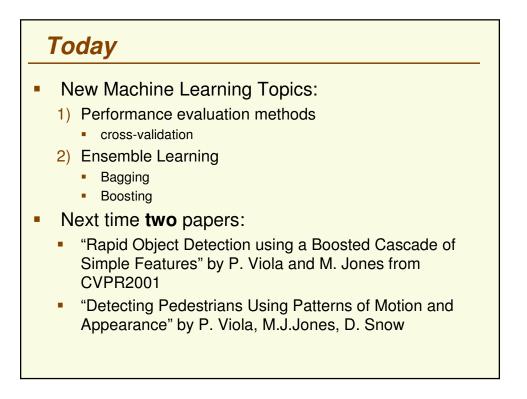
CS840a

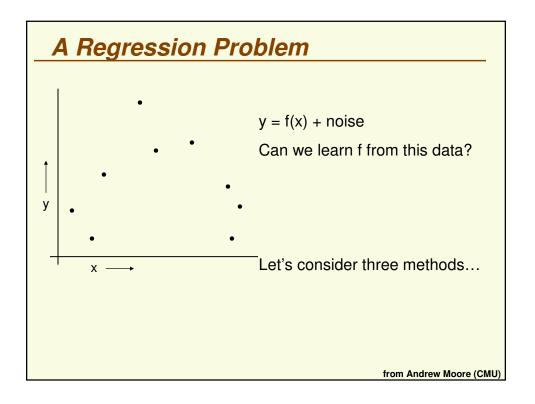
Learning and Computer Vision Prof. Olga Veksler

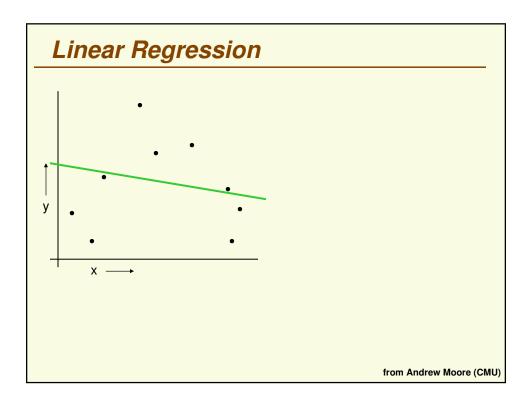
Lecture 5

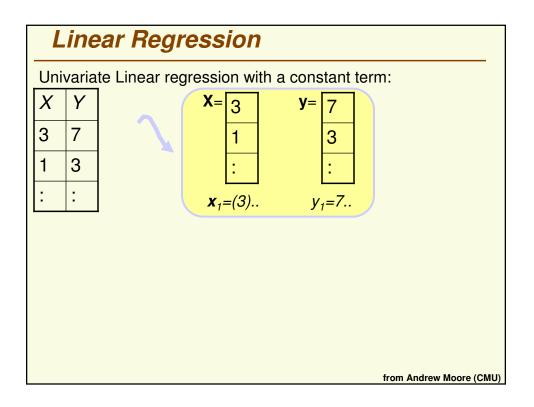
Cross Validation, Bagging and Boosting

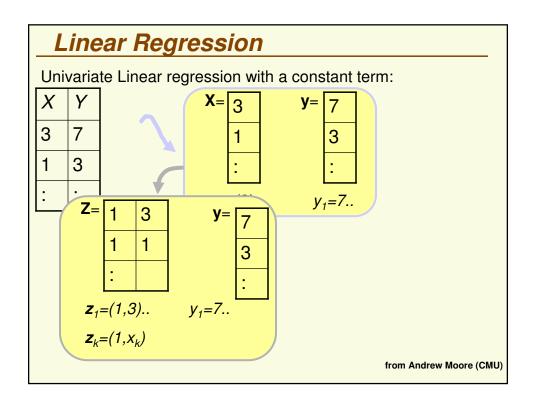
Cross Validation slides are from Andrew Moore (CMU) Some slides are due to Robin Dhamankar Vandi Verma & Sebastian Thrun

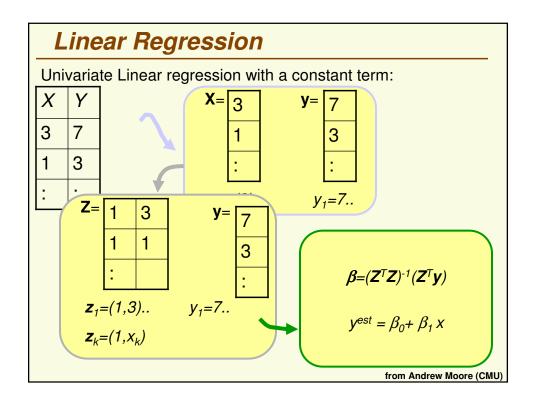


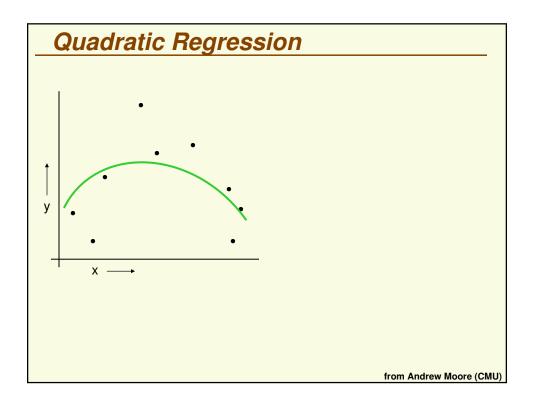


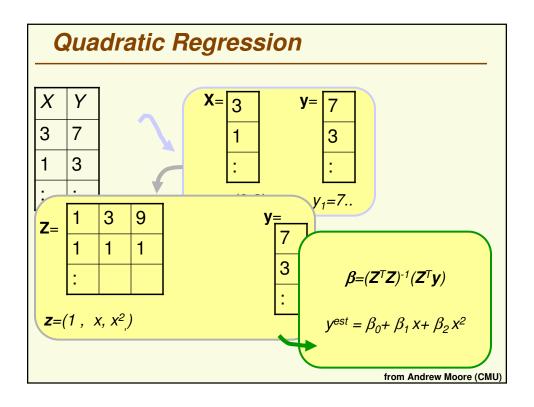


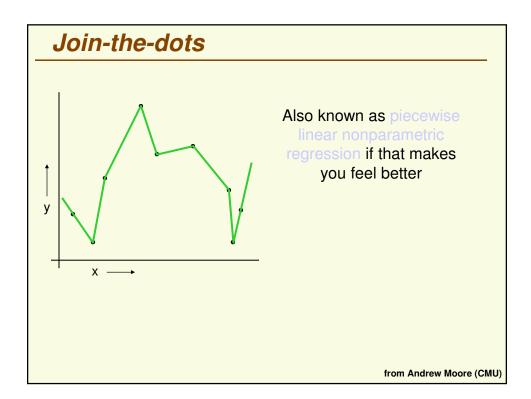


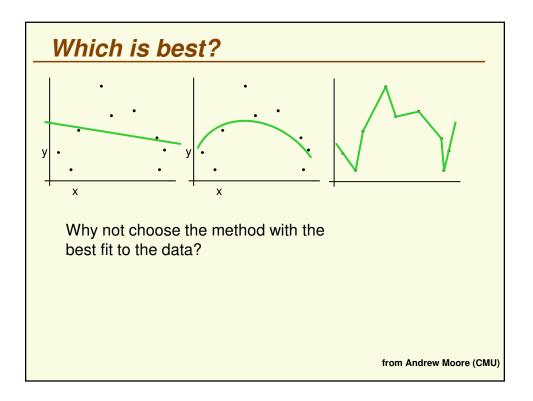


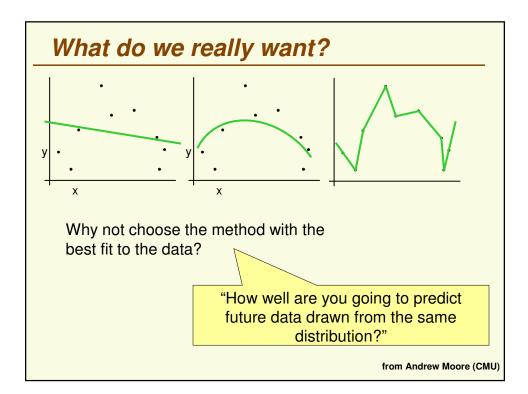


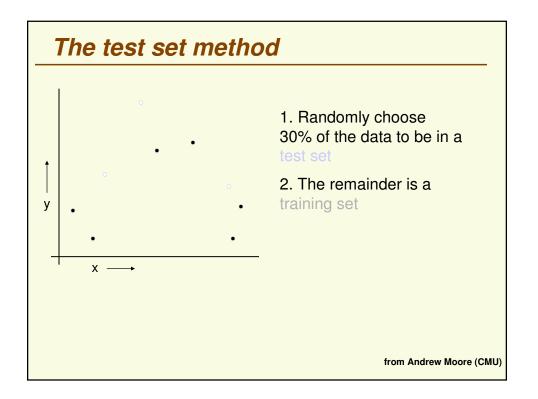


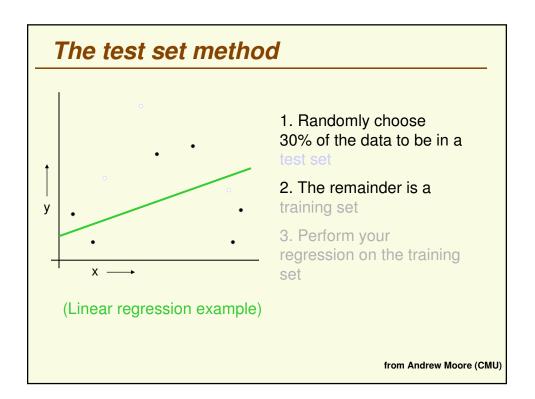


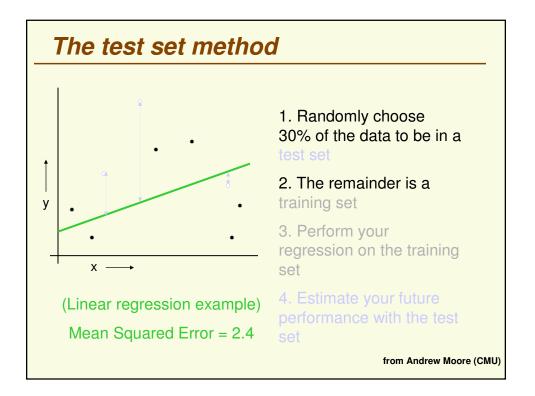


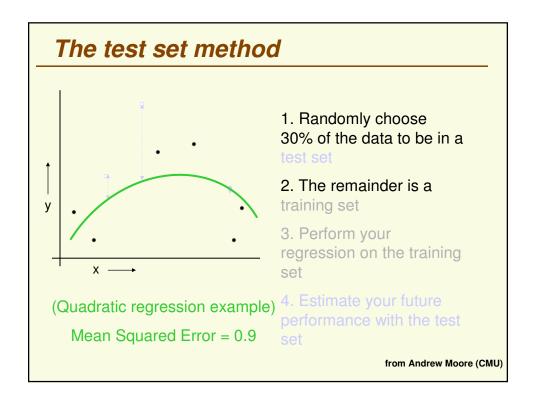


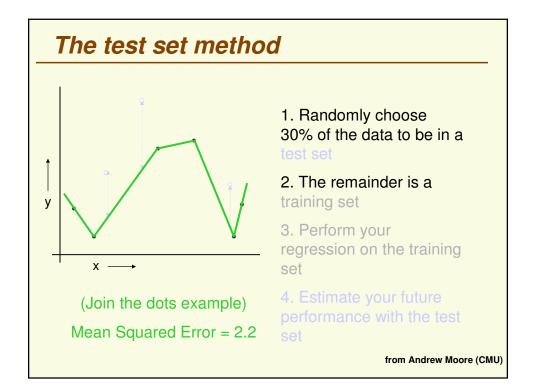


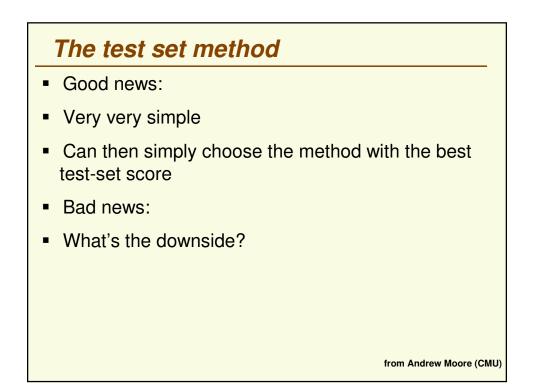


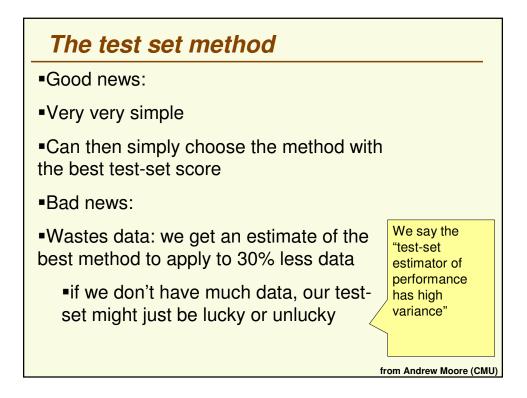


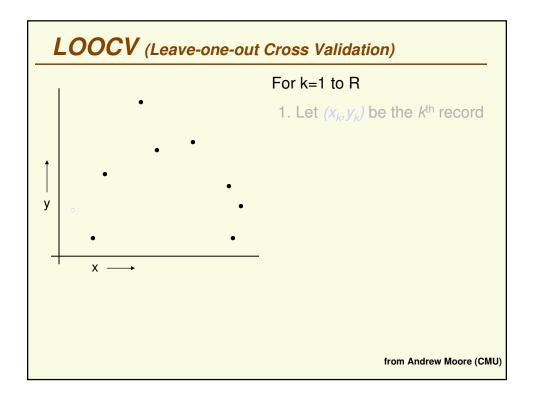


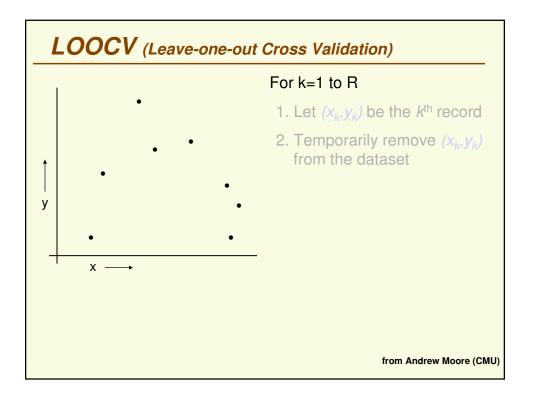


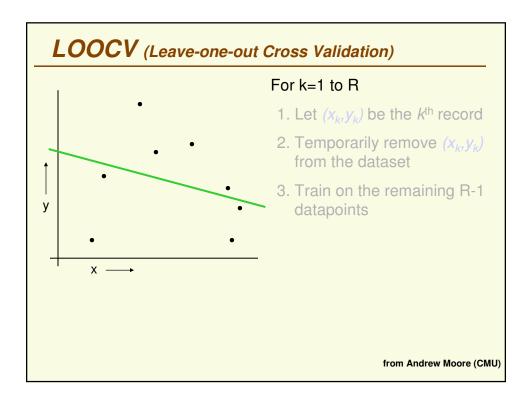


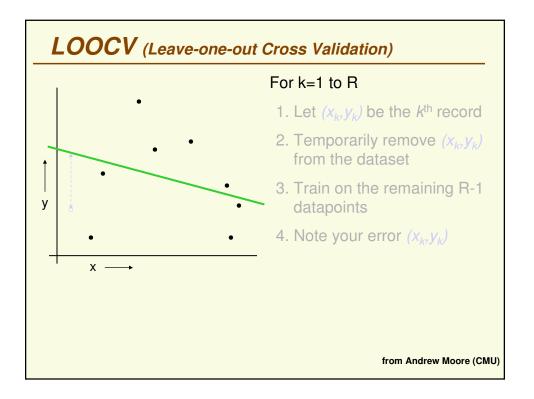


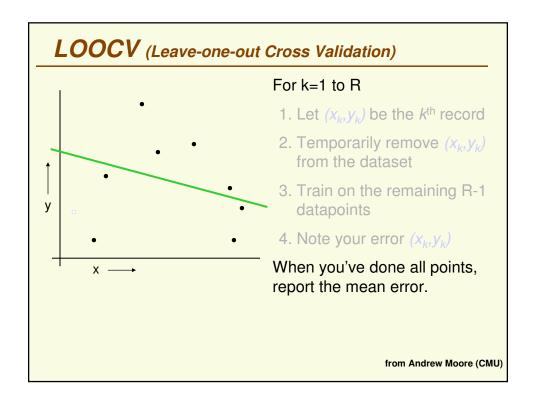


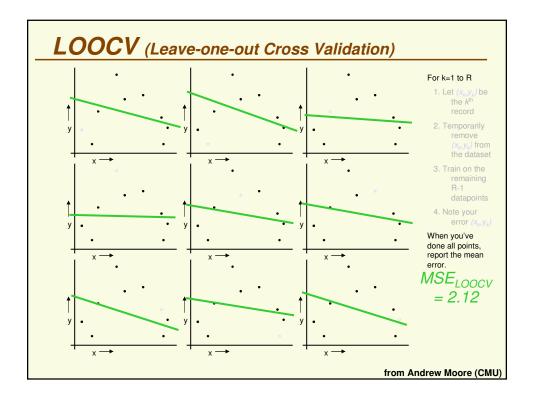


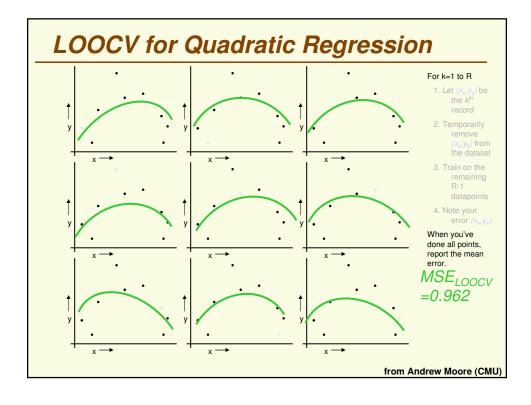


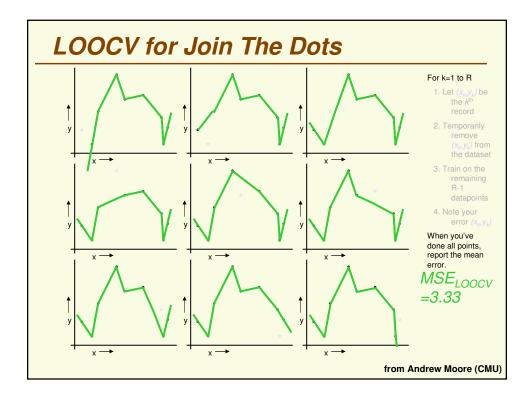




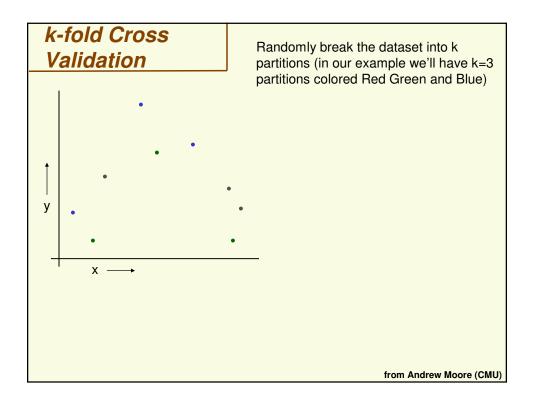


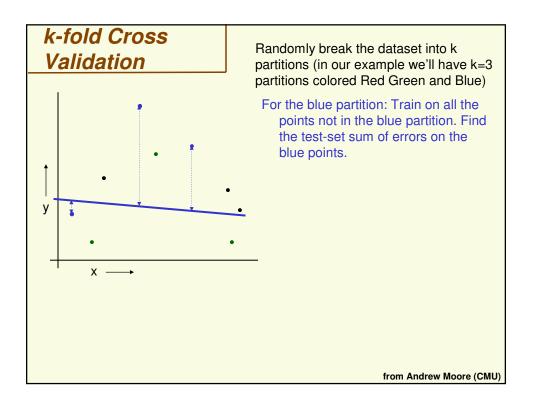


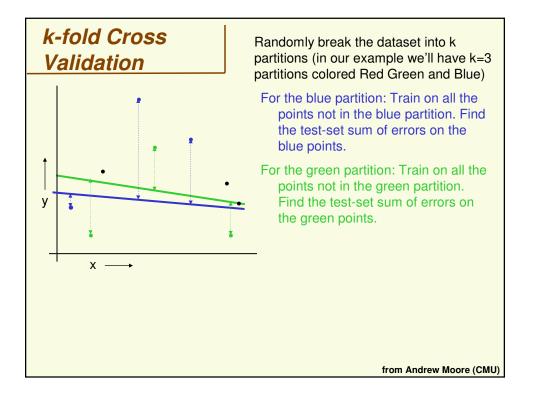


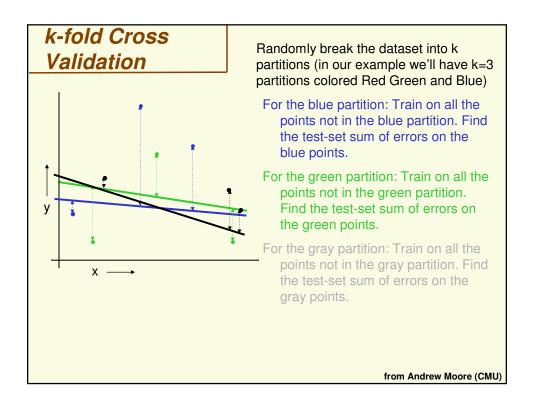


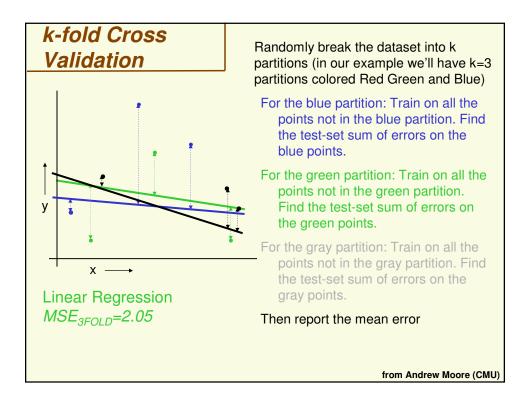
	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive	Doesn't waste data

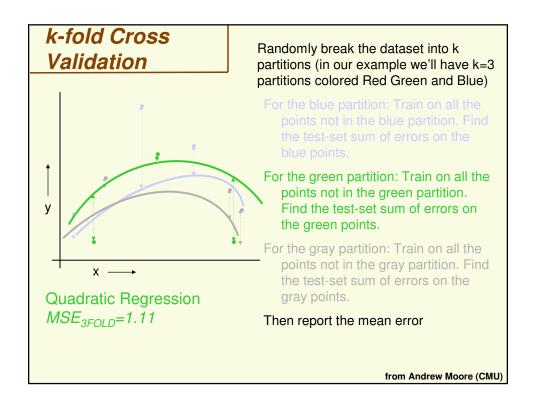


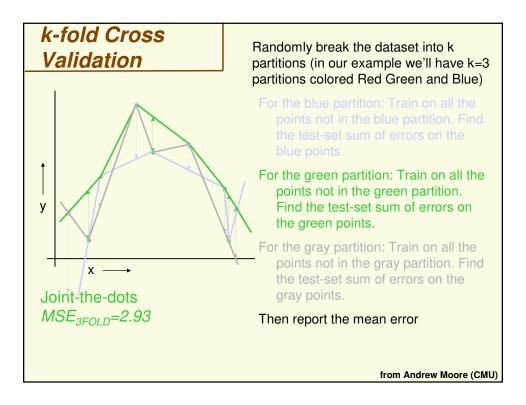






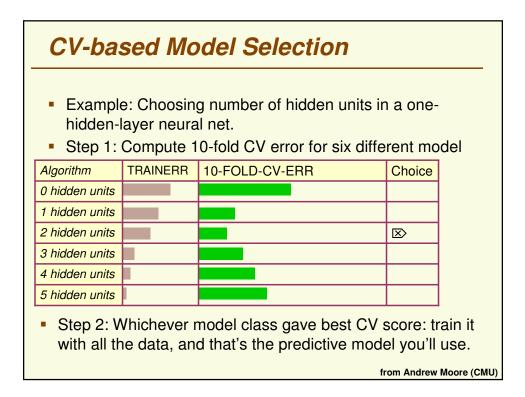


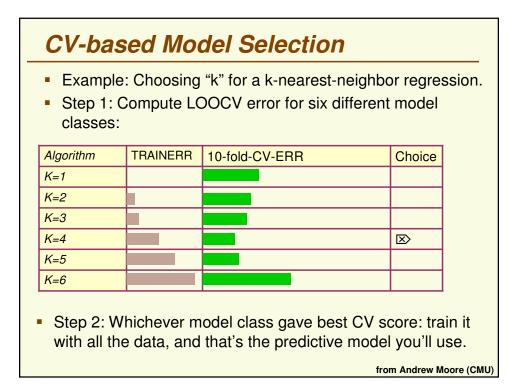


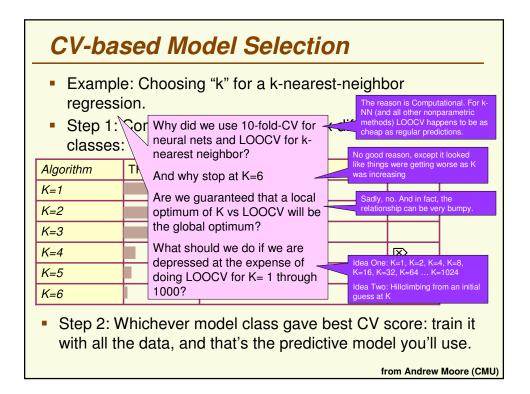


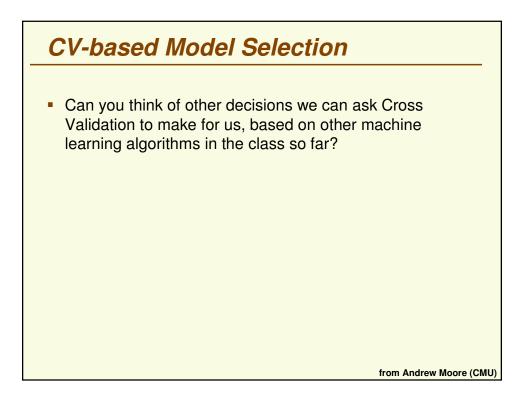
Which kind of Cross Validation?				
	Downside	Upside		
Test-set	Variance: unreliable estimate of future performance	Cheap		
Leave- one-out	Expensive	Doesn't waste data		
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 times more expensive instead of R times.		
3-fold	Wastier than 10-fold. Expensivier than test set	Slightly better than test- set		
N-fold	Identical to Leave-one-out			
	·	from Andrew Moore (CMU		

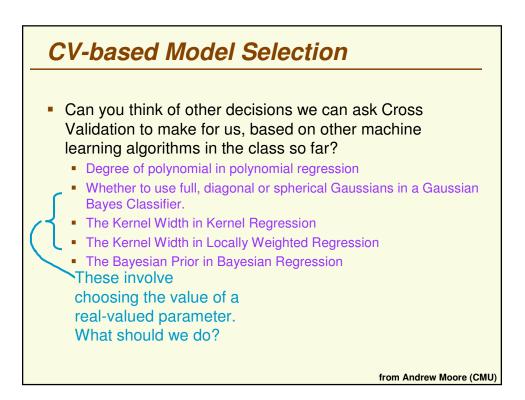
CV-based Model Selection							
We're trying to decide which algorithm to use.We train each machine and make a table							
i	f_i	TRAINERR	10-FOLD-CV-ERR	Choice			
1	<i>f</i> ₁						
2	f ₂						
3	f ₃			\boxtimes			
4	<i>f</i> ₄						
5	<i>f</i> ₅						
6	f_6						
from Andrew Moore (CMU)							

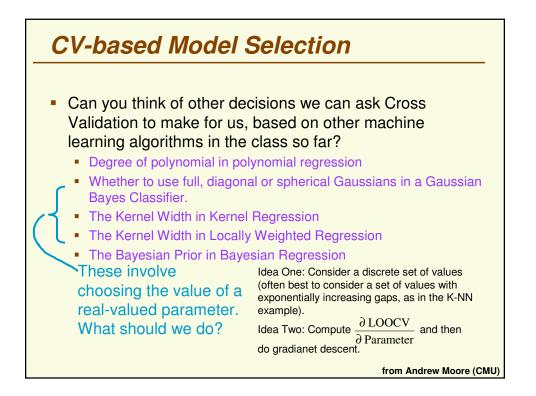


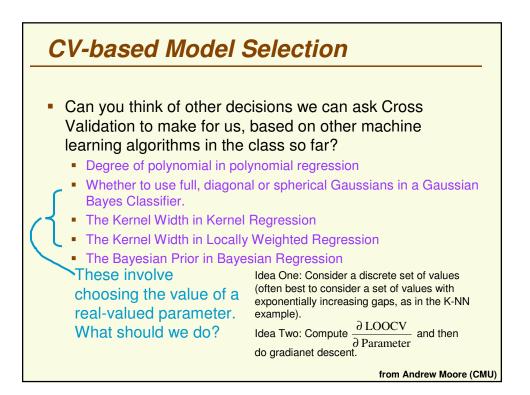


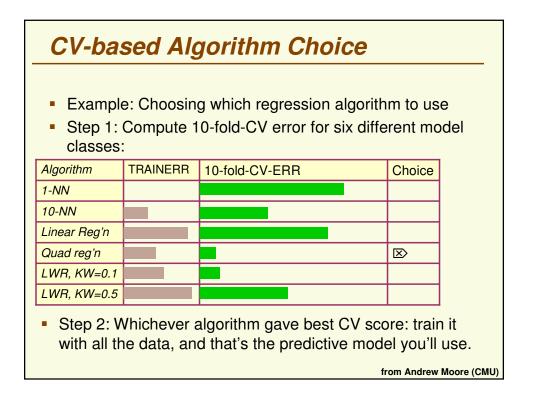


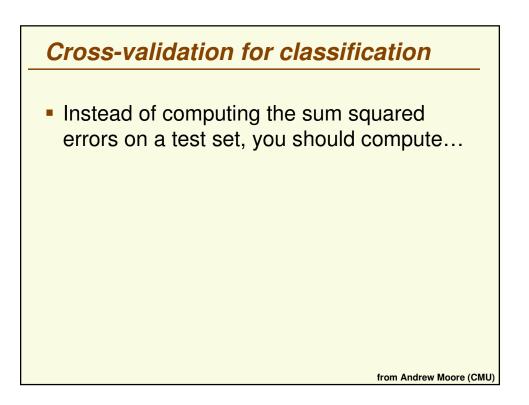


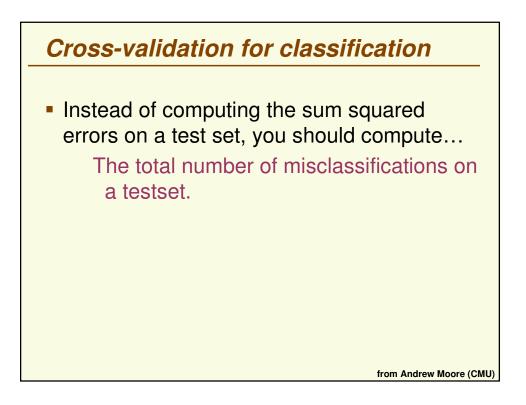


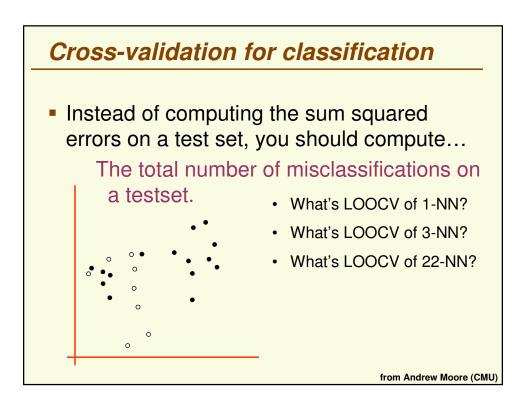


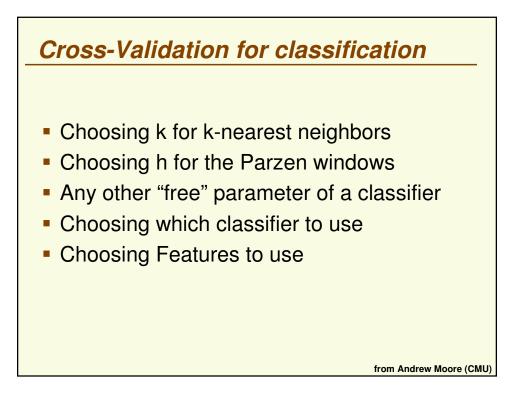


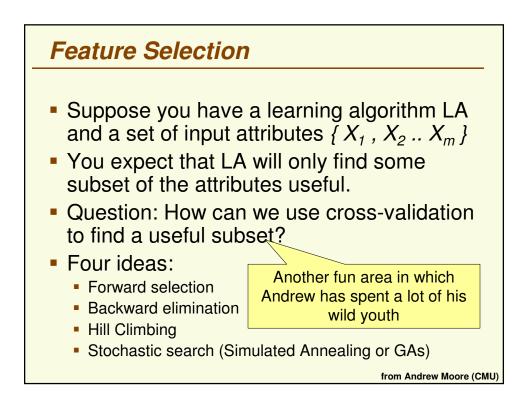












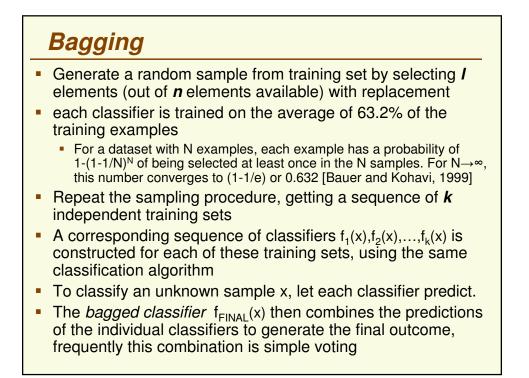
Ensemble Learning: Bagging and Boosting

- So far we have talked about design of a single classifier that generalizes well (want to "learn" f(x))
- From statistics, we know that it is good to average your predictions (reduces variance)
- Bagging
 - reshuffle your training data to create k different training sets and learn f₁(x),f₂(x),...,f_k(x)
 - Combine the k different classifiers by majority voting

 $f_{FINAL}(x) = sign[\Sigma 1/k f_i(x)]$

Boosting

- Assign different weights to training samples in a "smart" way so that different classifiers pay more attention to different samples
- Weighted majority voting, the weight of individual classifier is proportional to its accuracy
- Ada-boost (1996) was influenced by bagging, and it is superior to bagging



Boosting: motivation

- It is usually hard to design an accurate classifier which generalizes well
- However it is usually easy to find many "rule of thumb" weak classifiers
 - A classifier is weak if it is only slightly better than random guessing
- Can we combine several weak classifiers to produce an accurate classifier?
 - Question people have been working on since 1980's

Ada Boost

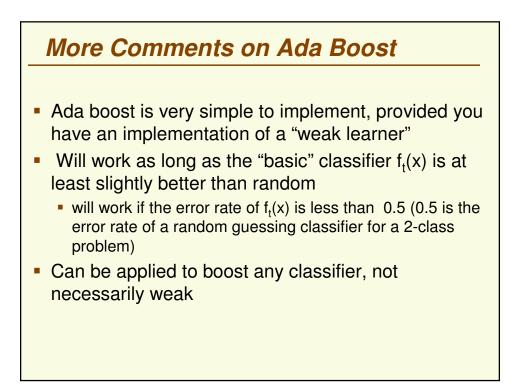
- Let's assume we have 2-class classification problem, with y_i∈ {-1,1}
- Ada boost will produce a discriminant function:

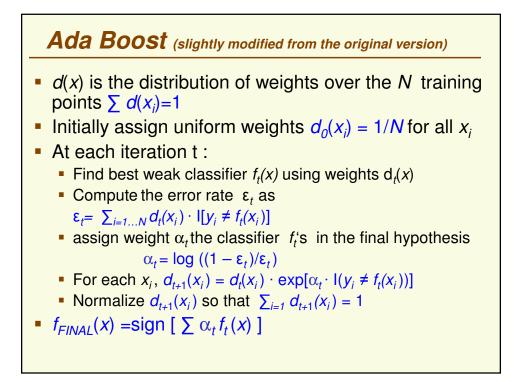
$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$

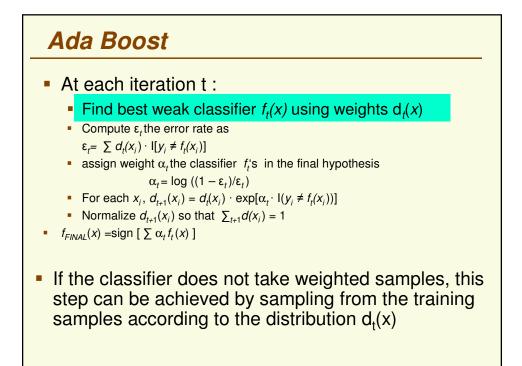
- where f_t(x) is the "weak" classifier
- As usual, the final classifier is the sign of the discriminant function, that is f_{final}(x) = sign[g(x)]

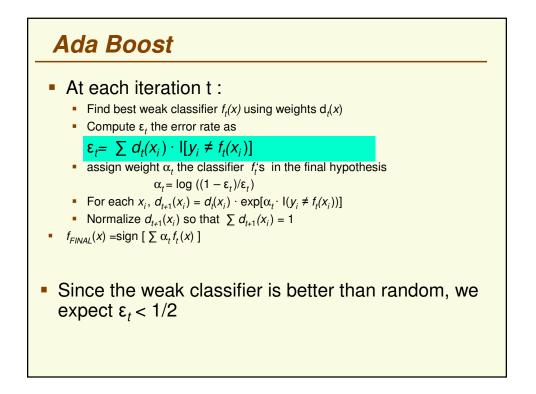
Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially distribution of weights is uniform
- At successive iterations, the weight of misclassified examples is increased, forcing the weak learner to focus on the hard examples in the training set

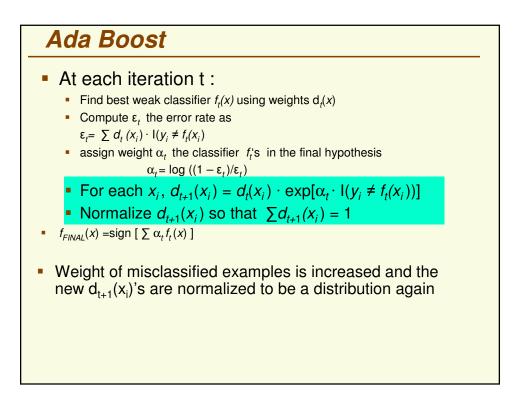


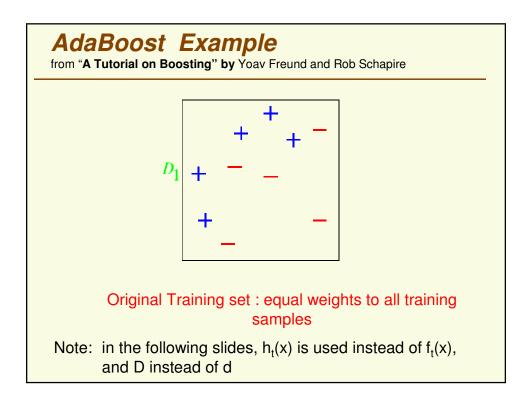


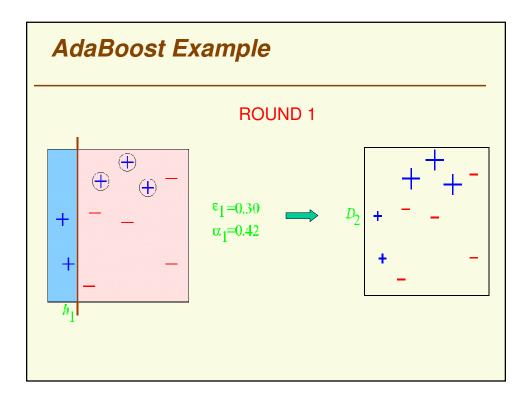


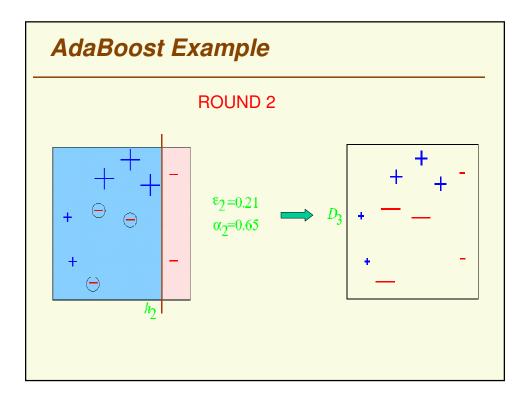


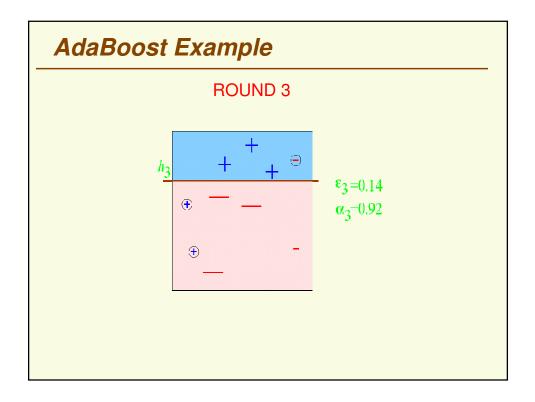
Ada Boost			
At each iteration t :			
• Find best weak classifier $f_t(x)$ using weights $d_t(x)$			
• Compute ε_t the error rate as			
$\varepsilon_t = \sum d(x_i) \cdot I(y_i \neq f_t(x_i))$			
• assign weight α_t the classifier f_t 's in the final hypothesis			
$\alpha_t = \log \left((1 - \varepsilon_t) / \varepsilon_t \right)$			
• For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$			
• Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$			
• $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$			
• Recall that $\varepsilon_t < \frac{1}{2}$			
• Thus $(1 - \varepsilon_t)/\varepsilon_t > 1 \implies \alpha_t > 0$			
• The smaller is ε_t , the larger is α_t , and thus the more importance (weight) classifier $f_t(x)$ gets in the final classifier $f_{FINAL}(x) =$ sign [$\sum \alpha_t f_t(x)$]			

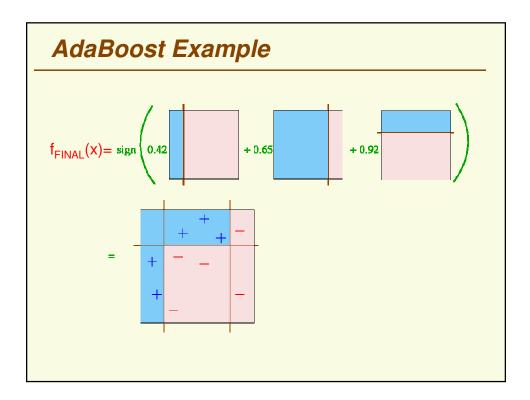


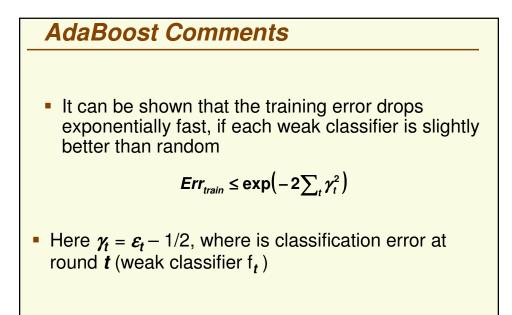


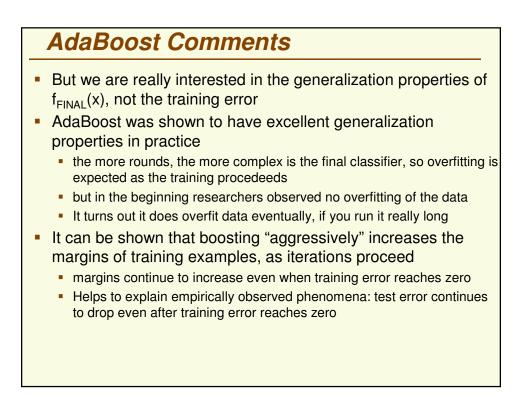


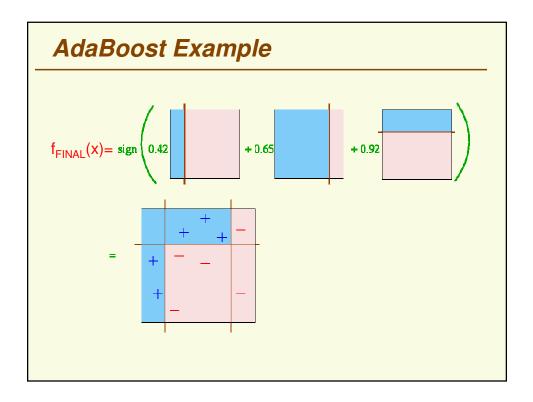


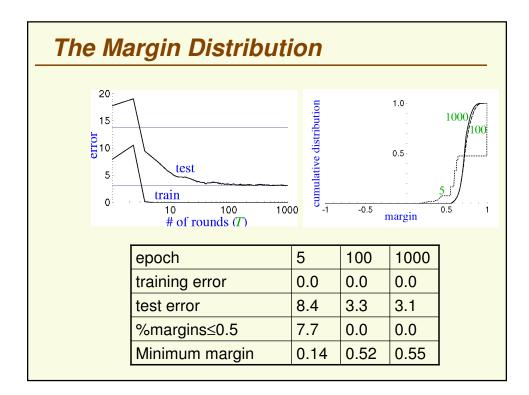




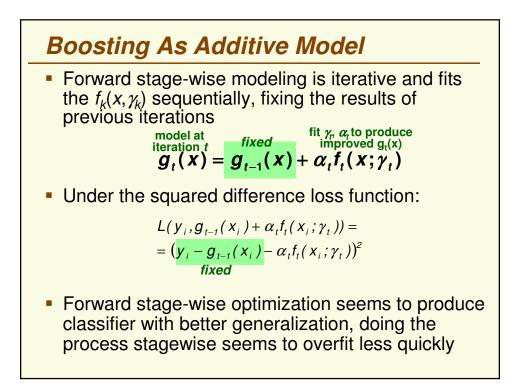


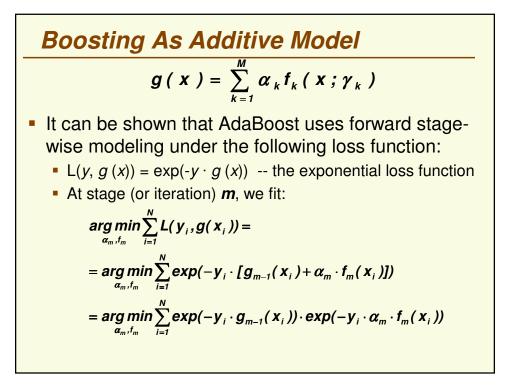


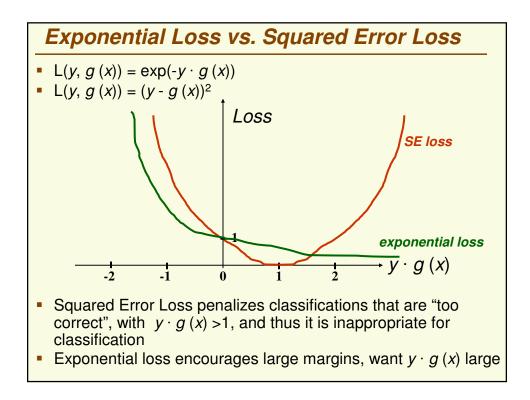




Boosting As Additive Model
• The final prediction in boosting
$$g(x)$$
 can be expressed as an additive expansion of individual classifiers
 $g(x) = \sum_{k=1}^{M} \alpha_k f_k(x; \gamma_k)$
• Typically we would try to minimize a loss function on the N training examples
 $\min_{\alpha_1, \gamma_1, \dots, \gamma_M, \alpha_M} \sum_{i=1}^{N} L\left(y_i, \sum_{k=1}^{M} \alpha_k f_k(x_i; \gamma_k)\right)$
• For example, under squared-error loss:
 $\min_{\alpha_1, \gamma_1, \dots, \gamma_M, \alpha_M} \sum_{i=1}^{N} \left(y_i - \sum_{k=1}^{M} \alpha_k f_k(x_i; \gamma_k)\right)^2$







• It can be shown that Adaboost builds a logistic regression model:

$$g(x) = log \frac{Pr(Y = 1/x)}{Pr(Y = -1/x)} = \sum_{k=1}^{M} \alpha_m f_m(x)$$
• It can also be shown that the the training error on the samples is at most:

$$\sum_{i=1}^{N} exp(-y_i \cdot g(x_i)) = \sum_{i=1}^{N} exp\left(-y_i \cdot \sum_{k=1}^{M} \alpha_m f_m(x_i)\right)$$

