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Lecture 4

Curse of Dimensionality,
Dimensionality Reduction with PCA

Today

= Problems of high dimensional data, “the
curse of dimensionality”
= running time
= overfitting
= number of samples required

= Dimensionality Reduction Methods
= Principle Component Analysis (today)




Curse of Dimensionality: Complexity

= Complexity (running time) increases with
dimension d
= A lot of methods have at least O(nd?) complexity,
where nis the number of samples
= For example if we need to estimate covariance
matrix

= So as dbecomes large, O(nd?) complexity may
be too costly

Curse of Dimensionality: Number of Samples

= Suppose we want to use the nearest neighbor
approach with k=1 (1NN)
= Suppose we start with only one feature
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= This feature is not discriminative, i.e. it does not
separate the classes well

= We decide to use 2 features. For the 1NN method
to work well, need a lot of samples, i.e. samples
have to be dense

= To maintain the same density as in 1D (9 samples
per unit length), how many samples do we need?




Curse of Dimensionality: Number of Samples

=  We need 9?2 samples to maintain the same

density as in 1D
1

Curse of Dimensionality: Number of Samples

= Of course, when we go from 1 feature to 2, no
one gives us more samples, we still have 9
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= This is way too sparse for 7NN to work well




Curse of Dimensionality: Number of Samples

= Things go from bad to worse if we decide to use 3

features: )
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= |f 9was dense enough in 1D, in 3D we need
93=729 samples!

Curse of Dimensionality: Number of Samples

= In general, if n samples is dense enough in 1D

= Then in d dimensions we need n? samples!

= And n? grows really really fast as a function of d

= Common pitfall:

= |f we can’t solve a problem with a few features, adding
more features seems like a good idea

= However the number of samples usually stays the same

= The method with more features is likely to perform
worse instead of expected better




Curse of Dimensionality: Number of Samples

= For a fixed number of samples, as we add
features, the graph of classification error:

classification
error

1 - # features
\ optimal # features \

= Thus for each fixed sample size n, there is the
optimal number of features to use

The Curse of Dimensionality

= We should try to avoid creating lot of features
= Often no choice, problem starts with many features

= Example: Face Detection
= One sample point is k by m array of pixels

a- i

= Feature extraction is not trivial, usually every
pixel is taken as a feature

= Typical dimension is 20 by 20 = 400

=  Suppose 710 samples are dense enough for 1
dimension. Need only 710499 samples




The Curse of Dimensionality

= Face Detection, dimension of one sample point is km
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= The fact that we set up the problem with km
dimensions (features) does not mean it is really
a km-dimensional problem
= Space of all k by mimages has km dimensions

= Space of all kby m faces must be much smaller,
since faces form a tiny fraction of all possible images

= Most likely we are not setting the problem up with
the right features

= |f we used better features, we are likely need much
less than km-dimensions

Dimensionality Reduction

= High dimensionality is challenging and redundant

It is natural to try to reduce dimensionality
Reduce dimensionality by feature combination:
combine old features x to create new features y

X1 x1 y
1

x=|% 1| % =[3]=y with k < d
X'd X‘d Y

For example, X
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|deally, the new vector y should retain from x all
information important for classification




Dimensionality Reduction

= The best f(x) is most likely a non-linear function
= Linear functions are easier to find though
= For now, assume that f(x) is a linear mapping

= Thus it can be represented by a matrix W-

X1 X1 w. e W X1 y

11 1d 1
%o w| X =[z z]’fz =[s] with k < d
x'd x'd Wy - Wy X.d Y

Principle Component Analysis (PCA)

= Main idea: seek most accurate data representation in

a lower dimensional space
= Example in 2-D

= Project data to 1-D subspace (a line) which minimize the
projection error
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large projection errors, small projection errors,
bad line to project to good line to project to

= Notice that the the good line to use for projection lies
in the direction of largest variance




PCA

= After the data is projected on the best line, need to
transform the coordinate system to get 1D
representation for vector y

= Note that new data y has the same variance as old
data x in the direction of the green line
= PCA preserves largest variances in the data. We will

prove this statement, for now it is just an intuition of
what PCA will do

PCA: Approximation of Elliptical Cloud in 3D
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PCA

= What is the direction of largest variance in data?

= Recall that if x has multivariate distribution N(x,2%),
direction of largest variance is given by eigenvector
corresponding to the largest eigenvalue of X~

w . 5 2

= This is a hint that we should be looking at the
covariance matrix of the data (note that PCA can be
applied to distributions other than Gaussian)

PCA: Linear Algebra for Derivation

= Let Vbe a ddimensional linear space, and Wbe a k
dimensional linear subspace of V

= We can always find a set of d dimensional vectors
{e;.e,,...,e which forms an orthonormal basis for W
= <e,ep> = 0if fis not equal to jand <e,e> = 1
= Thus any vector in chn be written as
a8+ 0,8, +..+ a8, = ae for scalars a,...,a,

i=1

Let V= R? and W be the line

w x-2y=0. Then the orthonormal
/ basis for W is
1
A . {[2/\/5]}
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PCA: Linear Algebra for Derivation

= Recall that subspace W contains the zero vector, i.e.

it goes through the origin
/‘this line is not a
subspace of R?

= For derivation, it will be convenient to project to
subspace W: thus we need to shift everything

N this line is a
/ subspace of R?
°

PCA Derivation: Shift by the Mean Vector

= Before PCA, subtract sample mean from the data
x—%Zx, =X—[I

= The new data has zero mean: E(X-E(X)) = E(X)-E(X) =0

= All we did is change the coordinate system

, o .. X;,
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= Another way to look at it:
= first step of getting y is to subtract the mean of x

x - y = £(x)=g(x- )
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PCA: Derivation

= We want to find the most accurate representation of
data D={x;,X,,...,X,;} in some subspace W which has
dimension k< d

= Let {e;.e,...,e} bethe orthonorkmal basis for W. Any
vector in Wcan be written as ) ae,

i=1
= Thus x; will be represkented by some vector in W
Zaﬁei
i=1
= Error this representation:

2
k
error =||\x, - " a€,
-

PCA: Derivation

= To find the total error, we need to sum over all xj’s

k
= Any x;can be written as )" a;e,

i=1
= Thus the total error for representation of all data D is:
sum over all data points

n 2

k
J(e1,.-.,ek,a11,...ank)= z Xl- - Zaﬁe,
- J

-~ = i1
unknowns error at one point
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PCA: Derivation

= To minimize J, need to take partial derivatives and
also enforce constraint that {e,,e,,...,e,} are
orthogonal

k
X; =D a;e

i=1

n
J(€150es €45 Uy yyenlly )=
=

= Let us simplify J first

j=1 j=1 i=1 j=1 i=1
n 2 n k . n k B
= ZHX!H —ZZZaﬁXle, +ZZ%
j=1 j=1 i=1 j=1 i=1
PCA: Derivation

n 2 n k n k
Je,,...e,a, .0, )= ZHX,H 2> N a;x'e+>. > af
j=1 j=1 i=1 j=1 i=1
= First take partial derivatives with respect to &,
N
o,

ml

t
J(e1,...,ek,a11,---ank)= _2Xmel + 2aml

= Thus the optimal value for a,,, is

-2x.e+2a,=0 = a, =x,€
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PCA: Derivation

n n k n k
Je, ..., , 0,0, )= ZHX,.HZ =2)' Y a;xe +Y. > a;
j=1

j=1 i=1 j=1 i=1

= Plug the optimal value for &, = x!,,e,back into J

n k n k
Jeyrmre)= S [ 2573 (xie e, 33 (o))
J=1 1= J=1 1=

= Can simplify J

Je,,re.) guxuz 33 (xle,)?

N
-
-
1]
-

PCA: Derivation

ES

Seyse)= D[ -2 2 (xie

j=1 i=1

= Rewrite Jusmg (a’b )2= a’b )(atb)=(b'a)(alb)=b'(aat)b

seyre)= Sl -Sel{ S ]e

= ZHX,H - Ze,.’Se,.
j=1 i=1

= Where S= ijxj.
j=1

= Sis called the scatter matrix, it is just n-1 times the
sample covariance matrix we have seen before

- 1 & . R
=E;(Xi_:uxxi_:u)t
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PCA: Derivation

J(e,,-.. ZHX H —Ze’Se

constant

Minimizing J is equivalent to maximizing Ze’Se
i=1

We should also enforce constraints ej'e;= 1 for all i

Use the method of Lagrange multipliers, incorporate
the constraints with undetermined 4, ,..., 4,

Need to maximize new function u

ule,,...,e, )= Ze‘Se Z/I(ee,—1)

PCA: Derivation

= If xis a vector and f(x)= f(x,,..., X4) is a function, to
simplify notation, define

ot
ox

A fix)=|

dx _of
ax,

= |t can be shown that %(x’x):Zx

= |f Ais a symmetric matrix, it can be shown that
%(x’Ax): 2Ax
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PCA: Derivation

k
ule,,...,e,) = Ze’Se le(ej.ej—ﬂ
j=1

= Compute the partial derivatives with respect to e,

iu(e1,...,e,() =2Se,-21_e, =

m

Note: e, is a vector, what we are really doing here is
taking partial derivatives with respect to each
element of e,, and then arranging them up in a
linear equation

= Thus 4,, and e,,are eigenvalues and eigenvectors of

scatter matrix S
Se, =1,¢e,

PCA: Derivation

J(e,,....e, )= ZHX H —Ze'Se

= Let’s plug e, back into Jand use Se, =1,e

m=m

k 2 1, 2 K
Sewe)=2x [ - 2. alelf <3l [ - 24

constant

= Thus to minimize J take for the basis of Wthe k
eigenvectors of S corresponding to the k largest
eigenvalues
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PCA

= The larger the eigenvalue of S, the larger is the
variance in the direction of corresponding eigenvector

L,//L=w
(]

R

e * “1,-=08

= This result is exactly what we expected: project x into
subspace of dimension k which has the largest
variance

= This is very intuitive: restrict attention to directions
where the scatter is the greatest

PCA

= Thus PCA can be thought of as finding new
orthogonal basis by rotating the old axis until the
directions of maximum variance are found

o.‘\
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PCA as Data Approximation

= Let {e,e,...,ey} be all deigenvectors of the scatter
matrix S, sorted in order of decreasing corresponding
eigenvalue

= Without any approximation, for any sample x;.
error of aﬁproximation

d 'd \
I=

- Y -
approximation of x;
= coefficients a,,,=x!e,, are called principle components

= The larger k, the better is the approximation

= Components are arranged in order of importance, more
important components come first

= Thus PCA takes the first k most important
components of x; as an approximation to X;

PCA: Last Step

Now we know how to project the data

Last step is to change the coordinates to get final
k-dimensional vector y

Let matrix E=|e,---e,]
Then the coordinate transformationis y = E'x

€, 0
nder E!, the eigenvectors : :
U ) g Ete- = e,' e = 1

become the standard basis: ' :
. 0
ek
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Recipe for Dimension Reduction with PCA

Data D={x,,X,,...,X,}. Each x;is a d-dimensional
vector. Wish to use PCA to reduce dimension to k

. ~_ 1<
1. Find the sample mean ﬂ=;zxi
i=1

. Subtract sample mean from the data z, = x,—

i=1
. Compute eigenvectors e;,e,,...,e, corresponding to
the k largest eigenvalues of S

Let e,,€,,...,8, be the columns of matrix E=[e, --e,]

2
3. Compute the scatter matrix S=) 2,z
4

o

6. The desired y which is the closest approximation
to xis y=E'z

PCA Example Using Matlab

= Let D={(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}
= Convenient to arrange data in array 7
12] | % .
X=|::|=|: ‘ o e
97 Xg J °
2 @ [ )
= Mean u=mean(X)=[4.6 4.4] |
= Subtract mean from data to get new data array Z
H -3.6 -4.4
Z=X-|:|=X-repmat(u,8,1)=| : :
Y7, 44 2.6
= Compute the scatter matrix S
S=7xcov(Z)=[-3.6 - 4.4][: 3-2] +.t[4.4 2.6][3-3’] - [% 2
~ L .

matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z)

]
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PCA Example Using Matlab

= Use [V,D] =eig(S) to get eigenvalues and
eigenvectors of S

A, =87 and e, = [: gg]

A,=388and e, = [93 8]

ESN SR S S N
'\/
[
(]

-
~
~
o
®

= Projection to 1D space in the direction of e,
Y=e!Z'= ([— 0.8 - 0.6][: 3.6 g:‘s’D ~[4.3 - -5.1]
=ly, - vl

The Space of Faces

= Animage is a point in a high dimensional space
= An N x M image is a point in RNM
= We can define vectors in this space as we did in the 2D case

[Thanks to Chuck Dyer, Steve Seitz, Nishino]
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Eigenfaces

Eigenfaces look somewhat like generic faces.
Thanks to S. Narasimhan

Projecting onto the Eigenfaces

= The eigenfaces vj, ..., Vk span the space of faces

= A face is converted to eigenface coordinates by

x> ((x—%) vy, xX—%X) vg,..., (x—X) vK)
a1 an ag

X%f+a1V1+CLQV2+...+aKVK \

ai1Vy apV9e a3vz a4qV4 asVs agVg a7VvVy agvg .
Thanks to S. Narasimhan
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Drawbacks of PCA

PCA was designed for accurate data
representation, not for data classification
= Preserves as much variance in data as possible

= If directions of maximum variance is important for
classification, will work

However the directions of maximum variance may
be useless for classification

g® o° apply PCA
mE o
g o° to each class
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