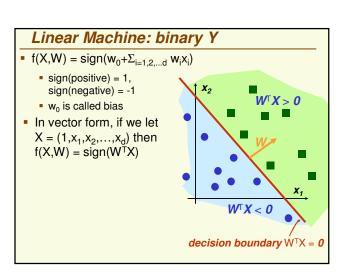
Linear Machine, Continuous Y

- f(X,W) = w₀+Σ_{i=1,2,...d} w_ix_i
 w₀ is called bias
- In vector form, if we let $X = (1,x_1,x_2,...,x_d)$, then $f(X,W) = W^TX$
 - notice abuse of notation, I made X=[1 X]
- This is standard linear regression (line fitting)
 - assume $L(X^{i}, Y^{i}, W) = || f(X^{i}, W) Y^{i} ||^{2}$
 - optimal W can be found by solving linear system of equations W* = [ΣXi (Xi)^T]-1 ΣYiXi

de x

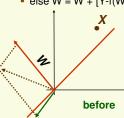
Loss Function

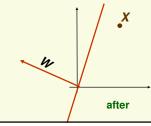
- How do we quantify what it means for the machine f(X,W) do well in the training and testing phases?
- f(X,W) has to be "close" to the true output on X
- Define Loss (or Error) function L
 - This is up to the designer (that is you)
- Typically first define per-sample loss L(Xⁱ,Yⁱ,W)
 - Some examples:
 - for classification, $L(X^i,Y^i,W) = I[f(X^i,W) \neq Y^i],$ where I[true] = 1, I[false] = 0
 - we just care if the sample has been classified correctly
 - For continuous Y, L(Xi,Yi,W) =|| f(Xi,W) -Yi ||², how far is the estimated output from the correct one?
- Then loss function $L = \Sigma_i L(X^i, Y^i, W)$
 - Number of missclassified example for classification
 - Sum of distances from the estimated output to the correct output



Perceptron Learning Procedure (Rosenblatt 1957)

- $f(X,W) = sign(w_0 + \Sigma_{i=1,2,...d} w_i x_i)$
- Let $L(X^i, Y^i, W) = I[f(X^i, W) \neq Y^i]$. How do we learn W?
- A solution:
- Iterate over all training samples
 - if f(X,W)=Y (correct label), do nothing
 - else W = W + $[Y-f(W^TX)]X$





Optimization

- Need to minimize a function of many variables $J(x) = J(x_1,...,x_d)$
- We know how to minimize J(x)
 - Take partial derivatives and set them to zero

$$\begin{bmatrix} \frac{\partial}{\partial x_1} J(x) \\ \vdots \\ \frac{\partial}{\partial x_d} J(x) \end{bmatrix} = \nabla J(x) = 0$$

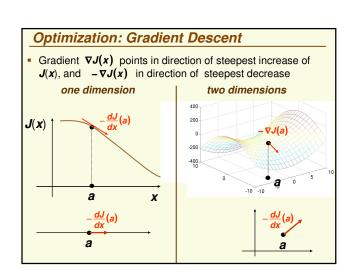
- However solving analytically is not always easy
 - Would you like to solve this system of nonlinear equations?

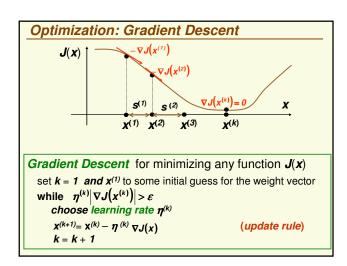
$$\begin{cases} \sin(x_1^2 + x_2^3) + e^{x_4^2} = 0\\ \cos(x_1^2 + x_2^3) + \log(x_3^3)^{x_4^2} = 0 \end{cases}$$

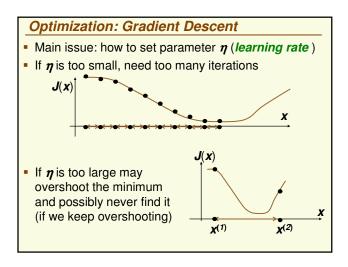
 Sometimes it is not even possible to write down an analytical expression for the derivative, we will see an example later today

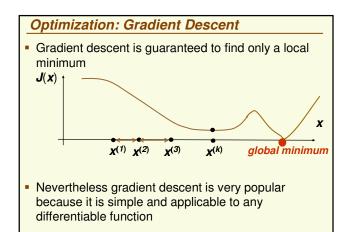
Perceptron Learning Procedure (Rosenblatt 1957)

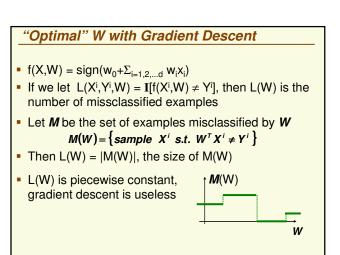
- Amazing fact: If the samples are linearly separable, the perceptron learning procedure will converge to a solution (separating hyperplane) in a finite amount of time
- Bad news: If the samples are not linearly separable, the perceptron procedure will not terminate, it will go on looking for a solution which does not exist!
- For most interesting problems the samples are not linearly separable
- Is there a way to learn W in non-separable case?
 - Remember, it's ok to have training error, so we don't have to have "perfect" classification









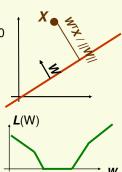


"Optimal" W with Gradient Descent

Better choice:

$$L(W) = \sum_{X^i \in M} \left(-W^T X^i \right) Y^i$$

- If Xⁱ is misclassified, (W^TXⁱ)Yⁱ ≤ 0
- Thus $L(W,X^i,Y^i) \ge 0$
- L(W,Xⁱ,Yⁱ) is proportional to the distance of misclassified example to the decision boundary
- L(W)=ΣL(W,Xⁱ,Yⁱ) is piecewise linear and thus suitable for gradient decent



Single Sample Rule

Thus gradient decent single sample rule for L(W) is:

$$W^{(k+1)} = W^{(k)} + \eta^{(k)}(XY)$$

- apply for any sample X misclassified by W^(k)
- must have a consistent way of visiting samples

Batch Rule

$$L(W, X^i, Y^i) = \sum_{X \in M} (-W^T X) Y$$

- Gradient of L is $\nabla L(W) = \sum_{X \in M} (-X)Y$
 - M are samples misclassified by W
 - It is not possible to solve $\nabla L(W) = 0$ analytically
- Update rule for gradient descent: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} \boldsymbol{\eta}^{(k)} \nabla J(\mathbf{x})$
- Thus gradient decent batch update rule for L(W) is:

$$W^{(k+1)} = W^{(k)} + \eta^{(k)} \sum_{Y \in M} XY$$

 It is called batch rule because it is based on all misclassified examples

Convergence

- If classes are linearly separable, and $\eta^{(k)}$ is fixed to a constant, i.e. $\eta^{(1)} = \eta^{(2)} = \dots = \eta^{(k)} = c$ (fixed learning rate)
 - both single sample and batch rules converge to a correct solution (could be any W in the solution space)
- If classes are not linearly separable:
 - Single sample algorithm does not stop, it keeps looking for solution which does not exist
 - However by choosing appropriate learning rate, heuristically stop algorithm at hopefully good stopping point

$$\eta^{(k)} \rightarrow 0$$
 as $k \rightarrow \infty$

• for example,

$$\eta^{(k)} = \frac{\eta^{(1)}}{k}$$

• for this learning rate convergence in the linearly separable case can also be proven

Learning by Gradient Descent

- Suppose we suspect that the machine has to have functional form f(X,W), not necessarily linear
- Pick differentiable per-sample loss function L(Xⁱ,Yⁱ,W)
- We need to find W that minimizes $L = \sum_i L(X^i, Y^i, W)$
- Use gradient-based minimization:
 - Batch rule: W = W $\eta \nabla L(W)$
 - Or single sample rule: W = W $\eta \nabla L(X^i, Y^i, W)$

Background Preparation for Paper

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - Optical Flow Field (related to motion field)
 - Correlation

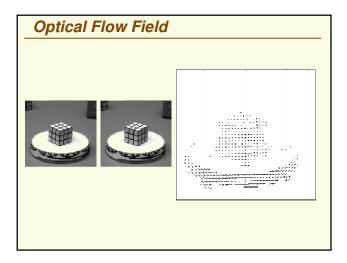
Important Questions

- How do we choose the feature vector X?
- How do we split labeled samples into training/testing sets?
- How do we choose the machine f(X,W)?
- How do we choose the loss function $L(X^i, Y^i, W)$?
- How do we find the optimal weights W?

Optical flow

- How to estimate pixel motion from image I_1 to image I_2 ?
 - Solve pixel correspondence problem
 - given a pixel in I₁, look for nearby pixels of the same color in I₂
- color in I₂

 Key assumptions
 - color constancy: a point in I₁ looks the same in I₂
 - For grayscale images, this is brightness constancy
 - small motion: points do not move very far
- This is called the optical flow problem



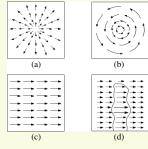
Motion Field (MF)

- The MF assigns a velocity vector to each pixel in the image
- These velocities are INDUCED by the RELATIVE MOTION between the camera and the 3D scene
- The MF is the <u>projection</u> of the 3D velocities on the image plane

Optical Flow and Motion Field

- Optical flow field is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
- Why does brightness change between frames?
- Assuming that illumination does not change:
 - changes are due to the RELATIVE MOTION between the scene and the camera
 - There are 3 possibilities:
 - Camera still, moving scene
 - Moving camera, still scene
 - Moving camera, moving scene

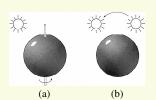
Examples of Motion Fields



(a) Translation perpendicular to a surface. (b) Rotation about axis perpendicular to image plane. (c) Translation parallel to a surface at a constant distance. (d) Translation parallel to an obstacle in front of a more distant background.

Optical Flow vs. Motion Field

- Recall that Optical Flow is the apparent motion of brightness patterns
- We equate Optical Flow Field with Motion Field
- Frequently works, but now always:



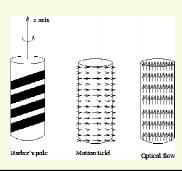
- (a) A smooth sphere is rotating under constant illumination. Thus the optical flow field is zero, but the motion field is not
- (b) A fixed sphere is illuminated by a moving source—the shading of the image changes. Thus the motion field is zero, but the optical flow field is not

Computing Optical Flow: Brightness Constancy Equation

- Let **P** be a moving point in 3D:
 - At time t, P has coordinates (X(t), Y(t), Z(t))
 - Let p=(x(t),y(t)) be the coordinates of its image at time t
 - Let E(x(t), y(t), t) be the brightness at p at time t.
- Brightness Constancy Assumption:
 - As P moves over time, E(x(t),y(t),t) remains constant

Optical Flow vs. Motion Field

 Often (but not always) optical flow corresponds to the true motion of the scene



Computing Optical Flow: Brightness Constancy Equation

$$E(x(t), y(t), t) = Constant$$

Taking derivative wrt time:

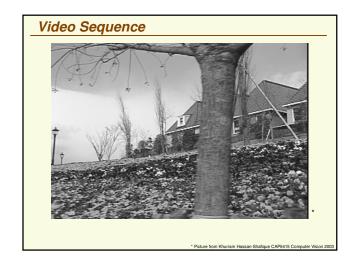
$$\frac{dE(x(t), y(t), t)}{dt} = 0$$

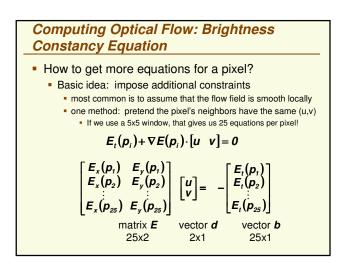
$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

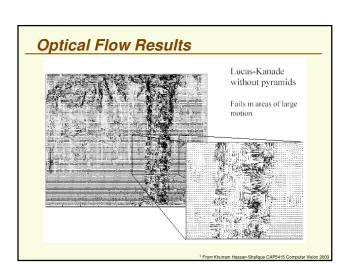
Computing Optical Flow: Brightness Constancy Equation

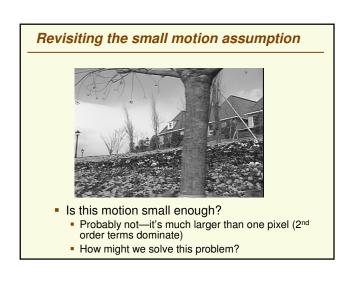
1 equation with 2 unknowns
$$\frac{\partial E}{\partial x} \frac{dx}{dt} + \frac{\partial E}{\partial y} \frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$
Let
$$\nabla E = \begin{bmatrix} \frac{\partial E}{\partial x} \\ \frac{\partial E}{\partial y} \end{bmatrix} \qquad \text{(Frame spatial gradient)}$$

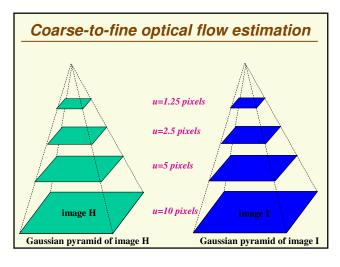
$$v = \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} \qquad \text{(optical flow)}$$
and
$$E_t = \frac{\partial E}{\partial t} \qquad \text{(derivative across frames)}$$

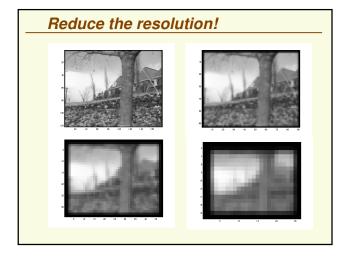




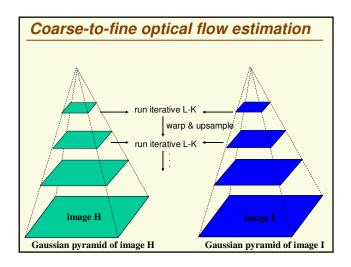


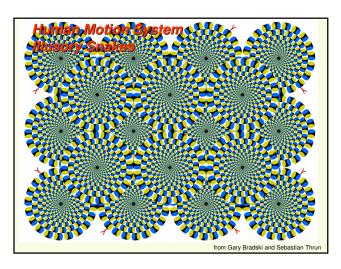


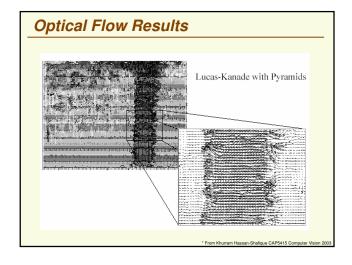




Iterative Lukas-Kanade Algorithm 1. Estimate velocity at each pixel by solving Lucas-Kanade equations 2. Warp H towards I using the estimated flow field - use image warping techniques 3. Repeat until convergence







Other Concepts to Review

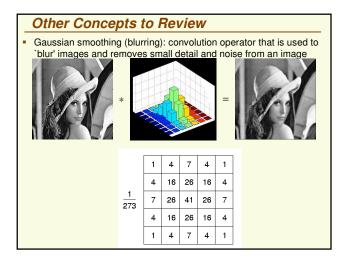
Convolution is the operation of applying a "kernel" to each pixel of an image

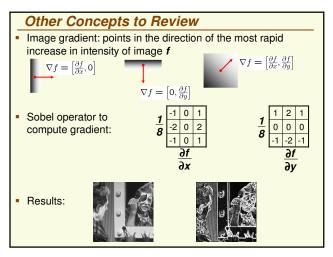
In	I 12	Ira	I 14	I 18	I ^{T9}	Itz	I 18	I19	
T21	T22	T 23	T 24	T ₂₅	T26	T27	T 28	T 29	K11 K12 K13 K21 K22 K23
I 31	I _{3Z}	I 33	134	Ізь	I:0	I37	I 38	I 39	
I 41	I 42	I 43	144	I45	I46	147	I 48	I49	
Ist	Isz	Iss	154	Iss	I.6	Isr	I se	Isy	
161	I 62	Iøs	164	Iáb	Loo	Ier	I ₆₈	I 69	

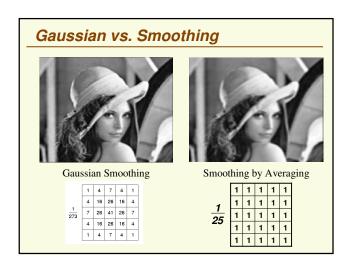
- Result of convolution has the same dimension as the image
- For example:

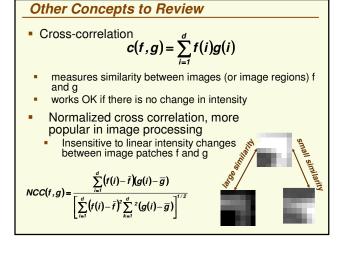
 $O_{57} = I_{57}K_{11} + I_{58}K_{12} + I_{58}K_{13} + I_{67}K_{21} + I_{68}K_{22} + I_{69}K_{23}$

Convolution is frequently denoted by *, for example I*K









Next Time

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
- When reading the paper, think about following:
 - Your discussion should have the following:
 - very short description of the problem paper tries to solve
 - What makes this problem difficult?
 - Short description of the method used in the paper to solve the problem
 - What is the contribution of the paper (what new does it do)?
 - Do the experimental results look "good" to you?