CS840a Fall 2006 Learning and Computer Vision Prof. Olga Veksler

Lecture 3

SVM

Information Theory (a little BIT) Some pictures from C. Burges

Today

- Support Vector Machines
- Mutual Information
- Preparation for the next time:
 - "Tiny images", A. Torralba, R. Furgus, W. Freeman
 - papers: "Object Recognition with Informative Features and Linear Classification" by M. Naquet and S. Ullman
 - Ignore section of tree-augmented network

SVM

- Said to start in 1979 with Vladimir Vapnik's paper
- Major developments throughout 1990's
- Elegant theory
 - Has good generalization properties
- Have been applied to diverse problems very successfully in the last 10-15 years
- One of the most important developments in pattern recognition in the last 10 years

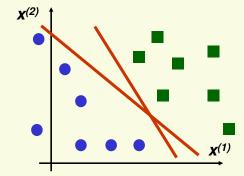
Linear Discriminant Functions

A discriminant function is linear if it can be written as

$$g(x) = w^t x + w_0$$

$$g(x) > 0 \Rightarrow x \in class 1$$

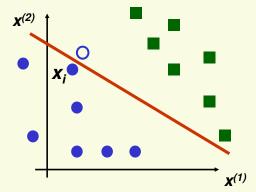
$$g(x) < 0 \Rightarrow x \in class 2$$



which separating hyperplane should we choose?

Linear Discriminant Functions

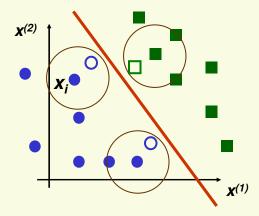
- Training data is just a subset of of all possible data
- Suppose hyperplane is close to sample x_i
- If we see new sample close to sample i, it is likely to be on the wrong side of the hyperplane



Poor generalization (performance on unseen data)

Linear Discriminant Functions

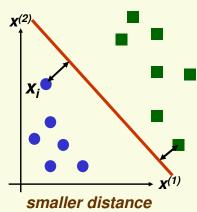
Hyperplane as far as possible from any sample

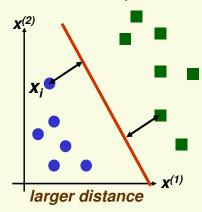


- New samples close to the old samples will be classified correctly
- Good generalization

SVM

Idea: maximize distance to the closest example

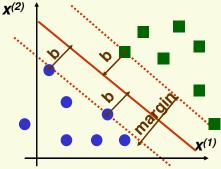




- For the optimal hyperplane
 - distance to the closest negative example = distance to the closest positive example

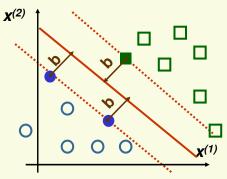
SVM: Linearly Separable Case

SVM: maximize the margin



- margin is twice the absolute value of distance b of the closest example to the separating hyperplane
- Better generalization (performance on test data)
 - in practice
 - and in theory

SVM: Linearly Separable Case

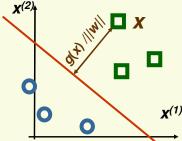


- Support vectors are the samples closest to the separating hyperplane
 - they are the most difficalt patterns to classify
 - Optimal hyperplane is completely defined by support vectors
 - of course, we do not know which samples are support vectors without finding the optimal hyperplane

SVM: Formula for the Margin

- $g(x) = w^t x + w_0$
- absolute distance between x and the boundary g(x) = 0

$$\frac{\left|\boldsymbol{w}^{t}\boldsymbol{x}+\boldsymbol{w}_{0}\right|}{\left\|\boldsymbol{w}\right\|}$$



distance is unchanged for hyperplane

$$\frac{\mathbf{g}_{1}(\mathbf{X}) = \alpha \mathbf{g}(\mathbf{X})}{\|\boldsymbol{\alpha}\mathbf{w}\|} = \frac{\left|\mathbf{w}^{t}\mathbf{x} + \boldsymbol{\alpha}\mathbf{w}_{0}\right|}{\|\mathbf{w}\|}$$

- Let x_i be an example closest to the boundary. Set $|w^t x_i + w_0| = 1$
- Now the largest margin hyperplane is unique

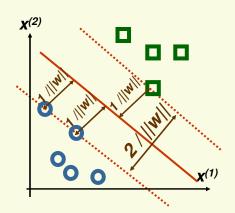
SVM: Formula for the Margin

- For uniqueness, set $|w^t x_i + w_0| = 1$ for any example x_i closest to the boundary
- now distance from closest sample x_i to g(x) = 0 is

$$\frac{\left| \boldsymbol{w}^t \boldsymbol{x}_i + \boldsymbol{w}_0 \right|}{\| \boldsymbol{w} \|} = \frac{1}{\| \boldsymbol{w} \|}$$

Thus the margin is

$$m = \frac{2}{\|\mathbf{w}\|}$$



SVM: Optimal Hyperplane

- Maximize margin $m = \frac{2}{\|w\|}$
 - subject to constraints

$$\begin{cases} w^t x_i + w_0 \ge 1 & \text{if } x_i \text{ is positive example} \\ w^t x_i + w_0 \le -1 & \text{if } x_i \text{ is negative example} \end{cases}$$

- Let $\begin{cases} z_i = 1 & \text{if } x_i \text{ is positive example} \\ z_i = -1 & \text{if } x_i \text{ is negative example} \end{cases}$
- Can convert our problem to

minimize
$$J(w) = \frac{1}{2} ||w||^2$$

constrained to $z_i (w^t x_i + w_0) \ge 1 \quad \forall i$

 J(w) is a quadratic function, thus there is a single global minimum

SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} x_{i}^{t} x_{j}$$
constrained to $\alpha_{i} \geq 0 \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} z_{i} = 0$

- $\alpha = \{\alpha_1, ..., \alpha_n\}$ are new variables, one for each sample
- Can rewrite $L_D(\alpha)$ using n by n matrix H:

$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}^{t} H \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}$$

• where the value in the *i*th row and *j*th column of H is $H_{ij} = \mathbf{z}_i \mathbf{z}_j \mathbf{x}_i^t \mathbf{x}_j$

SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i z_j x_i^t x_j$$

constrained to $\alpha_i \ge 0 \ \forall i \ and \ \sum_{i=1}^n \alpha_i z_i = 0$

- $\alpha = \{\alpha_1, ..., \alpha_n\}$ are new variables, one for each sample
- L_D(α) can be optimized by quadratic programming
- $L_D(\alpha)$ formulated in terms of α
 - it depends on w and w_o indirectly

SVM: Optimal Hyperplane

- After finding the optimal $\alpha = {\alpha_1, ..., \alpha_n}$
 - For every sample i, one of the following must hold
 - $\alpha_i = 0$ (sample *i* is not a support vector)
 - $\alpha_{i} \neq 0$ and $z_{i}(w^{t}x_{i}+w_{0}-1)=0$ (sample *i* is support vector)
 - can find **w** using $\mathbf{w} = \sum_{i=1}^{n} \alpha_{i} \mathbf{z}_{i} \mathbf{x}_{i}$
 - can solve for \mathbf{w}_0 using any $\alpha_i > 0$ and $\alpha_i [\mathbf{z}_i (\mathbf{w}^t \mathbf{x}_i + \mathbf{w}_0) 1] = 0$ $\mathbf{w}_0 = \frac{1}{\mathbf{z}_i} \mathbf{w}^t \mathbf{x}_i$
- Final discriminant function:

$$g(x) = \left(\sum_{x_i \in S} \alpha_i z_i x_i\right)^t x + w_0$$

where S is the set of support vectors

$$S = \{x_i \mid \alpha_i \neq 0\}$$

SVM: Optimal Hyperplane

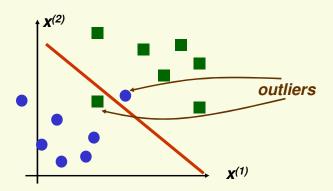
maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i z_j x_i^t x_j$$

constrained to
$$\alpha_i \ge 0 \ \forall i \ and \sum_{i=1}^n \alpha_i z_i = 0$$

- L_D(α) depends on the number of samples, not on dimension of samples
- samples appear only through the dot products $x_i^t x_i$
- This will become important when looking for a nonlinear discriminant function, as we will see soon
- Code available on the web to optimize

SVM: Non Separable Case

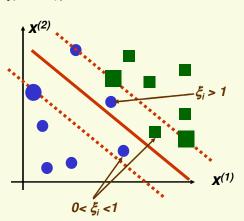
 Data is most likely to be not linearly separable, but linear classifier may still be appropriate



- Can apply SVM in non linearly separable case
 - data should be "almost" linearly separable for good performance

SVM: Non Separable Case

- Use non-negative slack variables $\xi_1, ..., \xi_n$ (one for each sample)
- Change constraints from $z_i(w^t x_i + w_o) \ge 1 \quad \forall i$ to $z_i(w^t x_i + w_o) \ge 1 \xi_i \quad \forall i$
- ξ_i is a measure of deviation from the ideal for sample i
 - ξ_i>1 sample i is on the wrong side of the separating hyperplane
 - 0< ξ_i<1 sample i is on the right side of separating hyperplane but within the region of maximum margin

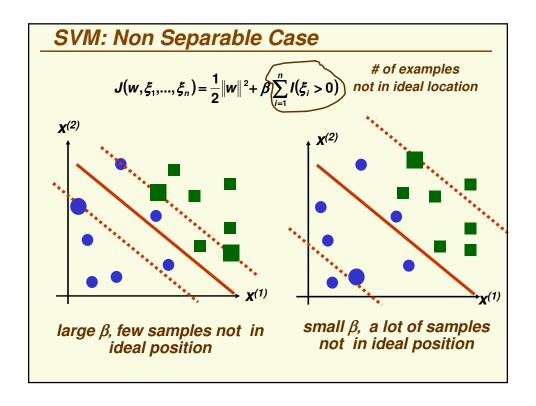


SVM: Non Separable Case

Would like to minimize

$$J(w,\xi_1,...,\xi_n) = \frac{1}{2} ||w||^2 + \beta \sum_{i=1}^n I(\xi_i > 0)$$
 # of samples not in ideal location

- where $I(\xi_i > 0) = \begin{cases} 1 & \text{if } \xi_i > 0 \\ 0 & \text{if } \xi_i \le 0 \end{cases}$
- constrained to $z_i(w^t x_i + w_0) \ge 1 \xi_i$ and $\xi_i \ge 0 \ \forall i$
- β is a constant which measures relative weight of the first and second terms
 - if β is small, we allow a lot of samples not in ideal position
 - if β is large, we want to have very few samples not in ideal positon



SVM: Non Separable Case

 Unfortunately this minimization problem is NP-hard due to discontinuity of functions I(ξ_i)

$$J(w,\xi_1,...,\xi_n) = \frac{1}{2} ||w||^2 + \beta \sum_{i=1}^n I(\xi_i > 0)$$
 # of examples not in ideal location

- where $I(\xi_i > 0) = \begin{cases} 1 & \text{if } \xi_i > 0 \\ 0 & \text{if } \xi_i \le 0 \end{cases}$
- constrained to $z_i(w^t x_i + w_0) \ge 1 \xi_i$ and $\xi_i \ge 0 \ \forall i$

SVM: Non Separable Case

Instead we minimize

$$J(w,\xi_1,...,\xi_n) = \frac{1}{2} ||w||^2 + \beta \sum_{i=1}^n \xi_i$$
a measure of of misclassified examples

- constrained to $\begin{cases} z_i (w^t x_i + w_0) \ge 1 \xi_i & \forall i \\ \xi_i \ge 0 & \forall i \end{cases}$
- Can use Kuhn-Tucker theorem to converted to

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j x_i^t x_j$$

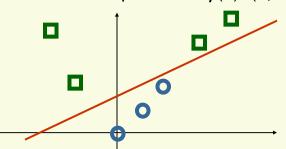
constrained to $0 \le \alpha_i \le \beta \quad \forall i \quad and \quad \sum_{i=1}^n \alpha_i z_i = 0$

- find \mathbf{w} using $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{z}_i \mathbf{x}_i$
- solve for \mathbf{w}_0 using any $0 < \alpha_i < \beta$ and $\alpha_i [\mathbf{z}_i (\mathbf{w}^t \mathbf{x}_i + \mathbf{w}_0) 1] = 0$

Non Linear Mapping

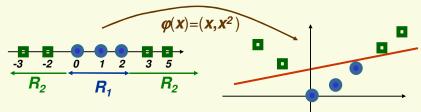
- Cover's theorem:
 - "pattern-classification problem cast in a high dimensional space non-linearly is more likely to be linearly separable than in a low-dimensional space"
- One dimensional space, not linearly separable

• Lift to two dimensional space with $\varphi(\mathbf{x}) = (\mathbf{x}, \mathbf{x}^2)$



Non Linear Mapping

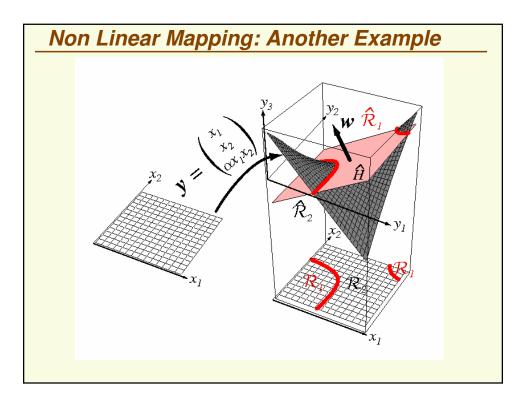
- To solve a non linear classification problem with a linear classifier
 - 1. Project data x to high dimension using function $\varphi(x)$
 - 2. Find a linear discriminant function for transformed data $\varphi(x)$
 - 3. Final nonlinear discriminant function is $g(x) = w^t \varphi(x) + w_0$



In 2D, discriminant function is linear

$$g\left(\begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix}\right) = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix} + \mathbf{W}_0$$

In 1D, discriminant function is not linear $g(x) = w_1 x + w_2 x^2 + w_0$



Non Linear SVM

- Can use any linear classifier after lifting data into a higher dimensional space. However we will have to deal with the "curse of dimensionality"
 - 1. poor generalization to test data
 - 2. computationally expensive
- SVM avoids the "curse of dimensionality" problems by
 - 1. enforcing largest margin permits good generalization
 - It can be shown that generalization in SVM is a function of the margin, independent of the dimensionality
 - 2. computation in the higher dimensional case is performed only implicitly through the use of *kernel* functions

Non Linear SVM: Kernels

- Note this optimization depends on samples x_i only through the dot product x_i^tx_i
- If we lift x_i to high dimension using $\varphi(x)$, need to compute high dimensional product $\varphi(x_i)^t \varphi(x_i)$

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_j z_j \varphi(x_i)^t \varphi(x_j)$$

$$K(x_i, x_j)$$

Idea: find **kernel** function $K(x_i, x_j)$ s.t.

$$K(x_i,x_j) = \varphi(x_i)^t \varphi(x_j)$$

Non Linear SVM: Kernels

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j \varphi(x_i)^t \varphi(x_j)$$

- Then we only need to compute $K(x_i, x_j)$ instead of $\varphi(x_i)^t \varphi(x_i)$
 - "kernel trick": do not need to perform operations in high dimensional space explicitly

Non Linear SVM: Kernels

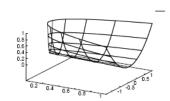
- Suppose we have 2 features and $K(x,y) = (x^ty)^2$
- Which mapping $\varphi(x)$ does it correspond to?

$$K(x,y) = (x^{t}y)^{2} = \left(\begin{bmatrix} x^{(1)} & x^{(2)} \end{bmatrix} \begin{bmatrix} y^{(1)} \\ y^{(2)} \end{bmatrix} \right)^{2} = (x^{(1)}y^{(1)} + x^{(2)}y^{(2)})^{2}$$

$$= (x^{(1)}y^{(1)})^{2} + 2(x^{(1)}y^{(1)})(x^{(2)}y^{(2)}) + (x^{(2)}y^{(2)})^{2}$$

$$= \left[(x^{(1)})^{2} \quad \sqrt{2}x^{(1)}x^{(2)} \quad (x^{(2)})^{2} \right] \left[(y^{(1)})^{2} \quad \sqrt{2}y^{(1)}y^{(2)} \quad (y^{(2)})^{2} \right]^{t}$$

Thus $\varphi(x) = \left[(x^{(1)})^2 \sqrt{2} x^{(1)} x^{(2)} (x^{(2)})^2 \right]$



Non Linear SVM: Kernels

- How to choose kernel function $K(x_i, x_j)$?
 - $K(x_i, x_j)$ should correspond to product $\varphi(x_i)^t \varphi(x_j)$ in a higher dimensional space
 - Mercer's condition tells us which kernel function can be expressed as dot product of two vectors
 - Kernel's not satisfying Mercer's condition can be sometimes used, but no geometrical interpretation
- Some common choices (satisfying Mercer's condition):
 - Polynomial kernel $K(x_i, x_j) = (x_i^t x_j + 1)^p$
 - Gaussian radial Basis kernel (data is lifted in infinite dimension)

$$K(x_i, x_j) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - x_j||^2\right)$$

Non Linear SVM

- search for separating hyperplane in high dimension $w\varphi(x) + w_0 = 0$
- Choose $\varphi(\mathbf{x})$ so that the first ("0"th) dimension is the augmented dimension with feature value fixed to 1

$$\varphi(x) = \begin{bmatrix} 1 & x^{(1)} & x^{(2)} & x^{(1)}x^{(2)} \end{bmatrix}^{t}$$

Threshold parameter \mathbf{w}_0 gets folded into the weight vector \mathbf{w}

Non Linear SVM

• Will not use notation $\mathbf{a} = [\mathbf{w_0} \ \mathbf{w}]$, we'll use old notation \mathbf{w} and seek hyperplane through the origin

$$w\varphi(x)=0$$

- If the first component of $\varphi(x)$ is not 1, the above is equivalent to saying that the hyperplane has to go through the origin in high dimension
 - removes only one degree of freedom
 - But we have introduced many new degrees when we lifted the data in high dimension

Non Linear SVM Recepie

- Start with data x₁,...,x_n which lives in feature space of dimension d
- Choose kernel $K(x_i, x_j)$ or function $\varphi(x_i)$ which takes sample x_i to a higher dimensional space
- Find the largest margin linear discriminant function in the higher dimensional space by using quadratic programming package to solve:

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j K(x_i, x_j)$$

constrained to $0 \le \alpha_i \le \beta \ \forall i \ and \sum_{i=1}^n \alpha_i z_i = 0$

Non Linear SVM Recipe

Weight vector w in the high dimensional space:

$$w = \sum_{x_i \in S} \alpha_i z_i \varphi(x_i)$$

- where **S** is the set of support vectors $S = \{x_i \mid \alpha_i \neq 0\}$
- Linear discriminant function of largest margin in the high dimensional space:

$$g(\varphi(x)) = w^t \varphi(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x)$$

Non linear discriminant function in the original space

$$g(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x) = \sum_{x_i \in S} \alpha_i z_i \varphi^t(x_i) \varphi(x) = \sum_{x_i \in S} \alpha_i z_i K(x_i, x)$$

• decide class 1 if g(x) > 0, otherwise decide class 2

Non Linear SVM

Nonlinear discriminant function

$$g(x) = \sum_{x_i \in S} \alpha_i z_i K(x_i, x)$$

$$g(x) = \sum_{x \in X} g(x)$$

weight of support vector **x**_i

∓1

"inverse distance" from **x** to support vector **x**_i

most important training samples, i.e. support vectors

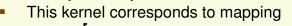
$$K(x_i,x) = \exp\left(-\frac{1}{2\sigma^2}||x_i-x||^2\right)$$

SVM Example: XOR Problem

• Class 1:
$$\mathbf{x_1} = [1,-1], \ \mathbf{x_2} = [-1,1]$$

• Class 2:
$$\mathbf{x_3} = [1,1], \mathbf{x_4} = [-1,-1]$$

- Use polynomial kernel of degree 2:
 - $K(x_i, x_i) = (x_i^t x_i + 1)^2$



$$\varphi(x) = \begin{bmatrix} 1 & \sqrt{2}x^{(1)} & \sqrt{2}x^{(2)} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(1)})^2 & (x^{(2)})^2 \end{bmatrix}$$

Need to maximize

$$L_{D}(\alpha) = \sum_{i=1}^{4} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{i} z_{j} z_{j} (x_{i}^{t} x_{j} + 1)^{2}$$

constrained to $0 \le \alpha_i \ \forall i \ and \ \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4 = 0$

SVM Example: XOR Problem

- Can rewrite $L_D(\alpha) = \sum_{i=1}^4 \alpha_i \frac{1}{2} \alpha^t H \alpha$ where $\alpha = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]^t$ and $H = \begin{bmatrix} 9 & 1 & -1 & -1 \\ 1 & 9 & -1 & -1 \\ -1 & -1 & 9 & 1 \\ -1 & -1 & 1 & 9 \end{bmatrix}$
- Take derivative with respect to α and set it to $\boldsymbol{0}$

$$\frac{d}{da}L_{D}(\alpha) = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} 9 & 1 & -1 & -1\\1 & 9 & -1 & -1\\-1 & -1 & 9 & 1\\-1 & -1 & 1 & 9 \end{bmatrix} \alpha = 0$$

- Solution to the above is $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.25$
 - satisfies the constraints $\forall i$, $0 \le \alpha_i$ and $\alpha_1 + \alpha_2 \alpha_3 \alpha_4 = 0$
 - all samples are support vectors

SVM Example: XOR Problem

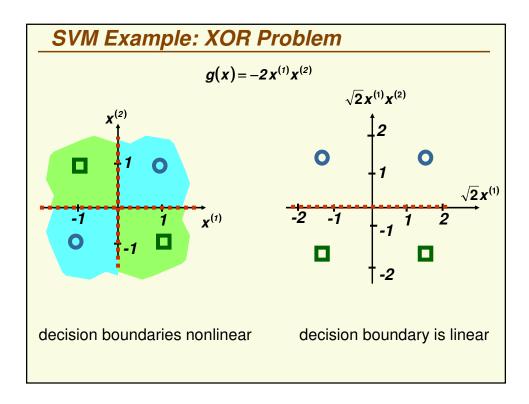
$$\varphi(x) = \begin{bmatrix} 1 & \sqrt{2}x^{(1)} & \sqrt{2}x^{(2)} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(1)})^2 & (x^{(2)})^2 \end{bmatrix}^{T}$$

Weight vector w is:

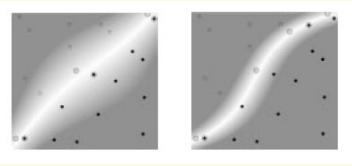
$$w = \sum_{i=1}^{4} \alpha_i z_i \varphi(x_i) = 0.25(\varphi(x_1) + \varphi(x_2) - \varphi(x_3) - \varphi(x_4))$$
$$= \begin{bmatrix} 0 & 0 & 0 & -\sqrt{2} & 0 & 0 \end{bmatrix}$$

Thus the nonlinear discriminant function is:

$$g(x) = w\varphi(x) = \sum_{i=1}^{6} w_i \varphi_i(x) = -\sqrt{2} \left(\sqrt{2} x^{(1)} x^{(2)} \right) = -2 x^{(1)} x^{(2)}$$



Degree 3 Polynomial Kernel



- In linearly separable case (on the left), decision boundary is roughly linear, indicating that dimensionality is controlled
- Nonseparable case (on the right) is handled by a polynomial of degree 3

SVM Summary

- Advantages:
 - Based on nice theory
 - excellent generalization properties
 - objective function has no local minima
 - can be used to find non linear discriminant functions
 - Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space
- Disadvantages:
 - tends to be slower than other methods
 - quadratic programming is computationally expensive
 - Not clear how to choose the Kernel

Information theory

- Information Theory regards information as only those symbols that are uncertain to the receiver
 - only infrmatn esentil to understnd mst b tranmitd
- Shannon made clear that uncertainty is the very commodity of communication
- The amount of information, or uncertainty, output by an information source is a measure of its entropy
- In turn, a source's entropy determines the amount of bits per symbol required to encode the source's information
- Messages are encoded with strings of 0 and 1 (bits)

Information theory

- Suppose we toss a fair die with 8 sides
 - need 3 bits to transmit the results of each toss
 - 1000 throws will need 3000 bits to transmit
- Suppose the die is biased
 - side A occurs with probability 1/2, chances of throwing B are 1/4, C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
 - Encode A= 0, B = 10, C = 110, D = 1110,..., so on until G = 11111110, H = 11111111
 - We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128
 = 1.984 bits to encode results of a toss
 - 1000 throws require 1984 bits to transmit
 - Less bits to send = less "information"
 - Biased die tosses contain less "information" than unbiased die tosses (know in advance biased sequence will have a lot of A's)
 - What's the number of bits in the best encoding?
- Extreme case: if a die always shows side A, a sequence of 1,000 tosses has no information, 0 bits to encode

Information theory

- if a die is fair (any side is equally likely, or uniform distribution), for any toss we need log(8) = 3 bits
- Suppose any of n events is equally likely (uniform distribution)
 - P(x) = 1/n, therefore $-\log P = -\log(1/n) = \log n$
- In the "good" encoding strategy for our biased die example, every side x has -log p(x) bits in its code
- Expected number of bits is

$$-\sum_{x}p(x)\log p(x)$$

Shannon's Entropy

$$H[p(x)] = -\sum_{x} p(x) \log p(x) = \sum_{x} p(x) \log \frac{1}{p(x)}$$

- How much randomness (or uncertainty) is there in the value of signal x if it has distribution p(x)
 - For uniform distribution (every event is equally likely), H[x] is maximum
 - If p(x) = 1 for some event x, then H[x] = 0
 - Systems with one very common event have less entropy than systems with many equally probable events
- Gives the expected length of optimal encoding (in binary bits) of a message following distribution p(x)
 - doesn't actually give this optimal encoding

Conditional Entropy of X given Y

$$H[x \mid y] = \sum_{x,y} p(x,y) \log \frac{1}{p(x \mid y)} = -\sum_{x,y} p(x,y) \log p(x \mid y)$$

- Measures average uncertainty about x when y is known
- Property:
 - H[x] ≥ H[x|y], which means after seeing new data (y), the uncertainty about x is not increased, on average

Mutual Information of X and Y

$$I[x,y] = H(x) - H(x \mid y)$$

- Measures the average reduction in uncertainty about x after y is known
- or, equivalently, it measures the amount of information that y conveys about x
- Properties
 - I(x,y) = I(y,x)
 - $I(x,y) \ge 0$
 - If x and y are independent, then I(x,y) = 0
 - I(x,x) = H(x)

MI for Feature Selection

$$I[x,c]=H(c)-H(c|x)$$

- Let x be a proposed feature and c be the class
- If I[x,c] is high, we can expect feature x be good at predicting class c