
1

Lecture 6
Multilayer Neural Networks

CS840a 

Learning and Computer Vision 

Prof. Olga Veksler

Today

� Multilayer Neural Networks 

� Inspiration from Biology

� History

� Perceptron

� Multilayer perceptron

Brain vs. Computer

� Designed to solve logic and 
arithmetic problems

� Can solve a gazillion 
arithmetic and logic problems 
in an hour

� absolute precision

� Usually one very fast procesor

� high reliability

� Evolved (in a large part) 
for pattern recognition

� Can solve a gazillion of 
PR problems in an hour

� Huge number of parallel 
but relatively slow and 
unreliable processors

� not perfectly precise

� not perfectly reliable

Seek an inspiration from human brain for PR?

Neuron: Basic Brain Processor

� Neurons are nerve cells that transmit signals to and from 
brains at the speed of around 200mph

� Each neuron cell communicates to anywhere from 1000 to 
10,000 other neurons, muscle cells, glands, so on

� Have around 1010 neurons in our brain (network of 
neurons)

� Most neurons a person is ever going to have are already 
present at birth
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Neuron: Basic Brain Processor

nucleus

cell body

axon

dendrites

� Main components of a neuron

� Cell body which holds DNA information in nucleus

� Dendrites may have thousands of dendrites, usually short

� axon long structure, which splits in possibly thousands branches at 

the end. May be up to 1 meter long 

Neuron in Action (simplified)

� Input : neuron collects signals from other neurons 
through dendrites, may have thousands of dendrites

� Processor: Signals are accumulated and 
processed by the cell body

� Output: If the strength of incoming signals is large 
enough, the cell body sends a signal (a spike of 
electrical activity) to the axon

neuron 
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Neural Network

ANN History: Birth

� 1943, famous paper by W. McCulloch 
(neurophysiologist)  and W. Pitts (mathematician) 

� Using only math and algorithms, constructed a model 
of how neural network may work

� Showed it is possible to construct any computable 
function with their network

� Was it possible to make a model of thoughts of a 
human being?

� Considered to be the birth of AI

� 1949,  D. Hebb, introduced the first (purely 
pshychological) theory of learning

� Brain learns at tasks through life, thereby it goes 
through tremendous changes

� If two neurons fire together, they strengthen each 
other’s responses and are likely to fire together in the 
future
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ANN History: First Successes

� 1958, F. Rosenblatt, 
� perceptron, oldest neural network still in use today

� Algorithm to train the perceptron network (training is 
still the most actively researched area today)

� Built in hardware

� Proved convergence in linearly separable case

� 1959, B. Widrow and M. Hoff 

� Madaline

� First ANN applied to real problem (eliminate echoes in 
phone lines)

� Still in commercial use

ANN History: Stagnation

� Early success lead to a lot of claims which were not 
fulfilled

� 1969, M. Minsky and S. Pappert
� Book “Perceptrons”

� Proved that perceptrons can learn only linearly 
separable classes

� In particular cannot learn very simple XOR function

� Conjectured that multilayer neural networks also 
limited by linearly separable functions

� No funding and almost no research (at least in 
North America)  in 1970’s as the result of 2 things 
above 

ANN History: Revival
� Revival of ANN in 1980’s

� 1982, J. Hopfield
� New kind of networks (Hopfield’s networks)

� Bidirectional connections between neurons

� Implements associative memory

� 1982 joint US-Japanese conference on ANN
� US worries that it will stay behind

� Many examples of mulitlayer NN appear

� 1982, discovery of backpropagation algorithm 
� Allows a network to learn not linearly separable 

classes

� Discovered independently by 

1. Y. Lecunn
2. D. Parker
3. Rumelhart, Hinton, Williams

ANN: Perceptron

� Input and output layers

� g(x) = wtx + w0

� Limitation: can learn only linearly separable classes
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MNN: Feed Forward Operation

input layer:
d features

x(1)

x(2)

x(d)

bias unit

hidden layer: output layer:
m outputs, one for 

each class

z1

zm

wji vkj

MNN: Notation for Weights

� Use wji to denote the weight between input unit i
and hidden unit j

x(i)

wji

hidden unit jinput unit i

wjix
(i) yj

� Use vkj to denote the weight between hidden unit j
and output unit k

vkj

output unit khidden unit j

yj
zkvkjyj

MNN: Notation for Activation

� Use neti to denote the activation and hidden unit j

hidden unit j

yj

(((( ))))∑∑∑∑
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� Use net*k to denote the activation at output unit k
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Discriminant Function

� Discriminant function for class  k (the output of the 
k th output unit)
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Discriminant Function

Expressive Power of MNN

� It can be shown that every continuous function 
from input to output can be implemented with 
enough hidden units, 1 hidden layer, and proper 
nonlinear activation functions

� This is more of theoretical than practical interest
� The proof is not constructive (does not tell us exactly 

how to construct the MNN)

� Even if it were constructive, would be of no use since 
we do not know the desired function anyway, our goal 
is to learn it through the samples

� But this result does give us confidence that we are on 
the right track 

� MNN is general enough to construct the correct 
decision boundaries, unlike the Perceptron

MNN Activation function
� Must be nonlinear for expressive power larger than 

that of perceptron
� If use linear activation function at hidden layer, can 

only deal with linearly separable classes

� Suppose at hidden unit j, h(u)=aju
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MNN Activation function

� could use a discontinuous activation function
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� However, we will use 
gradient descent for 
learning, so we need to 
use a continuous 
activation function

sigmoid function

� From now on, assume f is a differentiable function
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� Network have two modes of operation:

� Feedforward
The feedforward operations consists of presenting a 
pattern to the input units and passing (or feeding) the 
signals through the network in order to get outputs 
units (no cycles!)

� Learning
The supervised learning consists of presenting an 
input pattern and modifying the network parameters 
(weights) to reduce distances between the computed 
output and the desired output

MNN:  Modes of Operation

MNN

� Can vary
� number of hidden layers

� Nonlinear activation function

� Can use different function for hidden and 
output layers

� Can use different function at each hidden 
and output node

MNN: Class Representation

� Training samples x1 ,…, xn each of class 1,…,m

� Let network output z represent  class c as target t(c)

(((( ))))



















========



















====

0

1

01

M

M

M

M
c

m

c t

z

z

z

z
c th row

sample of class c MNN with weights

wji and vkj

t(c)

Our Ultimate Goal For FeedForward Operation

Modify (learn) MNN parameters wji and vkj so that  for 
each training sample of class c MNN output z = t(c)

MNN training to achieve the Ultimate Goal 

Network Training (learning)

MNN with weights

wji and vkj

input sample xp

choose p

1. Initialize weights wji and vkj randomly but not to 0

2. Iterate until a stopping criterion is reached

Compare output z with the 
desired target t; adjust wji

and vkj to move closer to the 
goal t (by backpropagation)

output
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� Learn  wji and vkj by minimizing the training error

� What is the training error?

� Suppose the output of MNN for sample x is z and 
the target (desired output for x ) is t

BackPropagation
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,� Training error: 

� Use gradient descent:
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,� Error on one sample: 

� For simplicity, first take training error for one 
sample xi 

BackPropagation
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� Need to compute

1. partial derivative w.r.t. hidden-to-output weights 
kjv

J

∂∂∂∂

∂∂∂∂

2. partial derivative w.r.t. input-to-hidden weights 
jiw

J
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BackPropagation: Layered Model
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BackPropagation
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BackPropagation

Gradient Descent Single Sample Update Rule for
hidden-to-output weights vkj
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j > 0:

j = 0 (bias weight):

BackPropagation

� Now compute input-to-hidden
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BackPropagation

Gradient Descent Single Sample Update Rule for
input-to-hidden weights wji
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BackPropagation of Errors
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� Name “backpropagation” because during training, 
errors propagated back from output to hidden layer
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unit j
unit i
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BackPropagation

� Consider update rule for hidden-to-output weights:
(((( )))) (((( )))) (((( )))) (((( )))) jkkk

t
kj

t
kj ynetfztvv *1 '−−−−++++====++++ ηηηη

� Suppose 0>>>>−−−− kk zt

kk zt >>>>� Then output of the k th hidden unit is too small: 

� Typically activation function f is s.t. f ’ > 0

� Thus (((( )))) (((( )))) 0' * >>>>−−−− kkk netfzt

� There are 2 cases:
0>>>>jy1. ,  then to increase zk, should increase weight vkj

zk
yj

(((( )))) (((( )))) 0' * >>>>−−−− jkkk ynetfztηηηηwhich is exactly what we do since 

0<<<<jy2. ,  then to increase zk, should decrease weight vkj

(((( )))) (((( )))) 0' * <<<<−−−− jkkk ynetfztηηηηwhich is exactly what we do since

BackPropagation

� The case                    is analogous

� Similarly, can show that input-to-hidden weights 
make sense

0<<<<−−−− kk zt
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� Important:  weights should be initialized to random 
nonzero numbers

� if vkj = 0, input-to-hidden weights wji never updated 

Training Protocols

� How to present samples in training set and update 
the weights?

� Three major training protocols:

1. Stochastic

� Patterns are chosen randomly from the training set, 
and network weights are updated after every sample 

presentation

2. Batch

� weights are update based on all samples; iterate 
weight update

3. Online

� each sample is presented only once, weight update 
after each sample presentation

Stochastic Back Propagation

1. Initialize
� number of hidden layers nH
� weights w, v
� convergence criterion θθθθ and learning rate ηηηη
� time t = 0

2. do
x � randomly chosen training pattern
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for all mknjdi H ≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤ 0,0,0

t = t + 1
until θθθθ<<<<|||| J

3. return v, w
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already derived this

Batch Back Propagation

� This is the true gradient descent, (unlike stochastic 
propagation)

� The full objective function:
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� For simplicity, derived backpropagation for a 
single sample objective function:

(((( )))) (((( ))))∑∑∑∑
====

−−−−====
m

c
cc ztvwJ

1

2

2

1
,

(((( )))) (((( )))) (((( ))))(((( ))))∑∑∑∑ ∑∑∑∑
==== ====









−−−−

∂∂∂∂

∂∂∂∂
====

∂∂∂∂

∂∂∂∂ n

i

m

c

i
c

i
c zt

w
vwJ

w 1 1

2

2

1
,

� Derivative of full objective function is just a sum 
of derivatives for each sample:

Batch Back Propagation
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� For example, 

Batch Back Propagation

1. Initialize nH , w, v , θθθθ , ηηηη , t = 0
2. do
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3. return v, w
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Training Protocols

1. Batch

� True gradient descent

2. Stochastic

� Faster than batch method

� Usually the recommended way

3. Online

� Used when number of samples is so large it does not 
fit in the memory

� Dependent on the order of sample presentation

� Should be avoided when possible
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MNN Training

training time

Large training 
error: in the 
beginning random 
decision regions

Small training 
error: decision 
regions improve 
with time

Zero training 
error: decision 
regions separate 
training data 
perfectly, but we 
overfited the 
network

MNN Learning Curves

� Training data: data on which learning (gradient descent for 
MNN) is performed

� Validation data: used to assess network generalization 
capabilities

training time
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� Training error typically 
goes down, since with 
enough hidden units, can 
find discriminant function 
which classifies training 
patterns exactly

� Validation error first goes down, but then goes up since at 
some point we start to overfit the network to the validation 
data

Learning Curves

training time
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� this is a good time to stop training, since after this time we 
start to overfit

� Stopping criterion is part of training phase, thus validation 
data is part of the training data

� To assess how the network will work on the unseen 
examples, we still need test data

Learning Curves

� validation data is used to 
determine “parameters”, in 
this case when learning 
should stop

� Stop training after the first local minimum on validation data

� We are assuming performance on test data will be similar to 
performance on validation data  

stop training
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Data Sets

� Training data

� data on which learning is performed

� Validation data

� validation data is used to determine any free 
parameters of the classifier 

� k in the knn neighbor classifier

� h for parzen windows

� number of hidden layers in the MNN

� etc

� Test data

� used to assess network generalization capabilities

Practical Tips for BP: Momentum

� Gradient descent finds only a local minima

� not a problem if J(w) is small at a local minima. Indeed, 
we do not wish to find w s.t. J(w) = 0 due to overfitting

J(w)

global minimum

reasonable local 
minimum

� problem if J(w) is 
large at a local 
minimum w

J(w)

global minimum

bad local 
minimum

Practical Tips for BP: Momentum

� Momentum: popular method to avoid local minima 
and also speeds up descent in plateau regions

� weight update at time  t is

� at αααα = 0, equivalent to gradient descent

� at αααα = 1, gradient descent is ignored, weight update 
continues in the direction in which it was moving 
previously (momentum)

� usually, αααα is around 0.9

(((( )))) (((( )))) (((( )))) (((( ))))11 1 −−−−++++ ∆∆∆∆++++
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� add temporal average direction in which weights have 
been moving recently

(((( )))) (((( )))) (((( ))))1−−−−−−−−====∆∆∆∆ ttt www

previous 
directionsteepest descent 

direction

Practical Tips for BP: Activation Function

� Gradient descent will work with any continuous 
and differentiable f , however some choices are 
better than others

� Desirable properties of f :

� nonlinearity to express nonlinear decision boundaries

� Saturation, that is f has minimum and maximum values 
(-a and b).  Keeps and weights w, v bounded, thus 
training time down 

� Monotonicity so that activation function itself does not 
introduce additional local minima

� Linearity for a small values of net, so that network can 
produce linear model, if data supports it

� antisymmetric, that is f(-1) = -f(1), leads to faster 
learning
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Practical Tips for BP: Activation Function

� Sigmoid activation function f  satisfies all of the 
above properties

(((( ))))
netnet

netnet

ee

ee
netf

⋅⋅⋅⋅−−−−⋅⋅⋅⋅

⋅⋅⋅⋅−−−−⋅⋅⋅⋅

++++

−−−−
==== ββββββββ

ββββββββ

αααα

� Convenient to set αααα = 1.716, β β β β = 2/3

� Linear range is roughly for  –1 < net < 1

� Asymptotic values mmmm1.716

Practical Tips for BP: Target Values

� For sigmoid function, to represent class c, use
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� Always use values less than asymptotic values       
for target
� For small error, need t to be close to z = f(net) 

� For any finite value of net, f(net) never reaches the 
asymptotic value

� The error will always be too large, training will never 
stop, and weights w,v will go to infinity

Practical Tips for BP: Normalization

� Each feature of input data should be normalized

� Suppose we measure fish length in meters and 
weight in grams

� Typical sample [length = 0.5, weight = 3000]

� Feature length will be basically ignored by the network

� If length is in fact important, learning will be VERY slow

Practical Tips for BP: Normalization

� If there are a lot of highly correlated or redundant 
features, can reduce dimensionality with PCA

� Test samples should be subjected to the same 
transformations as the training samples

� Normalize each feature i to be of mean 0 and 
variance 1

� First for each feature i, compute var [x(i)] and mean [x(i)] 

� Then
(((( ))))

(((( )))) (((( ))))(((( ))))
(((( ))))(((( ))))i

ii

i

x

xmeanx
x k

k

var

−−−−
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� Cannot do this for online version of the algorithm since 
data is not available all at once
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Practical Tips for BP:  # of Hidden Units 

� # of input units = number of features, # output units = # 
classes.  How to choose NH, the # of hidden units?

� NH determines the expressive power of the network

� Too small NH may not be sufficient to learn complex 
decision boundaries

� Too large NH may overfit the training data resulting 
in poor generalization

Practical Tips for BP:  # of Hidden Units 

� Choosing NH is not a solved problem

� Rule of thumb

� if total number of training samples is n, choose NH so 
that the total number of weights is n/10

� total number of weights = (# of w) + (# of v)

� Can choose NH which gives the best performance 
on the validation data

Practical Tips for BP:  Initializing Weights

� Do not set either w or v to 0

� Rule of thumb for our sigmoid function

� Choose random weights from the range
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kj
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1 <<<<<<<<−−−−

Practical Tips for BP:  Learning Rate

� As any gradient descent algorithm, 

backpropagation depends on the learning rate ηηηη

� Rule of thumb ηηηη = 0.1

� However we can adjust ηηηη at the training time

� The objective function J should decrease during 
gradient descent

� If it oscillates, ηηηη is too large, decrease it

� If it goes down but very slowly, ηηηη is too 
small,increase it
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Practical Tips for BP:  Weight Decay

� To simplify the network and avoid overfitting, it is 
recommended to keep the weights small

� Implement  weight decay after each weight update:

(((( )))) 10,1 <<<<<<<<−−−−==== εεεεεεεεoldnew ww

� Additional benefit is that “unused” weights  grow 
small and may be eliminated altogether

� A weight is “unused” if it is left almost unchanged by the 
backpropagation algorithm

Practical Tips for BP:  # Hidden Layers

� Network with 1 hidden layer has the same 
expressive power as with several hidden layers

� For some applications, having more than 1 hidden 
layer may result in faster learning and less hidden 
units overall

� However networks with more than 1 hidden layer 

are more prone to the local minima problem

MNN as Nonlinear  Mapping

x(1)

x(2)

x(d)

z1

zm

this module implements
linear classifier (Perceptron)

this module implements

nonlinear input mapping ϕϕϕϕ

MNN as Nonlinear  Mapping

� Thus MNN can be thought as learning 2 things at 
the same time

� the nonlinear mapping of the inputs

� linear classifier of the nonlinearly mapped inputs
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MNN as Nonlinear  Mapping

original feature space 
x; patterns are not 
linearly separable

MNN finds nonlinear 
mapping y=ϕϕϕϕ(x) to 2 
dimensions (2 hidden 

units); patterns are 
almost linearly 

separable

MNN finds nonlinear 
mapping y=ϕϕϕϕ(x) to 3 
dimensions (3 hidden 

units) that; patterns are 
linearly separable

Concluding Remarks

� Advantages

� MNN can learn complex mappings from inputs to 
outputs, based only on the training samples

� Easy to use

� Easy to incorporate a lot of heuristics

� Disadvantages

� It is a “black box”, that is difficult to analyze and predict 
its behavior

� May take a long time to train

� May get trapped in a bad local minima

� A lot of “tricks” to implement for the best performance


