
1

CS840a

Learning and Computer Vision

Prof. Olga Veksler

Lecture 5

Cross Validation, Bagging

and Boosting
Cross Validation slides are from Andrew Moore

(CMU)

Some slides are due to Robin Dhamankar

Vandi Verma & Sebastian Thrun

Today

� New Machine Learning Topics:

1) Performance evaluation methods

� cross-validation

2) Ensemble Learning

� Bagging

� Boosting

� Next time two papers:

� “Rapid Object Detection using a Boosted Cascade of
Simple Features” by P. Viola and M. Jones from
CVPR2001

� “Detecting Pedestrians Using Patterns of Motion and
Appearance” by P. Viola, M.J.Jones, D. Snow

A Regression Problem

x

y

y = f(x) + noise

Can we learn f from this data?

Let’s consider three methods…

from Andrew Moore (CMU)

Linear Regression

x

y

from Andrew Moore (CMU)

2

Linear Regression

Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..

from Andrew Moore (CMU)

Linear Regression

Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..

1

3

:

1

1

:

3

7
Z= y=

z1=(1,3)..

zk=(1,xk)

y1=7..

from Andrew Moore (CMU)

Linear Regression

Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..

1

3

:

1

1

:

3

7
Z= y=

z1=(1,3)..

zk=(1,xk)

y1=7..

ββββ=(ZTZ)-1(ZTy)

yest = β0+ β1 x

from Andrew Moore (CMU)

Quadratic Regression

x

y

from Andrew Moore (CMU)

3

Quadratic Regression

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3,2).. y1=7..

1

9

1

3

:

1

1

:

3

7
Z=

y=

z=(1 , x, x2
,)

ββββ=(ZTZ)-1(ZTy)

yest = β0+ β1 x+ β2 x
2

from Andrew Moore (CMU)

Join-the-dots

x

y

Also known as piecewise
linear nonparametric

regression if that makes
you feel better

from Andrew Moore (CMU)

Which is best?

x

y

x

y

Why not choose the method with the
best fit to the data?

from Andrew Moore (CMU)

What do we really want?

x

y

x

y

Why not choose the method with the
best fit to the data?

“How well are you going to predict
future data drawn from the same

distribution?”

from Andrew Moore (CMU)

4

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

from Andrew Moore (CMU)

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
set

(Linear regression example)

from Andrew Moore (CMU)

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
set

4. Estimate your future
performance with the test
set

(Linear regression example)

Mean Squared Error = 2.4

from Andrew Moore (CMU)

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
set

4. Estimate your future
performance with the test
set

(Quadratic regression example)

Mean Squared Error = 0.9

from Andrew Moore (CMU)

5

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
set

4. Estimate your future
performance with the test
set

(Join the dots example)

Mean Squared Error = 2.2

from Andrew Moore (CMU)

The test set method

� Good news:

� Very very simple

� Can then simply choose the method with the best
test-set score

� Bad news:

� What’s the downside?

from Andrew Moore (CMU)

The test set method

�Good news:

�Very very simple

�Can then simply choose the method with
the best test-set score

�Bad news:

�Wastes data: we get an estimate of the
best method to apply to 30% less data

�if we don’t have much data, our test-
set might just be lucky or unlucky

We say the

“test-set

estimator of
performance

has high
variance”

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

from Andrew Moore (CMU)

6

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1
datapoints

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1
datapoints

4. Note your error (xk,yk)

x

y

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1
datapoints

4. Note your error (xk,yk)

When you’ve done all points,
report the mean error.

x

y

from Andrew Moore (CMU)

7

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be
the kth

record

2. Temporarily
remove
(xk,yk) from

the dataset

3. Train on the
remaining
R-1

datapoints

4. Note your
error (xk,yk)

When you’ve
done all points,

report the mean
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV

= 2.12

from Andrew Moore (CMU)

LOOCV for Quadratic Regression
For k=1 to R

1. Let (xk,yk) be
the kth

record

2. Temporarily
remove
(xk,yk) from

the dataset

3. Train on the
remaining
R-1

datapoints

4. Note your
error (xk,yk)

When you’ve
done all points,

report the mean
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV

=0.962

from Andrew Moore (CMU)

LOOCV for Join The Dots
For k=1 to R

1. Let (xk,yk) be
the kth

record

2. Temporarily
remove
(xk,yk) from

the dataset

3. Train on the
remaining
R-1

datapoints

4. Note your
error (xk,yk)

When you’ve
done all points,

report the mean
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV

=3.33

from Andrew Moore (CMU)

Which kind of Cross Validation?

Doesn’t
waste data

Expensive Leave-
one-out

CheapVariance: unreliable
estimate of future
performance

Test-set

UpsideDownside

..can we get the best of both worlds?

from Andrew Moore (CMU)

8

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and Blue)

k-fold Cross

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and Blue)

For the blue partition: Train on all the

points not in the blue partition. Find

the test-set sum of errors on the
blue points.

k-fold Cross

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and Blue)

For the blue partition: Train on all the

points not in the blue partition. Find

the test-set sum of errors on the
blue points.

For the green partition: Train on all the
points not in the green partition.

Find the test-set sum of errors on
the green points.

k-fold Cross

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and Blue)

For the blue partition: Train on all the

points not in the blue partition. Find

the test-set sum of errors on the
blue points.

For the green partition: Train on all the
points not in the green partition.

Find the test-set sum of errors on
the green points.

For the gray partition: Train on all the
points not in the gray partition. Find

the test-set sum of errors on the

gray points.

k-fold Cross

Validation

from Andrew Moore (CMU)

9

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and Blue)

For the blue partition: Train on all the

points not in the blue partition. Find

the test-set sum of errors on the
blue points.

For the green partition: Train on all the
points not in the green partition.

Find the test-set sum of errors on
the green points.

For the gray partition: Train on all the
points not in the gray partition. Find

the test-set sum of errors on the

gray points.

Then report the mean error

Linear Regression
MSE3FOLD=2.05

k-fold Cross

Validation

x

y

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and Blue)

For the blue partition: Train on all the

points not in the blue partition. Find

the test-set sum of errors on the
blue points.

For the green partition: Train on all the
points not in the green partition.

Find the test-set sum of errors on
the green points.

For the gray partition: Train on all the
points not in the gray partition. Find

the test-set sum of errors on the

gray points.

Then report the mean error

Quadratic Regression
MSE3FOLD=1.11

k-fold Cross

Validation

from Andrew Moore (CMU)

k-fold Cross

Validation

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and Blue)

For the blue partition: Train on all the

points not in the blue partition. Find

the test-set sum of errors on the
blue points.

For the green partition: Train on all the
points not in the green partition.

Find the test-set sum of errors on
the green points.

For the gray partition: Train on all the
points not in the gray partition. Find

the test-set sum of errors on the

gray points.

Then report the mean error

Joint-the-dots
MSE3FOLD=2.93

from Andrew Moore (CMU)

Which kind of Cross Validation?

Doesn’t waste dataExpensive Leave-
one-out

Only wastes 10%. Only
10 times more expensive
instead of R times.

Wastes 10% of the data.
10 times more expensive
than test set

10-fold

Slightly better than test-
set

Wastier than 10-fold.
Expensivier than test set

3-fold

Identical to Leave-one-outN-fold

CheapVariance: unreliable
estimate of future
performance

Test-set

UpsideDownside

from Andrew Moore (CMU)

10

CV-based Model Selection

� We’re trying to decide which algorithm to use.

� We train each machine and make a table…

f44

f55

f66

⌦f33

f22

f11

Choice10-FOLD-CV-ERRTRAINERRfii

from Andrew Moore (CMU)

CV-based Model Selection

� Example: Choosing number of hidden units in a one-
hidden-layer neural net.

� Step 1: Compute 10-fold CV error for six different model
classes:

3 hidden units

4 hidden units

5 hidden units

⌦2 hidden units

1 hidden units

0 hidden units

Choice10-FOLD-CV-ERRTRAINERRAlgorithm

� Step 2: Whichever model class gave best CV score: train it
with all the data, and that’s the predictive model you’ll use.

from Andrew Moore (CMU)

CV-based Model Selection

� Example: Choosing “k” for a k-nearest-neighbor regression.

� Step 1: Compute LOOCV error for six different model
classes:

� Step 2: Whichever model class gave best CV score: train it
with all the data, and that’s the predictive model you’ll use.

⌦K=4

K=5

K=6

K=3

K=2

K=1

Choice10-fold-CV-ERRTRAINERRAlgorithm

from Andrew Moore (CMU)

⌦K=4

K=5

K=6

K=3

K=2

K=1

ChoiceLOOCV-ERRTRAINERRAlgorithm

CV-based Model Selection

� Example: Choosing “k” for a k-nearest-neighbor
regression.

� Step 1: Compute LOOCV error for six different model
classes:

� Step 2: Whichever model class gave best CV score: train it
with all the data, and that’s the predictive model you’ll use.

Why did we use 10-fold-CV for

neural nets and LOOCV for k-

nearest neighbor?

And why stop at K=6

Are we guaranteed that a local

optimum of K vs LOOCV will be

the global optimum?

What should we do if we are

depressed at the expense of

doing LOOCV for K= 1 through

1000?

The reason is Computational. For k-

NN (and all other nonparametric
methods) LOOCV happens to be as
cheap as regular predictions.

No good reason, except it looked
like things were getting worse as K
was increasing

Sadly, no. And in fact, the
relationship can be very bumpy.

Idea One: K=1, K=2, K=4, K=8,
K=16, K=32, K=64 … K=1024

Idea Two: Hillclimbing from an initial
guess at K

from Andrew Moore (CMU)

11

CV-based Model Selection

� Can you think of other decisions we can ask Cross
Validation to make for us, based on other machine
learning algorithms in the class so far?

from Andrew Moore (CMU)

CV-based Model Selection

� Can you think of other decisions we can ask Cross
Validation to make for us, based on other machine
learning algorithms in the class so far?

� Degree of polynomial in polynomial regression

� Whether to use full, diagonal or spherical Gaussians in a Gaussian

Bayes Classifier.

� The Kernel Width in Kernel Regression

� The Kernel Width in Locally Weighted Regression

� The Bayesian Prior in Bayesian Regression

These involve
choosing the value of a
real-valued parameter.
What should we do?

from Andrew Moore (CMU)

CV-based Model Selection

� Can you think of other decisions we can ask Cross
Validation to make for us, based on other machine
learning algorithms in the class so far?

� Degree of polynomial in polynomial regression

� Whether to use full, diagonal or spherical Gaussians in a Gaussian

Bayes Classifier.

� The Kernel Width in Kernel Regression

� The Kernel Width in Locally Weighted Regression

� The Bayesian Prior in Bayesian Regression

These involve
choosing the value of a
real-valued parameter.
What should we do?

Idea One: Consider a discrete set of values

(often best to consider a set of values with
exponentially increasing gaps, as in the K-NN

example).

Idea Two: Compute and then

do gradianet descent.
Parameter

LOOCV

∂

∂

from Andrew Moore (CMU)

CV-based Model Selection

� Can you think of other decisions we can ask Cross
Validation to make for us, based on other machine
learning algorithms in the class so far?

� Degree of polynomial in polynomial regression

� Whether to use full, diagonal or spherical Gaussians in a Gaussian

Bayes Classifier.

� The Kernel Width in Kernel Regression

� The Kernel Width in Locally Weighted Regression

� The Bayesian Prior in Bayesian Regression

These involve
choosing the value of a
real-valued parameter.
What should we do?

Idea One: Consider a discrete set of values

(often best to consider a set of values with
exponentially increasing gaps, as in the K-NN

example).

Idea Two: Compute and then

do gradianet descent.
Parameter

LOOCV

∂

∂

from Andrew Moore (CMU)

12

⌦Quad reg’n

LWR, KW=0.1

LWR, KW=0.5

Linear Reg’n

10-NN

1-NN

Choice10-fold-CV-ERRTRAINERRAlgorithm

CV-based Algorithm Choice

� Example: Choosing which regression algorithm to use

� Step 1: Compute 10-fold-CV error for six different model
classes:

� Step 2: Whichever algorithm gave best CV score: train it
with all the data, and that’s the predictive model you’ll use.

from Andrew Moore (CMU)

Cross-validation for classification

� Instead of computing the sum squared

errors on a test set, you should compute…

from Andrew Moore (CMU)

Cross-validation for classification

� Instead of computing the sum squared

errors on a test set, you should compute…

The total number of misclassifications on

a testset.

from Andrew Moore (CMU)

Cross-validation for classification

� Instead of computing the sum squared

errors on a test set, you should compute…

The total number of misclassifications on

a testset. • What’s LOOCV of 1-NN?

• What’s LOOCV of 3-NN?

• What’s LOOCV of 22-NN?

from Andrew Moore (CMU)

13

Cross-Validation for classification

� Choosing k for k-nearest neighbors

� Choosing h for the Parzen windows

� Any other “free” parameter of a classifier

� Choosing which classifier to use

� Choosing Features to use

from Andrew Moore (CMU)

Feature Selection

� Suppose you have a learning algorithm LA
and a set of input attributes { X1 , X2 .. Xm }

� You expect that LA will only find some
subset of the attributes useful.

� Question: How can we use cross-validation
to find a useful subset?

� Four ideas:
� Forward selection

� Backward elimination

� Hill Climbing

� Stochastic search (Simulated Annealing or GAs)

Another fun area in which
Andrew has spent a lot of his

wild youth

from Andrew Moore (CMU)

Ensemble Learning: Bagging and Boosting

� So far we have talked about design of a single classifier
that generalizes well (want to “learn” f(x))

� From statistics, we know that it is good to average your
predictions (reduces variance)

� Bagging
� reshuffle your training data to create k different trainig sets and

learn f1(x),f2(x),…,fk(x)

� Combine the k different classifiers by majority voting

fFINAL(x) =sign[Σ 1/k fi(x)]

� Boosting
� Assign different weights to training samples in a “smart” way so

that different classifiers pay more attention to different samples

� Weighted majority voting, the weight of individual classifier is
proportional to its accuracy

� Ada-boost (1996) was influenced by bagging, and it is superior
to bagging

Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� each classifier is trained on the average of 63.2% of the
training examples
� For a dataset with N examples, each example has a probability of

1-(1-1/N)N of being selected at least once in the N samples. For N→∞,
this number converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is
constructed for each of these training sets, using the same
classification algorithm

� To classify an unknown sample x, let each classifier predict.

� The bagged classifier fFINAL(x) then combines the predictions
of the individual classifiers to generate the final outcome,
frequently this combination is simple voting

14

Boosting: motivation

� It is usually hard to design an accurate classifier which

generalizes well

� However it is usually easy to find many “rule of thumb”
weak classifiers

� A classifier is weak if it is only slightly better than random
guessing

� Can we combine several weak classifiers to produce an
accurate classifier?

� Question people have been working on since 1980’s

Ada Boost

� Let’s assume we have 2-class classification

problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function:

(((()))) (((())))∑∑∑∑
====

====
T

t

tt xfxg
1

αααα

� where ft(x) is the “weak” classifier

� As usual, the final classifier is the sign of the
discriminant function, that is ffinal(x) = sign[g(x)]

Idea Behind Ada Boost

� Algorithm is iterative

� Maintains distribution of weights over the training
examples

� Initially distribution of weights is uniform

� At successive iterations, the weight of misclassified
examples is increased, forcing the weak learner to
focus on the hard examples in the training set

More Comments on Ada Boost

� Ada boost is very simple to implement, provided you
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at
least slightly better than random

� will work if the error rate of ft(x) is less than 0.5 (0.5 is the
error rate of a random guessing classifier for a 2-class
problem)

� Can be applied to boost any classifier, not
necessarily weak

15

Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training
points ∑ d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute the error rate εt as

εt= ∑i=1…N dt(xi) · I[yi ≠ ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑i=1 dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

Ada Boost

� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as

εt= ∑ dt(xi) · I[yi ≠ ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑t+1d(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� If the classifier does not take weighted samples, this
step can be achieved by sampling from the training
samples according to the distribution dt(x)

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ dt(xi) · I[yi ≠ ft(xi)]
� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑ dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� Since the weak classifier is better than random, we
expect εt < 1/2

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ d(xi) · I(yi ≠ ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)
� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑ dt+1(xi) = 1

� fFINAL(x) =sign [∑ αtft (x)]

� Recall that εt < ½

� Thus (1- εt)/ εt > 1 ⇒ αt > 0

� The smaller is εt, the larger is αt, and thus the more
importance (weight) classifier ft(x) gets in the final classifier

fFINAL(x) =sign [∑ αt ft (x)]

16

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ dt (xi) · I(yi ≠ ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑dt+1(xi) = 1
� fFINAL(x) =sign [∑ αt ft (x)]

� Weight of misclassified examples is increased and the
new dt+1(xi)’s are normalized to be a distribution again

AdaBoost Example
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training
samples

Note: in the following slides, ht(x) is used instead of ft(x),
and D instead of d

AdaBoost Example

ROUND 1

AdaBoost Example

ROUND 2

17

AdaBoost Example

ROUND 3

AdaBoost Example

fFINAL(x)=

AdaBoost Comments

� It can be shown that the training error drops
exponentially fast, if each weak classifier is slightly
better than random

(((())))∑∑∑∑−−−−≤≤≤≤
t ttrainErr 22exp γγγγ

� Here γγγγt = εεεεt – 1/2, where is classification error at
round t (weak classifier ft)

AdaBoost Comments

� But we are really interested in the generalization properties of
fFINAL(x), not the training error

� AdaBoost was shown to have excellent generalization
properties in practice

� the more rounds, the more complex is the final classifier, so overfitting is
expected as the training procedeeds

� but in the beginning researchers observed no overfitting of the data

� It turns out it does overfit data eventually, if you run it really long

� It can be shown that boosting “aggressively” increases the
margins of training examples, as iterations proceed

� margins continue to increase even when training error reaches zero

� Helps to explain empirically observed phenomena: test error continues

to drop even after training error reaches zero

18

AdaBoost Example

fFINAL(x)=

The Margin Distribution

0.550.520.14Minimum margin

0.00.07.7%margins≤0.5

3.13.38.4test error

0.00.00.0training error

10001005epoch

Boosting As Additive Model

� The final prediction in boosting g(x) can be
expressed as an additive expansion of individual
classifiers

);x(f)x(g kk

M

1k

k γγγγαααα∑∑∑∑
====

====

∑∑∑∑ ∑∑∑∑
==== ====

N

1i

M

1k

kikki
,,...,,

);x(f,yLmin
MM11

γγγγαααα
ααααγγγγγγγγαααα

� Typically we would try to minimize a loss function
on the N training examples

� For example, under squared-error loss:

∑∑∑∑ ∑∑∑∑
==== ====

−−−−

N

1i

2M

1k

kikki
,,...,,

);x(fymin
MM11

γγγγαααα
ααααγγγγγγγγαααα

fixed

fixed

Boosting As Additive Model

()2

titti1ti);x(f)x(gy γα−−= −

=+−));x(f)x(g,y(L titti1ti γα

� Under the squared difference loss function:

� Forward stage-wise optimization seems to produce
classifier with better generalization, doing the
process stagewise seems to overfit less quickly

);()()(1 ttttt xfxgxg γγγγαααα++++==== −−−−

� Forward stage-wise modeling is iterative and fits
the fk(x,γk) sequentially, fixing the results of
previous iterations

model at
iteration t

fit γγγγt, ααααt to produce
improved gt(x)

19

Boosting As Additive Model

� It can be shown that AdaBoost uses forward stage-
wise modeling under the following loss function:

� L(y, g (x)) = exp(-y · g (x)) -- the exponential loss function

� At stage (or iteration) m, we fit:

∑∑∑∑

∑∑∑∑

∑∑∑∑

====
−−−−

====
−−−−

====

⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅−−−−====

⋅⋅⋅⋅++++⋅⋅⋅⋅−−−−====

====

N

1i

immii1mi
f,

N

1i

immi1mi
f,

i

N

1i

i
f,

))x(fyexp())x(gyexp(minarg

)])x(f)x(g[yexp(minarg

))x(g,y(Lminarg

mm

mm

mm

αααα

αααα

αααα

αααα

αααα

);x(f)x(g kk

M

1k
k γγγγαααα∑∑∑∑

====

====

Exponential Loss vs. Squared Error Loss

� L(y, g (x)) = exp(-y · g (x))

y · g (x)
0-2 -1 1 2

� L(y, g (x)) = (y - g (x))2

1

SE loss

exponential loss

� Squared Error Loss penalizes classifications that are “too
correct”, with y · g (x) >1, and thus it is inappropriate for
classification

� Exponential loss encourages large margins, want y · g (x) large

Loss

Logistic Regression Model

� It can be shown that Adaboost builds a logistic regression
model:

(((())))
(((())))

(((())))
(((())))∑∑∑∑

====

====
−−−−====

====
====

M

1k
mm xf

x|1YPr

x|1YPr
logxg αααα

(((())))(((()))) (((())))∑∑∑∑ ∑∑∑∑∑∑∑∑
==== ========

⋅⋅⋅⋅−−−−====⋅⋅⋅⋅−−−−

N

1i

M

1k

immi

N

1i

ii xfyexpxgyexp αααα

� It can also be shown that the the training error on the samples
is at most:

Practical Advantages of AdaBoost

� fast

� simple

� Has only one parameter to tune (T)

� flexible: can be combined with any classifier

� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses
that are better than random guessing

� finds outliers

� The hardest examples are frequently the “outliers”

20

Caveats

� performance depends on data & weak learner

� AdaBoost can fail if
� weak hypothesis too complex (overfitting)

� weak hypothesis too weak (γ
t
→0 too quickly),

� underfitting

� Low margins → overfitting

� empirically, AdaBoost seems especially
susceptible to noise

