CS840a Learning and Computer Vision Prof. Olga Veksler

Lecture 4

Curse of Dimensionality,
Dimensionality Reduction with PCA

Today

- Problems of high dimensional data, "the curse of dimensionality"
 - running time
 - overfitting
 - number of samples required
- Dimensionality Reduction Methods
 - Principle Component Analysis (today)

Curse of Dimensionality: Complexity

- Complexity (running time) increases with dimension d
- A lot of methods have at least O(nd²) complexity, where n is the number of samples
 - For example if we need to estimate covariance matrix
- So as **d** becomes large, O(**nd**²) complexity may be too costly

Curse of Dimensionality: Number of Samples

- Suppose we want to use the nearest neighbor approach with k = 1 (1NN)
- Suppose we start with only one feature

- This feature is not discriminative, i.e. it does not separate the classes well
- We decide to use 2 features. For the 1NN method to work well, need a lot of samples, i.e. samples have to be dense
- To maintain the same density as in 1D (9 samples per unit length), how many samples do we need?

 We need 9² samples to maintain the same density as in 1D

Curse of Dimensionality: Number of Samples

 Of course, when we go from 1 feature to 2, no one gives us more samples, we still have 9

This is way too sparse for 1NN to work well

Curse of Dimensionality: Number of Samples

Things go from bad to worse if we decide to use 3 features:

If 9 was dense enough in 1D, in 3D we need 93=729 samples!

Curse of Dimensionality: Number of Samples

- In general, if n samples is dense enough in 1D
- Then in d dimensions we need nd samples!
- And n^d grows really really fast as a function of d
- Common pitfall:
 - If we can't solve a problem with a few features, adding more features seems like a good idea
 - However the number of samples usually stays the same
 - The method with more features is likely to perform worse instead of expected better

Curse of Dimensionality: Number of Samples

For a fixed number of samples, as we add features, the graph of classification error:

 Thus for each fixed sample size n, there is the optimal number of features to use

The Curse of Dimensionality

- We should try to avoid creating lot of features
- Often no choice, problem starts with many features
- Example: Face Detection
 - One sample point is k by m array of pixels

- Feature extraction is not trivial, usually every pixel is taken as a feature
- Typical dimension is 20 by 20 = 400
- Suppose 10 samples are dense enough for 1 dimension. Need only 10⁴⁰⁰ samples

The Curse of Dimensionality

Face Detection, dimension of one sample point is km

- The fact that we set up the problem with km dimensions (features) does not mean it is really a km-dimensional problem
- Space of all k by m images has km dimensions
- Space of all k by m faces must be much smaller, since faces form a tiny fraction of all possible images
- Most likely we are not setting the problem up with the right features
- If we used better features, we are likely need much less than km-dimensions

Dimensionality Reduction

- High dimensionality is challenging and redundant
- It is natural to try to reduce dimensionality
- Reduce dimensionality by feature combination: combine old features x to create new features y

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} \rightarrow \mathbf{f} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_k \end{bmatrix} = \mathbf{y} \quad \text{with } \mathbf{k} < \mathbf{d}$$

- For example, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_2 \\ x_3 + x_4 \end{bmatrix} = y$
- Ideally, the new vector y should retain from x all information important for classification

Dimensionality Reduction

- The best **f**(**x**) is most likely a non-linear function
- Linear functions are easier to find though
- For now, assume that f(x) is a linear mapping
- Thus it can be represented by a matrix W:

$$\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} \Rightarrow \mathbf{W} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{11} & \cdots & \mathbf{W}_{1d} \\ \vdots & & \vdots \\ \mathbf{W}_{k1} & \cdots & \mathbf{W}_{kd} \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_k \end{bmatrix} \quad \text{with } k < d$$

Principle Component Analysis (PCA)

- Main idea: seek most accurate data representation in a lower dimensional space
- Example in 2-D
 - Project data to 1-D subspace (a line) which minimize the projection error

 Notice that the good line to use for projection lies in the direction of largest variance

PCA

 After the data is projected on the best line, need to transform the coordinate system to get 1D representation for vector y

- Note that new data y has the same variance as old data x in the direction of the green line
- PCA preserves largest variances in the data. We will prove this statement, for now it is just an intuition of what PCA will do

PCA

- What is the direction of largest variance in data?
- Recall that if x has multivariate distribution $N(\mu, \Sigma)$, direction of largest variance is given by eigenvector corresponding to the largest eigenvalue of Σ

 This is a hint that we should be looking at the covariance matrix of the data (note that PCA can be applied to distributions other than Gaussian)

PCA: Linear Algebra for Derivation

- Let V be a d dimensional linear space, and W be a k dimensional linear subspace of V
- We can always find a set of *d* dimensional vectors {*e*₁, *e*₂,...,*e*_k} which forms an orthonormal basis for *W* <*e*_i,*e*_i> = 0 if *i* is not equal to *j* and <*e*_i,*e*_i> = 1
- Thus any vector in \mathbf{W} can be written as $\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + ... + \alpha_k \mathbf{e}_k = \sum_{i=1}^k \alpha_i \mathbf{e}_i$ for scalars $\alpha_1, ..., \alpha_k$

Let $V = \mathbb{R}^2$ and W be the line x-2y=0. Then the orthonormal basis for W is

$$\left\{ \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$$

PCA: Linear Algebra for Derivation

 Recall that subspace W contains the zero vector, i.e. it goes through the origin

 For derivation, it will be convenient to project to subspace W: thus we need to shift everything

PCA Derivation: Shift by the Mean Vector

- Before PCA, subtract sample mean from the data $x \frac{1}{n} \sum_{i=1}^{n} x_i = x \hat{\mu}$
- The new data has zero mean: E(X-E(X)) = E(X)-E(X) = 0
- All we did is change the coordinate system

- Another way to look at it:
 - first step of getting y is to subtract the mean of x

$$x \rightarrow y = f(x) = g(x - \hat{\mu})$$

- We want to find the most accurate representation of data $D=\{x_1,x_2,...,x_n\}$ in some subspace W which has dimension k < d
- Let $\{e_1, e_2, ..., e_k\}$ be the orthonormal basis for W. Any vector in W can be written as $\sum_{i=1}^k \alpha_i e_i$
- Thus x₁ will be represented by some vector in W

$$\sum_{i=1}^{\kappa} \alpha_{1i} \mathbf{e}_i$$

Error this representation:

$$error = \left\| \mathbf{x}_1 - \sum_{i=1}^k \alpha_{1i} \mathbf{e}_i \right\|^2$$

PCA: Derivation

- To find the total error, we need to sum over all x_i 's
- Any \mathbf{x}_{j} can be written as $\sum_{i=1}^{k} \alpha_{ji} \mathbf{e}_{i}$
- Thus the total error for representation of all data D is: sum over all data points

$$J(\underline{e_1,...,e_k,\alpha_{11},...\alpha_{nk}}) = \sum_{j=1}^{n} \left\| \underline{x_j - \sum_{i=1}^{k} \alpha_{ji} e_i} \right\|^2$$
unknowns
$$error at one point$$

 To minimize J, need to take partial derivatives and also enforce constraint that {e₁,e₂,...,e_k} are orthogonal

$$J(e_{1},...,e_{k},\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^{n} \left\| \mathbf{x}_{j} - \sum_{i=1}^{k} \alpha_{ji} e_{i} \right\|^{2}$$

Let us simplify J first

$$J(e_{1},...,e_{k},\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^{n} ||x_{j}||^{2} - 2\sum_{j=1}^{n} x_{j}^{t} \left(\sum_{i=1}^{k} \alpha_{ji} e_{i}\right) + \sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji}^{2}$$
$$= \sum_{j=1}^{n} ||x_{j}||^{2} - 2\sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji} x_{j}^{t} e_{i} + \sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji}^{2}$$

PCA: Derivation

$$J(e_1,...,e_k,\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^n ||x_j||^2 - 2\sum_{j=1}^n \sum_{i=1}^k \alpha_{ji} x_j^t e_i + \sum_{j=1}^n \sum_{i=1}^k \alpha_{ji}^2$$

• First take partial derivatives with respect to α_{ml}

$$\frac{\partial}{\partial \alpha_{ml}} J(\mathbf{e}_1, ..., \mathbf{e}_k, \alpha_{11}, ..., \alpha_{nk}) = -2 \mathbf{x}_m^t \mathbf{e}_l + 2 \alpha_{ml}$$

• Thus the optimal value for α_{ml} is

$$-2x_m^t e_l + 2\alpha_{ml} = 0 \implies \alpha_{ml} = x_m^t e_l$$

$$J(e_1,...,e_k,\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^n ||x_j||^2 - 2\sum_{j=1}^n \sum_{i=1}^k \alpha_{ji} x_j^t e_i + \sum_{j=1}^n \sum_{i=1}^k \alpha_{ji}^2$$

• Plug the optimal value for $\alpha_{ml} = x^t_m e_l$ back into J

$$J(e_1,...,e_k) = \sum_{j=1}^n ||x_j||^2 - 2\sum_{j=1}^n \sum_{i=1}^k (x_j^t e_i) x_j^t e_i + \sum_{j=1}^n \sum_{i=1}^k (x_j^t e_i)^2$$

Can simplify J

$$J(e_1,...,e_k) = \sum_{j=1}^n ||x_j||^2 - \sum_{j=1}^n \sum_{i=1}^k (x_j^t e_i)^2$$

PCA: Derivation

$$J(e_1,...,e_k) = \sum_{j=1}^n ||x_j||^2 - \sum_{j=1}^n \sum_{i=1}^K (x_i^t e_i)^2$$

• Rewrite \boldsymbol{J} using $(\boldsymbol{a^tb})^2 = (\boldsymbol{a^tb})(\boldsymbol{a^tb}) = (\boldsymbol{b^ta})(\boldsymbol{a^tb}) = \boldsymbol{b^t}(\boldsymbol{aa^t})\boldsymbol{b}$

$$J(e_{1},...,e_{k}) = \sum_{j=1}^{n} ||x_{j}||^{2} - \sum_{i=1}^{k} e_{i}^{t} \left(\sum_{j=1}^{n} (x_{j} x_{j}^{t}) \right) e_{i}$$

$$= \sum_{j=1}^{n} ||x_{j}||^{2} - \sum_{i=1}^{k} e_{i}^{t} S e_{i}$$

- Where $S = \sum_{j=1}^{n} x_j x_j^t$
- S is called the scatter matrix, it is just n-1 times the sample covariance matrix we have seen before

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{x}_{j} - \hat{\mu}) (\mathbf{x}_{j} - \hat{\mu})^{t}$$

$$J(e_1,...,e_k) = \sum_{j=1}^n ||x_j||^2 - \sum_{i=1}^k e_i^t S e_i$$

- Minimizing J is equivalent to maximizing $\sum_{i=1}^{k} e_i^t S e_i$
- We should also enforce constraints e_i^te_i = 1 for all i
- Use the method of Lagrange multipliers, incorporate the constraints with undetermined $\lambda_1, ..., \lambda_k$
- Need to maximize new function u

$$u(e_1,...,e_k) = \sum_{i=1}^k e_i^t S e_i - \sum_{j=1}^k \lambda_j (e_j^t e_j - 1)$$

PCA: Derivation

If x is a vector and f(x)= f(x₁,..., x_d) is a function, to simplify notation, define

$$\frac{d}{dx}f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}$$

- It can be shown that $\frac{d}{dx}(x^tx)=2x$
- If A is a symmetric matrix, it can be shown that

$$\frac{d}{dx}(x^t A x) = 2Ax$$

$$u(e_1,...,e_k) = \sum_{i=1}^k e_i^t S e_i - \sum_{i=1}^k \lambda_i (e_i^t e_i - 1)$$

Compute the partial derivatives with respect to e_m

$$\frac{\partial}{\partial \boldsymbol{e}_m} \boldsymbol{u}(\boldsymbol{e}_1, ..., \boldsymbol{e}_k) = 2\boldsymbol{S}\boldsymbol{e}_m - 2\boldsymbol{\lambda}_m \boldsymbol{e}_m = 0$$

Note: e_m is a vector, what we are really doing here is taking partial derivatives with respect to each element of e_m and then arranging them up in a linear equation

• Thus λ_m and e_m are eigenvalues and eigenvectors of scatter matrix S

$$Se_m = \lambda_m e_m$$

PCA: Derivation

$$J(e_1,...,e_k) = \sum_{i=1}^n ||x_i||^2 - \sum_{i=1}^k e_i^t S e_i$$

• Let's plug e_m back into J and use $Se_m = \lambda_m e_m$

$$J(e_{1},...,e_{k}) = \sum_{j=1}^{n} ||x_{j}||^{2} - \sum_{i=1}^{k} \lambda_{i} ||e_{i}||^{2} = \sum_{j=1}^{n} ||x_{j}||^{2} - \sum_{i=1}^{k} \lambda_{i}$$
constant

Thus to minimize J take for the basis of W the k eigenvectors of S corresponding to the k largest eigenvalues

PCA

 The larger the eigenvalue of S, the larger is the variance in the direction of corresponding eigenvector

- This result is exactly what we expected: project x into subspace of dimension k which has the largest variance
- This is very intuitive: restrict attention to directions where the scatter is the greatest

PCA

 Thus PCA can be thought of as finding new orthogonal basis by rotating the old axis until the directions of maximum variance are found

PCA as Data Approximation

- Let {e₁,e₂,...,e_d} be all d eigenvectors of the scatter matrix S, sorted in order of decreasing corresponding eigenvalue
- Without any approximation, for any sample x_i:
 error of approximation

$$x_{i} = \sum_{j=1}^{d} \alpha_{j} e_{j} = \underbrace{\alpha_{1} e_{1} + \ldots + \alpha_{k} e_{k}}_{approximation of x_{i}} + \underbrace{\alpha_{k+1} e_{k+1} \ldots + \alpha_{d} e_{d}}_{approximation of x_{i}}$$

- coefficients $\alpha_m = \mathbf{x}^t \mathbf{e}_m$ are called *principle components*
 - The larger **k**, the better is the approximation
 - Components are arranged in order of importance, more important components come first
- Thus PCA takes the first k most important components of x_i as an approximation to x_i

PCA: Last Step

- Now we know how to project the data
- Last step is to change the coordinates to get final k-dimensional vector y

- Let matrix $\boldsymbol{E} = [\boldsymbol{e}_1 \cdots \boldsymbol{e}_k]$
- Then the coordinate transformation is $y = E^t x$
- Under E^t , the eigenvectors become the standard basis: $E^t e_i = \begin{bmatrix} e_1 \\ \vdots \\ e_i \\ \vdots \\ e_t \end{bmatrix} e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$

Recipe for Dimension Reduction with PCA

Data $D=\{x_1,x_2,...,x_n\}$. Each x_i is a **d**-dimensional vector. Wish to use PCA to reduce dimension to **k**

- 1. Find the sample mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 2. Subtract sample mean from the data $z_i = x_i \hat{\mu}$
- 3. Compute the scatter matrix $S = \sum_{i=1}^{n} z_i z_i^t$
- 4. Compute eigenvectors $e_1, e_2, ..., e_k$ corresponding to the k largest eigenvalues of S
- 5. Let $e_1, e_2, ..., e_k$ be the columns of matrix $E = [e_1 \cdots e_k]$
- 6. The desired y which is the closest approximation to x is $y = E^t z$

PCA Example Using Matlab

- Let $\mathbf{D} = \{(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)\}$
- Convenient to arrange data in array

$$X = \begin{bmatrix} 1 & 2 \\ \vdots & \vdots \\ 9 & 7 \end{bmatrix} = \begin{bmatrix} X_1 \\ \vdots \\ X_8 \end{bmatrix}$$

- Mean $\mu = mean(X) = [4.6 \ 4.4]$
- Subtract mean from data to get new data array Z

$$Z = X - \begin{bmatrix} \mu \\ \vdots \\ \mu \end{bmatrix} = X - repmat(\mu, 8, 1) = \begin{bmatrix} -3.6 - 4.4 \\ \vdots & \vdots \\ 4.4 & 2.6 \end{bmatrix}$$

Compute the scatter matrix S

$$S = 7 * cov(Z) = \begin{bmatrix} -3.6 & -4.4 \end{bmatrix} \begin{bmatrix} -3.6 \\ -4.4 \end{bmatrix} + ... + \begin{bmatrix} 4.4 & 2.6 \end{bmatrix} \begin{bmatrix} 4.4 \\ 2.6 \end{bmatrix} = \begin{bmatrix} 57 & 40 \\ 40 & 34 \end{bmatrix}$$

matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z)

PCA Example Using Matlab

 Use [V,D] =eig(S) to get eigenvalues and eigenvectors of S

$$\lambda_1 = 87$$
 and $e_1 = \begin{bmatrix} -0.8 \\ -0.6 \end{bmatrix}$

$$\lambda_2 = 3.8$$
 and $\mathbf{e}_2 = \begin{bmatrix} 0.6 \\ -0.8 \end{bmatrix}$

Projection to 1D space in the direction of e₁

$$Y = e_1^t Z^t = \left(\begin{bmatrix} -0.8 & -0.6 \end{bmatrix} \begin{bmatrix} -3.6 & \cdots & 4.4 \\ -4.4 & \cdots & 2.6 \end{bmatrix} \right) = \begin{bmatrix} 4.3 & \cdots & -5.1 \end{bmatrix}$$
$$= \begin{bmatrix} y_1 & \cdots & y_8 \end{bmatrix}$$

The Space of Faces

- An image is a point in a high dimensional space
 - An N x M image is a point in R^{NM}
 - We can define vectors in this space as we did in the 2D case

[Thanks to Chuck Dyer, Steve Seitz, Nishino]

Eigenfaces

Eigenfaces look somewhat like generic faces.

Thanks to S. Narasimhan

Projecting onto the Eigenfaces

- The eigenfaces **v**₁, ..., **v**_K span the space of faces
 - A face is converted to eigenface coordinates by

$$\mathbf{x} \to (\underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_1}_{a_1}, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_2}_{a_2}, \dots, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_K}_{a_K})$$

$$\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K$$

 $a_1\mathbf{v}_1$ $a_2\mathbf{v}_2$ $a_3\mathbf{v}_3$ $a_4\mathbf{v}_4$ $a_5\mathbf{v}_5$ $a_6\mathbf{v}_6$ $a_7\mathbf{v}_7$ $a_8\mathbf{v}_8$ Thanks to S. Narasimhan

Drawbacks of PCA

- PCA was designed for accurate data representation, not for data classification
 - Preserves as much variance in data as possible
 - If directions of maximum variance is important for classification, will work

 However the directions of maximum variance may
- be useless for classification

