SVM
= Said to start in 1979 with Vladimir
Vapnik’s paper
CS840a = Major developments throughout
Fall 2006 1990’s
Learning and Computer Vision = Elegant theory
Prof. Olga Veksler = Has good generalization properties
= Have been applied to diverse
Lecture 3 problems very successfully in the last
SVM 10-15 years
Information Theory (a little BIT) = One of the most important
Some pictures from C. Burges developments in pattern recognition
in the last 10 years

Linear Discriminant Functions

Today

= A discriminant function is linear if it can be written as
= Support Vector Machines g(x) = wix + w,

= Mutual Information olx)>9 pxecass?
= Preparation for the next time:

= “Tiny images”, A. Torralba, R. Furgus, W.
Freeman
= papers: “Object Recognition with Informative
Features and Linear Classification” by M. Naquet
and S. Ullman
= |gnore section of tree-augmented network

= which separating hyperplane should we choose?




= |f we see new sample close to sample i, it is likely
to be on the wrong side of the hyperplane

= Poor generalization (performance on unseen data)

Linear Discriminant Functions SV
= Training data is just a subset of of all possible data = |dea: maximize distance to the closest example
= Suppose hyperplane is close to sample x; X2 [ |

larger distance

smaller distance

= For the optimal hyperplane

= distance to the closest negative example = distance to
the closest positive example

Linear Discriminant Functions

= Hyperplane as far as possible from any sample

X

S

= New samples close to the old samples will be
classified correctly

= Good generalization

SVM: Linearly Separable Case

= SVM: maximize the margin
X2

= margin is twice the absolute value of distance b of
the closest example to the separating hyperplane
= Better generalization (performance on test data)
= in practice
= and in theory




SVM: Linearly Separable Case

x@

= Support vectors are the samples closest to the
separating hyperplane

= they are the most difficalt patterns to classify

= Optimal hyperplane is completely defined by support vectors

= of course, we do not know which samples are support vectors without
finding the optimal hyperplane

SVM: Formula for the Margin

= For uniqueness, set |w'x, +w,|=1 for any example
X; closest to the boundary

= now distance from closest sample x;to g(x) = 0 is
‘w'x,.+w0‘ 1

[wi ~[w] x@

= Thus the margin is
2

|wi

SVM: Formula for the Margin

g(x) =wix + w,

absolute distance between x
and the boundary g(x) = 0
W' x +w,|
w

distance is unchanged for hyperplahe
g+(x)=0g(x)

law'x +aw,| _|w'x+w,|

lawl v
Let x; be an example closest to the boundary. Set
‘W'Xi +Wo‘ =1

Now the largest margin hyperplane is unique

SVM: Optimal Hyperplane

= Maximize margin m=

_ _ |wi
= subject to constraints
w'x,+w, 21 if x, is positive example
w'x; +w, <1 if x; is negative example

» Let [2=1 If x;is positive example
z,=-1 if x, is negative example

= Can convert our problem to

minimize J(w)=%HwH2

constrained to  z(w'x, +w,)21 vi

= J(w) is a quadratic function, thus there is a single
global minimum




SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

4@;Z,Z, X[ X;

n n
maximize  Ly(@)=Ya, —%Z
i=1

n
=] =

@20 Vi and Y @z,=0

i=1

constrained to

* a={ay,..., &,;} are new variables, one for each sample
= Can rewrite Ly(a@) using n by n matrix H:

7 o [a
wa-ge-tfZ 0]

= where the value in the ith row and jth column of His

t
H; =2z,x;x;

SVM: Optimal Hyperplane

= After finding the optimal & = {a;,..., a,}
= For every sample i, one of the following must hold
= a;=0 (sample i is not a support vector)
= ;20 and z{(wix;+w,- 1) = 0 (sample i is support vector)
= can find wusing w=Y azx,
= can solve for w, using any > 0 and a|z,(w'x, +w,)-1]=0
Wy =—-w'x;
= Final discriminant function:
t
g(x)= ( Zaizixij X+w,
x;eS
= where S'is the set of support vectors
S={Xi |a; *0}

SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

0,22, XX,

n n
maximize  Ly(@)=Ya, —%Z
i=1

n
=] =

@20 Vi and Y @z,=0

i=1

constrained to

* a={ay,..., &,;} are new variables, one for each sample

L(a@) can be optimized by quadratic programming

Ly(a) formulated in terms of @
= it depends on wand w,indirectly

SVM: Optimal Hyperplane

n n n
maximize Ly(@)=) e —%ZZa,.a,z,z,x,’x,
i=1

i=1 j=1

@20 Vi and Y @z,=0

i=1

constrained to

L(a) depends on the number of samples, not on
dimension of samples

= samples appear only through the dot products x;x;
= This will become important when looking for a

nonlinear discriminant function, as we will see soon
= Code available on the web to optimize




SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate

x@
| ]
m N
[ |
‘/-/——”.
® outliers
b n

x

= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance

SVM: Non Separable Case
= Would like to minimize

- # of samples
[ (7 EHWH 24 B not in ideal location

1 if&>0
0 if £<0

= constrainedto z(w'x, +w,)21-¢ and £20 Vi

= Pis a constant which measures relative weight of the
first and second terms
= if Bis small, we allow a lot of samples not in ideal position
= jf ,B'.is large, we want to have very few samples not in ideal
positon

= where I > 0)={

SVM: Non Separable Case

= Use non-negative slack variables &,,..., &, (one for
each sample)

= Change constraints from  z(w'x,+w,)21 Vi to
z,.(w’x,.+wo)21—§,. Vi

= & is a measure of
deviation from the ideal
for sample i %
= &>1 sample i is on the wrong
side of the separating
hyperplane
0< & <1 sample i is on the
right side of separating
hyperplane but within the
region of maximum margin

SVM: Non Separable Case

1 # of examples
JWw,¢&,,...E,) = EHWH 4+ B not in ideal location

x@ e

X(1)

large B, few samples not in small B, a lot of samples
ideal position not in ideal position




SVM: Non Separable Case

= Unfortunately this minimization problem is NP-hard
due to discontinuity of functions I(&)

1 # of examples
JW, ... &)= E |wi*+ B not in ideal location

= where I(§,>0)={(1, ;; ?Zg

= constrainedto z(w'x, +w,)21-¢& and &3>0 vi

Non Linear Mapping

= Cover’s theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space”

= One dimensional space, not linearly separable
kBB
-3 -2 012 3 5
= Lift to two dimensional space with ¢(x)=(x,x?)

o o2
= (o]
(o)
©
SVM: Non Separable Case Non Linear Mapping

= Instead we minimize ]
a measure o
JW,&,,rn8,) = %HWH 2, of misclassified
examples

. q z,.(w'x,.+wo)21—§,. Vi
constrained to {é,- >0 vi

= Can use Kuhn-Tucker theorem to converted to

n

maximize  Lp(a)=3a, —%Zzn:a,.a.z.z.x.'x
i=1

i€i%jXi X
i=1 j=1

constrained to

O<q,<p Vi and Y @z,=0
i=1

n
= find wusing w=Y azXx

i=1

= solve for w, using any 0 <a;< B and a[z,(w'x, +w,)-1]=0

= To solve a non linear classification problem with a
linear classifier

1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

Px)=(X,x?)

=|n 2D, discriminant function is linear
) (1)
X X
g [X(Z):D = [W, WZ][X(Z)] +W,

=In 1D, discriminant function is not linear ~ g(x)=w,x+w,x* +w,




Non Linear Mapping: Another Example

Non Linear SVM: Kernels

Recall SVM optimization

n n
maximize Ly(@)=Y.a -2 Y aaz.zxx;
i=1 j=1

1 n
24

= Note this optimization depends on samples x; only
through the dot product x'x;

= If we lift x; to high dimension using ¢(x), need to

compute high dimensional product ¢(x;)'e(x;)

o 2 1o
maximize LD(a)=Z‘:a,—EZZa,-a,z,z,

= j=1

= Idea: find kernel function K{x; X)) s.t.
K(x,x) = (x)'@(x))

Non Linear SVM

= Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to
deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

= SVM avoids the “curse of dimensionality” problems by

1. enforcing largest margin permits good generalization
= It can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality
2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions

Non Linear SVM: Kernels

maximize Ly(a)= iz::a,- —%z":ia,.a,.z,.z 0

= j=1

= Then we only need to compute K{x;x)) instead of

Px)'p(x)
= “kernel trick”: do not need to perform operations in high
dimensional space explicitly




Non Linear SVM: Kernels

= Suppose we have 2 features and K(x,y) = (xty)?

= Which mapping ¢(x) does it correspond to?

2
K(x,y)=(x'yf= [[X“’ x‘”][}’f((;;]} (xDy® 4 x@y @

= (xOyOF 4 2(xOy O ) x Dy @) (x@y
=[(X(1))2 J2x0x@ (X(z))zn(ym)z J2yhy® (y(z))zlt

= Thus
¢(X)=[(X<1))2 J2xDx@ (X<z))2]

Non Linear SVM

search for separating hyperplane in high dimension
wo(x)+w, =0

Choose ¢(x) so that the first (“0"th) dimension is the
augmented dimension with feature value fixed to 1

p(x)=[1 x x® xOx@F

Threshold parameter w, gets folded into the weight
vector w

[wo w =0

Non Linear SVM: Kernels

= How to choose kernel function K{x; x;)?
= Kix;x) should correspond to product g(x)'¢(x;) in a
higher dimensional space

= Mercer’s condition tells us which kernel function can be
expressed as dot product of two vectors

= Kernel’s not satisfying Mercer’s condition can be
sometimes used, but no geometrical interpretation
= Some common choices (satisfying Mercer’s
condition):
= Polynomial kernel  K(x,,x,)=(x!x, +1)°

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)

K(x,,x,):exp(—%'zux,. - Xin]

Non Linear SVM

Will not use notation a =[w, w], we'll use old
notation w and seek hyperplane through the origin

wo(x)=0

If the first component of ¢(x) is not 17, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension
= removes only one degree of freedom

= But we have introduced many new degrees when we lifted
the data in high dimension




Non Linear SVM Recepie

Start with data x;,...,x, which lives in feature space
of dimension d

Choose kernel K(x;x;) or function ¢(x;) which takes
sample x; to a higher dimensional space

Find the largest margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

i=1

maximize LD(a)=Z":a,-—%z":zn:a,.a,z,.z,K(x,.,x,)
i=1 =1

constrainedto 0s<e,<f Vi and Y @z =0
i=1

Non Linear SVM

Nonlinear discriminant function

o(0)= X, [a]z]

Xx;eS

K(x;, x)

g0)=3 [

most important
_training samples,
i.e. support vectors

inverse distance”
from x to
support vector Xx;

K(x;,x)

1 2
= exp(—ng,. - x|

Non Linear SVM Recipe
=  Weight vector win the high dimensional space:

w= Zaizidxi)
x;eS

= where Sis the set of support vectors S={x, | @, #0}

= Linear discriminant function of largest margin in the
high dimensional space:

S ) =(zafz,-¢(xf)] olx)

x;eS

= Non linear discriminant function in the original space

g(x)=( xZSa,-Zm(Xi)] o) = Taze/(x)olx) = Tz, )

€S

= decide class 1 if g (x) > 0, otherwise decide class 2

SVM Example: XOR Problem

Class 1: %, = [1,-1], X, = [-1,1]
Class 2: xg = [1,1], X4 = [-1,-1]
Use polynomial kernel of degree 2:

= K(x,x) = (x;'x;+ 1)2

= This kernel corresponds to mapping

¢(x)=[1 J2x0 J2x® [2x0x@ (xOF (x<2))2]'

Need to maximize

.
L@=Ya-1
i=1

o | O

4 4
Y aazz; (x,?x,. + 1)2

i=1 j=t

constrainedto 0<q, Vi and a,+a-a,-a, =0




SVM Example: XOR Problem

4
Canrewrite Ly(@)=)« -%a’Ha
i=1

9 1 -1 -1
* where ea=[g @ & &] and H=|:_} 3 —3 —]}
-1-1 1 9

Take derivative with respect to ezand setitto 0

NICEEE
dale@=]1]-|-1 -1 "9 “q|@=0

1 [-1-1 1 9

Solution to the above is &= @, = a3 = a; = 0.25
= gatisfies the constraints Vi, 0<a; and e, +a, -, -, =0
= all samples are support vectors

SVM Example: XOR Problem

g(x)=-2x"x®
L2x0x@
x®

42
o o

o i’ o 1y

J2x
-1 1 X0 2 1 ] ; 1 2

o .7 O ’
1-1 o o

T-2

decision boundaries nonlinear decision boundary is linear

SVM Example: XOR Problem

¢(X)=[| J2x® 2x® J2x0x® (xOF (X(z))Z]'

Weight vector wis:
w=_2aizi¢(xi) =0.25(¢(X,)+¢(X2)—¢(X3)—¢(X4))
_ =lo oo -vz 0 9
Thus the nonlinear discriminant function is:

9()=wo(x) = 3w (x) = —Z(/Zxx(2) = ~2xOx

Degree 3 Polynomial Kernel

= Inlinearly separable case (on the left), decision
boundary is roughly linear, indicating that
dimensionality is controlled

= Nonseparable case (on the right) is handled by a
polynomial of degree 3

10



SVM Summary

Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

= Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

Disadvantages:
= tends to be slower than other methods
= quadratic programming is computationally expensive
= Not clear how to choose the Kernel

Information theory

= Suppose we toss a fair die with 8 sides

= need 3 bits to transmit the results of each toss

= 1000 throws will need 3000 bits to transmit
= Suppose the die is biased

= side A occurs with probability 1/2, chances of throwing B are 1/4,
C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
Encode A=0,B=10,C =110, D =1110,..., so on until G =
1111110, H= 1111111

We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128
= 1.984 bits to encode results of a toss

1000 throws require 1984 bits to transmit
Less bits to send = less “information”

Biased die tosses contain less “information” than unbiased die
tosses (know in advance biased sequence will have a lot of A’s)

What'’s the number of bits in the best encoding?

= Extreme case: if a die always shows side A, a sequence of
1,000 tosses has no information, O bits to encode

Information theory

= Information Theory regards information as only those
symbols that are uncertain to the receiver

only infrmatn esentil to understnd mst b tranmitd

= Shannon made clear that uncertainty is the very commodity
of communication

= The amount of information, or uncertainty, output by an
information source is a measure of its entropy

= Inturn, a source's entropy determines the amount of bits per
symbol required to encode the source's information

= Messages are encoded with strings of 0 and 1 (bits)

Information theory

= if a die is fair (any side is equally likely, or uniform distribution),
for any toss we need log(8) = 3 bits
= Suppose any of n events is equally likely (uniform distribution)
= P(x) = 1/n, therefore -log P = -log(1/n) = log n
= In the “good” encoding strategy for our biased die example,
every side x has -log p(x) bits in its code
= Expected number of bits is

- p(x)log p(x)

11



Shannon’s Entropy

Hlp(x)]= -3 p(x)iog p(x)= T p(x)log s

= How much randomness (or uncertainty) is there in the value
of signal x if it has distribution p(x)
= For uniform distribution (every event is equally likely), H[x] is
maximum
= If p(x) = 1 for some event x, then H[x] = 0
= Systems with one very common event have less entropy than
systems with many equally probable events
= Gives the expected length of optimal encoding (in binary
bits) of a message following distribution p(x)
= doesn’t actually give this optimal encoding

Mutual Information of Xand Y

I[x,y]= H(x)-H(x | y)

= Measures the average reduction in uncertainty
about x after y is known
= or, equivalently, it measures the amount of
information that y conveys about x
= Properties
= 1(xy) = I(y,X)
= (x,y) 20
= |f x and y are independent, then I(x,y) = 0
= |(x,x) = H(x)

Conditional Entropy of X given Y

Hlx|yl=3 p(x, y)logﬁ ==Y p(x,y)log p(x | y)

x|y

= Measures average uncertainty about x when
y is known
= Property:
= H[x] = H[x|y], which means after seeing new

data (y), the uncertainty about x is not
increased, on average

MiI for Feature Selection

I[x,c]=H(c)-H(c|x)

= Let x be a proposed feature and ¢ be the
class

= If I[x,c] is high, we can expect feature x be
good at predicting class ¢
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