
1

Lecture 6
Multilayer Neural Networks

CS840a

Learning and Computer Vision

Prof. Olga Veksler

Today

� Multilayer Neural Networks

� Inspiration from Biology

� History

� Perceptron

� Multilayer perceptron

Brain vs. Computer

� Designed to solve logic and
arithmetic problems

� Can solve a gazillion
arithmetic and logic problems
in an hour

� absolute precision

� Usually one very fast procesor

� high reliability

� Evolved (in a large part)
for pattern recognition

� Can solve a gazillion of
PR problems in an hour

� Huge number of parallel
but relatively slow and
unreliable processors

� not perfectly precise

� not perfectly reliable

Seek an inspiration from human brain for PR?

Neuron: Basic Brain Processor

� Neurons are nerve cells that transmit signals to and from
brains at the speed of around 200mph

� Each neuron cell communicates to anywhere from 1000 to
10,000 other neurons, muscle cells, glands, so on

� Have around 1010 neurons in our brain (network of
neurons)

� Most neurons a person is ever going to have are already
present at birth

2

Neuron: Basic Brain Processor

nucleus

cell body

axon

dendrites

� Main components of a neuron

� Cell body which holds DNA information in nucleus

� Dendrites may have thousands of dendrites, usually short

� axon long structure, which splits in possibly thousands branches at

the end. May be up to 1 meter long

Neuron in Action (simplified)

� Input : neuron collects signals from other neurons
through dendrites, may have thousands of dendrites

� Processor: Signals are accumulated and
processed by the cell body

� Output: If the strength of incoming signals is large
enough, the cell body sends a signal (a spike of
electrical activity) to the axon

neuron

bodyd
e

n
d

ri
te

s

axon

Neural Network

ANN History: Birth

� 1943, famous paper by W. McCulloch
(neurophysiologist) and W. Pitts (mathematician)

� Using only math and algorithms, constructed a model
of how neural network may work

� Showed it is possible to construct any computable
function with their network

� Was it possible to make a model of thoughts of a
human being?

� Considered to be the birth of AI

� 1949, D. Hebb, introduced the first (purely
pshychological) theory of learning

� Brain learns at tasks through life, thereby it goes
through tremendous changes

� If two neurons fire together, they strengthen each
other’s responses and are likely to fire together in the
future

3

ANN History: First Successes

� 1958, F. Rosenblatt,
� perceptron, oldest neural network still in use today

� Algorithm to train the perceptron network (training is
still the most actively researched area today)

� Built in hardware

� Proved convergence in linearly separable case

� 1959, B. Widrow and M. Hoff

� Madaline

� First ANN applied to real problem (eliminate echoes in
phone lines)

� Still in commercial use

ANN History: Stagnation

� Early success lead to a lot of claims which were not
fulfilled

� 1969, M. Minsky and S. Pappert
� Book “Perceptrons”

� Proved that perceptrons can learn only linearly
separable classes

� In particular cannot learn very simple XOR function

� Conjectured that multilayer neural networks also
limited by linearly separable functions

� No funding and almost no research (at least in
North America) in 1970’s as the result of 2 things
above

ANN History: Revival
� Revival of ANN in 1980’s

� 1982, J. Hopfield
� New kind of networks (Hopfield’s networks)

� Bidirectional connections between neurons

� Implements associative memory

� 1982 joint US-Japanese conference on ANN
� US worries that it will stay behind

� Many examples of mulitlayer NN appear

� 1982, discovery of backpropagation algorithm
� Allows a network to learn not linearly separable

classes

� Discovered independently by

1. Y. Lecunn
2. D. Parker
3. Rumelhart, Hinton, Williams

ANN: Perceptron

� Input and output layers

� g(x) = wtx + w0

� Limitation: can learn only linearly separable classes

4

MNN: Feed Forward Operation

input layer:
d features

x(1)

x(2)

x(d)

bias unit

hidden layer: output layer:
m outputs, one for

each class

z1

zm

wji vkj

MNN: Notation for Weights

� Use wji to denote the weight between input unit i
and hidden unit j

x(i)

wji

hidden unit jinput unit i

wjix
(i) yj

� Use vkj to denote the weight between hidden unit j
and output unit k

vkj

output unit khidden unit j

yj
zkvkjyj

MNN: Notation for Activation

� Use neti to denote the activation and hidden unit j

hidden unit j

yj

(((())))∑∑∑∑
====

++++====
d

i
jji

i
j wwxnet

1

0

x(1) w
j1

x(2) wj2

w j0

� Use net*k to denote the activation at output unit k

∑∑∑∑
====

++++====
HN

j

kkjjk vvynet
1

0

*
output unit k

zj

y1 vk1

y2vk2

v k0

Discriminant Function

� Discriminant function for class k (the output of the
k th output unit)

(((()))) ======== kk zxg

++++

++++==== ∑∑∑∑ ∑∑∑∑

==== ====

HN

j
k

d

i
j

i

jikj vwxwfvf
1

0
1

0

)(

activation at
jth hidden unit

activation at kth output unit

5

Discriminant Function

Expressive Power of MNN

� It can be shown that every continuous function
from input to output can be implemented with
enough hidden units, 1 hidden layer, and proper
nonlinear activation functions

� This is more of theoretical than practical interest
� The proof is not constructive (does not tell us exactly

how to construct the MNN)

� Even if it were constructive, would be of no use since
we do not know the desired function anyway, our goal
is to learn it through the samples

� But this result does give us confidence that we are on
the right track

� MNN is general enough to construct the correct
decision boundaries, unlike the Perceptron

MNN Activation function
� Must be nonlinear for expressive power larger than

that of perceptron
� If use linear activation function at hidden layer, can

only deal with linearly separable classes

� Suppose at hidden unit j, h(u)=aju

(((())))

++++

++++==== ∑∑∑∑ ∑∑∑∑

==== ====

HN

j
k

d

i
j

i
jikjk vwxwhvfxg

1
0

1
0

)(

++++

++++==== ∑∑∑∑ ∑∑∑∑

==== ====

HN

j
k

d

i
j

i
jijkj vwxwavf

1
0

1
0

)(

(((())))

++++++++==== ∑∑∑∑∑∑∑∑

==== ====

d

1i

N

1j
0k0jjkj

)i(
jijkj

H

vwavxwavf

++++++++==== ∑∑∑∑ ∑∑∑∑ ∑∑∑∑

==== ==== ====

d

1i

N

1j
0k

N

1j
0jjkjjijkj

)i(
H H

vwavwavxf

wi
new w0

new

MNN Activation function

� could use a discontinuous activation function

(((())))knetf

<<<<−−−−
≥≥≥≥

====
01
01

k

k

netif
netif

� However, we will use
gradient descent for
learning, so we need to
use a continuous
activation function

sigmoid function

� From now on, assume f is a differentiable function

6

� Network have two modes of operation:

� Feedforward
The feedforward operations consists of presenting a
pattern to the input units and passing (or feeding) the
signals through the network in order to get outputs
units (no cycles!)

� Learning
The supervised learning consists of presenting an
input pattern and modifying the network parameters
(weights) to reduce distances between the computed
output and the desired output

MNN: Modes of Operation

MNN

� Can vary
� number of hidden layers

� Nonlinear activation function

� Can use different function for hidden and
output layers

� Can use different function at each hidden
and output node

MNN: Class Representation

� Training samples x1 ,…, xn each of class 1,…,m

� Let network output z represent class c as target t(c)

(((())))

========

====

0

1

01

M

M

M

M
c

m

c t

z

z

z

z
c th row

sample of class c MNN with weights

wji and vkj

t(c)

Our Ultimate Goal For FeedForward Operation

Modify (learn) MNN parameters wji and vkj so that for
each training sample of class c MNN output z = t(c)

MNN training to achieve the Ultimate Goal

Network Training (learning)

MNN with weights

wji and vkj

input sample xp

choose p

1. Initialize weights wji and vkj randomly but not to 0

2. Iterate until a stopping criterion is reached

Compare output z with the
desired target t; adjust wji

and vkj to move closer to the
goal t (by backpropagation)

output

====

mz

z
z M

1

7

� Learn wji and vkj by minimizing the training error

� What is the training error?

� Suppose the output of MNN for sample x is z and
the target (desired output for x) is t

BackPropagation

(((()))) (((()))) (((())))(((())))∑∑∑∑∑∑∑∑
==== ====

−−−−====
n

i

m

c

i

c

i

c ztvwJ
1 1

2

2

1
,� Training error:

� Use gradient descent:
(((()))) (((()))) (((())))(((())))t

w
tt wJww ∇∇∇∇−−−−====++++ ηηηη1

(((()))) (((()))) ====00 ,wv random

repeat until convergence:

(((()))) (((()))) (((())))(((())))t
v

tt vJvv ∇∇∇∇−−−−====++++ ηηηη1

(((()))) (((())))∑∑∑∑
====

−−−−====
m

c
cc ztvwJ

1

2

2

1
,� Error on one sample:

� For simplicity, first take training error for one
sample xi

BackPropagation

(((()))) (((())))∑∑∑∑
====

−−−−====
m

c
cc ztvwJ

1

2

2

1
,

� Need to compute

1. partial derivative w.r.t. hidden-to-output weights
kjv

J

∂∂∂∂

∂∂∂∂

2. partial derivative w.r.t. input-to-hidden weights
jiw

J

∂∂∂∂

∂∂∂∂

(((())))

++++

++++==== ∑∑∑∑ ∑∑∑∑

==== ====

HN

j

k

d

i

j
i

jikjk vwxwfvfz
1

0

1

0

fixed constant

function of w,v

BackPropagation: Layered Model

(((())))∑∑∑∑
====

++++====
d

i
jji

i

j wwxnet
1

0

activation at
hidden unit j

(((())))jj netfy ====output at
hidden unit j

∑∑∑∑
====

++++====
HN

j

kkjjk vvynet
1

0
*activation at

output unit k

(((())))*
kk netfz ====

activation at
output unit k

(((()))) (((())))∑∑∑∑
====

−−−−====
m

c
cc ztvwJ

1

2

2

1
,objective function

kjv

J

∂∂∂∂

∂∂∂∂

c
h

a
in

 r
u

le

jiw

J

∂∂∂∂

∂∂∂∂

c
h

a
in

 r
u

le

BackPropagation

(((()))) (((())))∑∑∑∑
====

−−−−====
m

c

cc ztvwJ
1

2

2

1
,(((())))*

kk netfz ====∑∑∑∑
====

++++====
HN

j
kkjjk vvynet

1
0

====
∂∂∂∂

∂∂∂∂

kjv

J

(((())))
kj

k

k

k
kk

v

net

net

z
zt

∂∂∂∂

∂∂∂∂

∂∂∂∂

∂∂∂∂
−−−−−−−−====

*

*

(((())))∑∑∑∑
====

−−−−
∂∂∂∂

∂∂∂∂m

c

cc

kj

zt
v1

2

2

1 (((()))) (((())))∑∑∑∑
====

−−−−
∂∂∂∂

∂∂∂∂
−−−−====

m

c

cc

kj

cc zt
v

zt
1

(((()))) (((())))kk

kj

kk zt
v

zt −−−−
∂∂∂∂

∂∂∂∂
−−−−==== (((()))) (((())))k

kj

kk z
v

zt
∂∂∂∂

∂∂∂∂
−−−−−−−−====

(((()))) (((())))
(((()))) (((())))

====−−−−−−−−

≠≠≠≠−−−−−−−−
====

0'

0'
*

*

jifnetfzt

jifynetfzt

kkk

jkkk

kjv

J

∂∂∂∂

∂∂∂∂
� First compute hidden-to-output derivatives

*

8

BackPropagation

Gradient Descent Single Sample Update Rule for
hidden-to-output weights vkj

(((()))) (((()))) (((()))) (((()))) jkkk
t

kj
t

kj ynetfztvv *1 '−−−−++++====++++ ηηηη

(((()))) (((()))) (((()))) (((())))*

0

1

0 ' kkk
t

k
t

k netfztvv −−−−++++====++++ ηηηη

j > 0:

j = 0 (bias weight):

BackPropagation

� Now compute input-to-hidden
jiw

J

∂∂∂∂

∂∂∂∂

(((()))) (((())))∑∑∑∑
====

−−−−====
m

c

cc ztvwJ
1

2

2

1
,

(((())))*
kk netfz ====

∑∑∑∑
====

++++====
HN

s

kkssk vvynet
1

0
*

(((())))jj netfy ====

(((())))∑∑∑∑
====

++++====
d

h

hhi

i

h wwxnet
1

0====
∂∂∂∂

∂∂∂∂

jiw

J
(((()))) (((())))∑∑∑∑

====

−−−−
∂∂∂∂

∂∂∂∂
−−−−

m

k
kk

ji

kk zt
w

zt
1

(((())))
ji

k
m

k k

k
kk

w

net

net

z
zt

∂∂∂∂

∂∂∂∂

∂∂∂∂

∂∂∂∂
−−−−−−−−==== ∑∑∑∑

====

*

1
*

(((())))∑∑∑∑
==== ∂∂∂∂

∂∂∂∂
−−−−−−−−====

m

k ji

k
kk

w

z
zt

1

(((()))) (((())))
ji

j

j

k
m

k
kkk

w

y

y

net
netfzt

∂∂∂∂

∂∂∂∂

∂∂∂∂

∂∂∂∂
′′′′−−−−−−−−==== ∑∑∑∑

====

*

1

*

(((()))) (((())))
ji

j

j

j

kj

m

k
kkk

w

net

net

y
vnetfzt

∂∂∂∂

∂∂∂∂

∂∂∂∂

∂∂∂∂
′′′′−−−−−−−−==== ∑∑∑∑

====1

*

(((()))) (((())))
ji

j

j

j

kj

m

k
kkk

w

net

net

y
vnetfzt

∂∂∂∂

∂∂∂∂

∂∂∂∂

∂∂∂∂
′′′′−−−−−−−−==== ∑∑∑∑

====1

*

(((()))) (((()))) (((()))) (((())))

(((()))) (((()))) (((())))

====′′′′′′′′−−−−−−−−

≠≠≠≠′′′′′′′′−−−−−−−−

====

∑∑∑∑

∑∑∑∑

====

====

0

0

1

*

1

*

iifnetfvnetfzt

iifxnetfvnetfzt

jkj

m

k
kkk

i
jkj

m

k
kkk

BackPropagation

Gradient Descent Single Sample Update Rule for
input-to-hidden weights wji

(((()))) (((()))) (((()))) (((()))) (((()))) (((()))) kj

m

k
kkk

i
j

t
ji

t
ji vnetfztxnetfww ∑∑∑∑

====

++++ ′′′′−−−−′′′′++++====
1

*1 ηηηη

(((()))) (((()))) (((()))) (((()))) (((()))) kj

m

k
kkkj

t
j

t
j vnetfztnetfww ∑∑∑∑

====

++++ ′′′′−−−−′′′′++++====
1

*

0

1

0 ηηηη

i > 0:

i = 0 (bias weight):

(((()))) (((()))) (((()))) (((())))

(((()))) (((()))) (((())))

====′′′′−−−−′′′′−−−−

≠≠≠≠′′′′−−−−′′′′−−−−

====

∑∑∑∑

∑∑∑∑

====

====

0

0

1

*

1

*

iifvnetfztnetf

iifvnetfztxnetf

kj

m

k
kkkj

kj

m

k
kkk

i
j

jiw

J

∂∂∂∂

∂∂∂∂

BackPropagation of Errors

(((()))) (((()))) (((()))) (((()))) kj

m

k
kkk

i
j

ji

vnetfztxnetf
w

J
∑∑∑∑

====

′′′′−−−−′′′′−−−−====
∂∂∂∂

∂∂∂∂

1

* (((()))) (((()))) jkkk

kj

ynetfzt
v

J *'−−−−−−−−====
∂∂∂∂

∂∂∂∂

� Name “backpropagation” because during training,
errors propagated back from output to hidden layer

error

z1

zm

unit j
unit i

9

BackPropagation

� Consider update rule for hidden-to-output weights:
(((()))) (((()))) (((()))) (((()))) jkkk

t
kj

t
kj ynetfztvv *1 '−−−−++++====++++ ηηηη

� Suppose 0>>>>−−−− kk zt

kk zt >>>>� Then output of the k th hidden unit is too small:

� Typically activation function f is s.t. f ’ > 0

� Thus (((()))) (((()))) 0' * >>>>−−−− kkk netfzt

� There are 2 cases:
0>>>>jy1. , then to increase zk, should increase weight vkj

zk
yj

(((()))) (((()))) 0' * >>>>−−−− jkkk ynetfztηηηηwhich is exactly what we do since

0<<<<jy2. , then to increase zk, should decrease weight vkj

(((()))) (((()))) 0' * <<<<−−−− jkkk ynetfztηηηηwhich is exactly what we do since

BackPropagation

� The case is analogous

� Similarly, can show that input-to-hidden weights
make sense

0<<<<−−−− kk zt

(((()))) (((()))) (((()))) (((()))) kj

m

k

kkk

i

j

ji

vnetfztxnetf
w

J
∑∑∑∑

====

′′′′−−−−′′′′−−−−====
∂∂∂∂

∂∂∂∂

1

*

� Important: weights should be initialized to random
nonzero numbers

� if vkj = 0, input-to-hidden weights wji never updated

Training Protocols

� How to present samples in training set and update
the weights?

� Three major training protocols:

1. Stochastic

� Patterns are chosen randomly from the training set,
and network weights are updated after every sample

presentation

2. Batch

� weights are update based on all samples; iterate
weight update

3. Online

� each sample is presented only once, weight update
after each sample presentation

Stochastic Back Propagation

1. Initialize
� number of hidden layers nH
� weights w, v
� convergence criterion θθθθ and learning rate ηηηη
� time t = 0

2. do
x � randomly chosen training pattern

(((()))) (((()))) jkkkkjkj ynetfztvv *'−−−−++++==== ηηηη

(((()))) (((())))*

00 ' kkkkk netfztvv −−−−++++==== ηηηη

(((()))) (((()))) (((()))) (((()))) kj

m

k
kkk

i

jjiji vnetfztxnetfww ∑∑∑∑
====

′′′′−−−−′′′′++++====
1

*ηηηη

(((()))) (((()))) (((()))) kj

m

k
kkkjjj vnetfztnetfww ∑∑∑∑

====

′′′′−−−−′′′′++++====
1

*
00 ηηηη

for all mknjdi H ≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤ 0,0,0

t = t + 1
until θθθθ<<<<|||| J

3. return v, w

10

already derived this

Batch Back Propagation

� This is the true gradient descent, (unlike stochastic
propagation)

� The full objective function:

(((()))) (((()))) (((())))(((())))∑∑∑∑∑∑∑∑
==== ====

−−−−====
n

i

m

c

i
c

i
c ztvwJ

1 1

2

2

1
,

� For simplicity, derived backpropagation for a
single sample objective function:

(((()))) (((())))∑∑∑∑
====

−−−−====
m

c
cc ztvwJ

1

2

2

1
,

(((()))) (((()))) (((())))(((())))∑∑∑∑ ∑∑∑∑
==== ====

−−−−

∂∂∂∂

∂∂∂∂
====

∂∂∂∂

∂∂∂∂ n

i

m

c

i
c

i
c zt

w
vwJ

w 1 1

2

2

1
,

� Derivative of full objective function is just a sum
of derivatives for each sample:

Batch Back Propagation

(((()))) (((()))) (((()))) (((())))∑∑∑∑ ∑∑∑∑
==== ====

′′′′−−−−′′′′−−−−====
∂∂∂∂

∂∂∂∂ n

p

kj

m

k

kkk
i

pj

ji

vnetfztxnetf
w

J

1 1

*

� For example,

Batch Back Propagation

1. Initialize nH , w, v , θθθθ , ηηηη , t = 0
2. do

(((()))) (((()))) j
*
kkkkjkj ynet'fztvv −−−−++++==== ηηηη∆∆∆∆∆∆∆∆

(((()))) (((())))*
00 ' kkkkk netfztvv −−−−++++∆∆∆∆====∆∆∆∆ ηηηη

(((()))) (((()))) (((()))) (((()))) kj

m

1k

*
kkk

i
pjjiji vnetfztxnetfww ∑∑∑∑

====

′′′′−−−−′′′′++++==== ηηηη∆∆∆∆∆∆∆∆

(((()))) (((()))) (((()))) kj

m

1k

*
kkkj0j0j vnetfztnetfww ∑∑∑∑

====

′′′′−−−−′′′′++++==== ηηηη∆∆∆∆∆∆∆∆

for all np ≤≤≤≤≤≤≤≤1

t = t + 1
until θθθθ<<<<|||| J

3. return v, w

for all mknjdi H ≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤ 0,0,0

000 ====∆∆∆∆====∆∆∆∆====∆∆∆∆====∆∆∆∆ jjikkj wwvv

000000 ;;; jjjjijijikkkkjkjkj wwwwwwvvvvvv ∆∆∆∆++++====∆∆∆∆++++====∆∆∆∆++++====∆∆∆∆++++====

o
n

e
 e

p
o

c
h

Training Protocols

1. Batch

� True gradient descent

2. Stochastic

� Faster than batch method

� Usually the recommended way

3. Online

� Used when number of samples is so large it does not
fit in the memory

� Dependent on the order of sample presentation

� Should be avoided when possible

11

MNN Training

training time

Large training
error: in the
beginning random
decision regions

Small training
error: decision
regions improve
with time

Zero training
error: decision
regions separate
training data
perfectly, but we
overfited the
network

MNN Learning Curves

� Training data: data on which learning (gradient descent for
MNN) is performed

� Validation data: used to assess network generalization
capabilities

training time

c
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r

training error

valid
atio

n

err
or

� Training error typically
goes down, since with
enough hidden units, can
find discriminant function
which classifies training
patterns exactly

� Validation error first goes down, but then goes up since at
some point we start to overfit the network to the validation
data

Learning Curves

training time

c
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r

training error

valid
atio

n e
rr

or

� this is a good time to stop training, since after this time we
start to overfit

� Stopping criterion is part of training phase, thus validation
data is part of the training data

� To assess how the network will work on the unseen
examples, we still need test data

Learning Curves

� validation data is used to
determine “parameters”, in
this case when learning
should stop

� Stop training after the first local minimum on validation data

� We are assuming performance on test data will be similar to
performance on validation data

stop training

12

Data Sets

� Training data

� data on which learning is performed

� Validation data

� validation data is used to determine any free
parameters of the classifier

� k in the knn neighbor classifier

� h for parzen windows

� number of hidden layers in the MNN

� etc

� Test data

� used to assess network generalization capabilities

Practical Tips for BP: Momentum

� Gradient descent finds only a local minima

� not a problem if J(w) is small at a local minima. Indeed,
we do not wish to find w s.t. J(w) = 0 due to overfitting

J(w)

global minimum

reasonable local
minimum

� problem if J(w) is
large at a local
minimum w

J(w)

global minimum

bad local
minimum

Practical Tips for BP: Momentum

� Momentum: popular method to avoid local minima
and also speeds up descent in plateau regions

� weight update at time t is

� at αααα = 0, equivalent to gradient descent

� at αααα = 1, gradient descent is ignored, weight update
continues in the direction in which it was moving
previously (momentum)

� usually, αααα is around 0.9

(((()))) (((()))) (((()))) (((())))11 1 −−−−++++ ∆∆∆∆++++

∂∂∂∂

∂∂∂∂
−−−−++++====

ttt w
w

J
ww ααααηηηηαααα

� add temporal average direction in which weights have
been moving recently

(((()))) (((()))) (((())))1−−−−−−−−====∆∆∆∆ ttt www

previous
directionsteepest descent

direction

Practical Tips for BP: Activation Function

� Gradient descent will work with any continuous
and differentiable f , however some choices are
better than others

� Desirable properties of f :

� nonlinearity to express nonlinear decision boundaries

� Saturation, that is f has minimum and maximum values
(-a and b). Keeps and weights w, v bounded, thus
training time down

� Monotonicity so that activation function itself does not
introduce additional local minima

� Linearity for a small values of net, so that network can
produce linear model, if data supports it

� antisymmetric, that is f(-1) = -f(1), leads to faster
learning

13

Practical Tips for BP: Activation Function

� Sigmoid activation function f satisfies all of the
above properties

(((())))
netnet

netnet

ee

ee
netf

⋅⋅⋅⋅−−−−⋅⋅⋅⋅

⋅⋅⋅⋅−−−−⋅⋅⋅⋅

++++

−−−−
==== ββββββββ

ββββββββ

αααα

� Convenient to set αααα = 1.716, β β β β = 2/3

� Linear range is roughly for –1 < net < 1

� Asymptotic values mmmm1.716

Practical Tips for BP: Target Values

� For sigmoid function, to represent class c, use

(((())))

−−−−

−−−−

====

1

1

1

M

M
ct

c th row

� Always use values less than asymptotic values
for target
� For small error, need t to be close to z = f(net)

� For any finite value of net, f(net) never reaches the
asymptotic value

� The error will always be too large, training will never
stop, and weights w,v will go to infinity

Practical Tips for BP: Normalization

� Each feature of input data should be normalized

� Suppose we measure fish length in meters and
weight in grams

� Typical sample [length = 0.5, weight = 3000]

� Feature length will be basically ignored by the network

� If length is in fact important, learning will be VERY slow

Practical Tips for BP: Normalization

� If there are a lot of highly correlated or redundant
features, can reduce dimensionality with PCA

� Test samples should be subjected to the same
transformations as the training samples

� Normalize each feature i to be of mean 0 and
variance 1

� First for each feature i, compute var [x(i)] and mean [x(i)]

� Then
(((())))

(((()))) (((())))(((())))
(((())))(((())))i

ii

i

x

xmeanx
x k

k

var

−−−−
←←←←

� Cannot do this for online version of the algorithm since
data is not available all at once

14

Practical Tips for BP: # of Hidden Units

� # of input units = number of features, # output units = #
classes. How to choose NH, the # of hidden units?

� NH determines the expressive power of the network

� Too small NH may not be sufficient to learn complex
decision boundaries

� Too large NH may overfit the training data resulting
in poor generalization

Practical Tips for BP: # of Hidden Units

� Choosing NH is not a solved problem

� Rule of thumb

� if total number of training samples is n, choose NH so
that the total number of weights is n/10

� total number of weights = (# of w) + (# of v)

� Can choose NH which gives the best performance
on the validation data

Practical Tips for BP: Initializing Weights

� Do not set either w or v to 0

� Rule of thumb for our sigmoid function

� Choose random weights from the range

d
w

d
ji

11
<<<<<<<<−−−−

H

kj

H N

1v
N

1 <<<<<<<<−−−−

Practical Tips for BP: Learning Rate

� As any gradient descent algorithm,

backpropagation depends on the learning rate ηηηη

� Rule of thumb ηηηη = 0.1

� However we can adjust ηηηη at the training time

� The objective function J should decrease during
gradient descent

� If it oscillates, ηηηη is too large, decrease it

� If it goes down but very slowly, ηηηη is too
small,increase it

15

Practical Tips for BP: Weight Decay

� To simplify the network and avoid overfitting, it is
recommended to keep the weights small

� Implement weight decay after each weight update:

(((()))) 10,1 <<<<<<<<−−−−==== εεεεεεεεoldnew ww

� Additional benefit is that “unused” weights grow
small and may be eliminated altogether

� A weight is “unused” if it is left almost unchanged by the
backpropagation algorithm

Practical Tips for BP: # Hidden Layers

� Network with 1 hidden layer has the same
expressive power as with several hidden layers

� For some applications, having more than 1 hidden
layer may result in faster learning and less hidden
units overall

� However networks with more than 1 hidden layer

are more prone to the local minima problem

MNN as Nonlinear Mapping

x(1)

x(2)

x(d)

z1

zm

this module implements
linear classifier (Perceptron)

this module implements

nonlinear input mapping ϕϕϕϕ

MNN as Nonlinear Mapping

� Thus MNN can be thought as learning 2 things at
the same time

� the nonlinear mapping of the inputs

� linear classifier of the nonlinearly mapped inputs

16

MNN as Nonlinear Mapping

original feature space
x; patterns are not
linearly separable

MNN finds nonlinear
mapping y=ϕϕϕϕ(x) to 2
dimensions (2 hidden

units); patterns are
almost linearly

separable

MNN finds nonlinear
mapping y=ϕϕϕϕ(x) to 3
dimensions (3 hidden

units) that; patterns are
linearly separable

Concluding Remarks

� Advantages

� MNN can learn complex mappings from inputs to
outputs, based only on the training samples

� Easy to use

� Easy to incorporate a lot of heuristics

� Disadvantages

� It is a “black box”, that is difficult to analyze and predict
its behavior

� May take a long time to train

� May get trapped in a bad local minima

� A lot of “tricks” to implement for the best performance

