
Class-Specific, Top-Down Segmentation

Eran Borenstein and Shimon Ullman�

Dept. of Computer Science and Applied Math
The Weizmann Institute of Science

Rehovot 76100, Israel
{boren, shimon}@wisdom.weizmann.ac.il

Abstract. In this paper we present a novel class-based segmentation
method, which is guided by a stored representation of the shape of ob-
jects within a general class (such as horse images). The approach is dif-
ferent from bottom-up segmentation methods that primarily use the con-
tinuity of grey-level, texture, and bounding contours. We show that the
method leads to markedly improved segmentation results and can deal
with significant variation in shape and varying backgrounds. We discuss
the relative merits of class-specific and general image-based segmentation
methods and suggest how they can be usefully combined.
Keywords: Grouping and segmentation; Figure-ground; Top-down pro-
cessing; Object classification

1 Introduction

Amajor goal of image segmentation is to identify structures in the image that are
likely to correspond to scene objects. Current approaches to segmentation mainly
rely on image-based criteria, such as the grey level or texture uniformity of image
regions, as well as the smoothness and continuity of bounding contours. In this
work we describe a segmentation method that is guided primarily by high-level
information and the use of class-specific criteria. The motivation for using such
class-based criteria to supplement the traditional use of image-based criteria in
segmentation has two parts. First, it stems from the fact that although recent
image-based segmentation algorithms provide impressive results, they still often
fail to capture meaningful and at times crucial parts. Second, evidence from
human vision indicates that high-level, class-based criteria play a crucial role
in the ability to segment images in a meaningful manner (e.g. [11],[10],[9],[8]),
suggesting that the incorporation of such methods will help improve the results
of computer vision segmentation algorithms.

Figure 1 demonstrates some of the major difficulties encountered by image-
based segmentation algorithms. An appropriate segmentation algorithm should
group together the dark and light regions of the horse (left), and separate the
man from the horse, despite the grey level similarity (right). Figure 2 shows
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the results obtained when applying a state of the art image-based segmenta-
tion algorithm [15] to these and other images. The segmentations demonstrate
some of the inherent difficulties of an image-based approach, including the split-
ting of object regions and the merging of object parts with background regions.
These shortcomings are due to unavoidable ambiguities that cannot be solved
without prior knowledge about the object class at hand. This paper presents an
approach that addresses these difficulties, in which a simple representation of
object classes in memory is used to guide the segmentation process, leading to
markedly improved segmentation of images containing familiar objects (Fig. 3).

The overall structure of the paper is as follows. Section 2 briefly reviews past
approaches. Section 3 provides an overview of our approach, and how information
about object shapes is represented in memory and used for segmentation. Section
4 describes the approach in detail: 4.1-4.3 describe the segmentation criteria used
by our method. 4.4 describes the algorithm that segments class-images according
to these criteria. Section 5 shows results, Sect.6 contains a final discussion and
conclusions.

Fig. 1. Segmentation difficulties: the same object can contain markedly different re-
gions (left), while neighboring objects may contain regions that are similar in color and
texture (right).

2 Brief Review of Segmentation Approaches

Most of the current approaches to segmentation rely primarily on image-based
criteria, such as color, grey level, or texture uniformity of image regions (e.g.
[16],[4],[2]); the smoothness and continuity of their bounding contours (e.g. [7]);
or a combination of these (e.g. [6]). The region-based approaches merge and
split image regions according to specific criteria. Merging approaches recursively
merge similar regions (e.g. [14],[1]). “Divide & Conquer” approaches recursively
split regions into distinct sub-regions (e.g. [12],[15]). Contour-based approaches
emphasize the properties of region boundaries, such as continuity, smoothness,
length, curvature, and shape.

Somewhat closer to our goal is the work on deformable templates (e.g. [18]),
where the template parameters are used to match a model with an object im-
age. This approach usually assumes approximate initial correspondence between
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Fig. 2. Typical results of low-level segmentation. Objects are broken into sub-regions,
and some of these sub-regions are merged with the background. (More results can be
seen at http://www.cs.berkeley.edu/∼doron/software/ncuts/results/)

Fig. 3. Low-level vs. class-specific segmentation of horse images. Top: input images
(170x120 pixels). Middle: low-level segmentation into sub-regions, as given by the nor-
malized cuts algorithm [15]. Bottom: figure-ground segmentation map given by the
algorithm described in this paper (input resolution reduced to 40x30).
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the model and its image and therefore it can be used as a final stage in our
segmentation but not as the main segmentation process.

Recent psychological studies of image segmentation by humans indicate
strong effects of prior familiarity with specific shapes on image segmentation.
For example, a number of behavioral studies have shown that subjects are more
likely to regard a familiar region as “figure” than a less familiar region, indi-
cating that object recognition facilitates segmentation [11],[10]. Developmental
studies [9],[8] show that figure-ground segregation in four month-old infants is
also affected by the presence of already familiar shapes.

3 Overview of the Approach

The general thrust behind our class-based segmentation approach is to use known
shape characteristics of objects within a given class to guide the segmentation
process. The main difficulty in this approach stems from the large variability
of shapes within a given class of objects. We would like to somehow capture
the common characteristics of a set of shapes within a class, for example horse
images, and then use this information to segment novel images. To address this
problem our approach uses a fragment-based representation of object classes.
Similar fragments have been used in the past for object classification [13][17]
but not for segmentation. Given an image containing a certain object, we use
fragments previously extracted from images of the same object class to produce
a consistent cover of the novel object. This cover defines a figure-ground map
that associates each pixel in the input image with the likelihood of belonging to
an object or background. (Fig. 4).

The construction of an object by fragments is somewhat similar to the as-
sembly of a jigsaw puzzle, where we try to put together a set of pieces such that
their templates form an image similar to a given example. A common strategy
is to start with the easiest pieces (e.g. corners) and proceed by connecting ad-
ditional pieces that match in shape, color, edges, texture, etc. In some cases,
as information accumulates along this process, pieces must be replaced: locally
these pieces provide good matches, but the global structure adds constraints
that reject the local matches.

The next several sections describe our segmentation algorithm in detail. We
first describe the fragment representation — how the class fragments are repre-
sented in memory, and how they are extracted from sample images.

3.1 Fragment Representation in Memory

In this section we describe the fragment-based representation used for segmenta-
tion. The goal of this representation is to cover as closely as possible the images
of different objects from a given class, using a set of more primitive shapes. We
therefore need to identify useful “building blocks,” a collection of components
that can be used to identify and delineate the boundaries of objects in the class.
To find such common components we look for image fragments that are strongly
correlated with images containing the desired object class — they show a high
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Fig. 4. Overview of the approach. Given an input image containing an object from a
given class (in this case, a horse) we use class fragments stored in memory to produce
a cover of the target image. Each fragment consists of a template and a figure-ground
label. The cover defines the figure-ground segmentation.

similarity measure with regions from images containing this desired object class
but not with others. Based on the Neyman-Pearson decision theory, optimal frag-
ments can be defined as fragments with maximal frequency (hit rate) within the
class, subject to the constraint that the frequency of false detection in non-class
images (false alarms) does not exceed a fixed limit (e.g. [3]).

Our search for optimal fragments therefore proceeds in three stages. Stage 1
starts from a set of training images divided into class images (C) and non-class
images (NC) and then generates a large number of candidate fragments. We
simply extract from the images in C a large number of rectangular sub-images,
these sub-images can vary in size and range from 1

50 to 1
7 of the object size. In

stage 2, which is the crucial step, we compare the distribution of each fragment
in the class and non-class training images. For a given fragment Fi, we measure
the strength of the response Si in C and NC. Si is defined in a standard way: we
correlate Fi with each image I in C and NC (normalized correlation) and take
the maximum value over I. To reach a fixed level of false alarms α in non-class
images we determine a threshold θi for Fi by the criterion:

p(Si > θi|NC) ≤ α (1)

This has the advantage of automatically fixing an optimal detection threshold for
each fragment. In stage 3 we order the fragments by their hit rate p(Si > θi|C)
and select the K best ones where K determines the size of the fragment set.

To be used for segmentation, we add two factors to each fragment: a figure-
ground label and a reliability value. The figure-ground label marks each pixel
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in the fragment as figure or ground. The figure label is learned at present by
comparing the fragment to the source image in the data base from which it
was derived. We assume that in this limited set the figure-ground information
has been estimated, for example by relative motion of the figure with respect
to background. An alternative is to label pixels in the fragment according to
their grey level variability in the class database. Figure pixels are similar across
images and have low-variability, while background pixels show high variability.

The reliability of a fragment measures the extent to which the fragment
is class-specific, measured by its hit rate p(Si > θi|C). These two factors are
essential to our segmentation process, as will be later demonstrated.

Fig. 5. Fragment representation in memory: Each fragment is represented by its grey
level template (left) and figure-ground label (right).

4 Segmentation by Optimal Cover

The main stage of the class-based segmentation algorithm consists of covering
an image with class-based fragments and using the cover to delineate the figure
boundaries. To accomplish this we seek an optimal cover of the image in terms
of the fragments. A cover is an assignment of fragments to positions in the image
I, with each fragment being defined as either “present” in the image along with
its designated position pi in the cover or “absent” from the image:

I
cover−→i=1...K

{
fi = 1, pi = (xi, yi)

fi = 0, pi = φ
(2)

Given a cover, we can compute the quality of the cover, which is a function of
the individual match of fragments with the image, the consistency of the cover,
and the reliability of the participating fragments. The following sections describe
each of these factors in turn and an algorithm to find a locally optimal cover
according to these criteria.

4.1 Individual Match

The individual match measures the similarity between fragments and the im-
age regions that they cover. We use a similarity measure that combines region
correlation with edge detection. This combination which is not commonly used,
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is designed to meet the special requirements of segmentation as illustrated in
Fig. 7.

A key feature of our fragment representation is the elimination of background
noise. Using the figure-ground label it is possible to exclude background pixels
from the similarity measure, thereby reducing background noise. Since this ex-
clusion results in the loss of the contour features, an edge detector is added
to capture the transition from figure to ground (Fig. 7). The edge presence is
computed by using a normalized correlation between the figure-ground bound-
ary and edges in the image (Fig. 6). The similarity measure si (p, I) between
fragment Fi at image position p = (x, y) and an image I is defined in (3) and
consists of two factors. The first factor – Ncor is the standard normalized corre-
lation between the fragment and the image region, restricted to template pixels
labeled as figure. The second term – Edge is the edge detector response.

si(p, I) = w · Ncor(p, I)|Object
Pixels

+ (1 − w) · Edge(p, I) (3)

Fig. 6. The edge template (right) is derived from the boundary of the figure-ground
label. The response to this template is the edge part Edge in (3).

4.2 Consistency

In covering the image by shape fragments, the fragments should not only provide
good local matches, but should also provide a consistent global cover of the shape.
We therefore use a consistency criterion for the cover in the segmentation process.
Since the fragments are highly overlapping, we define a consistency measure cij

between a pair of overlapping fragments Fi and Fj that is proportional to the
fraction of pixels labeled consistently by the two fragments (4). The maximum
term in the denominator prevents overlaps smaller than a fixed value µij from
contributing a high consistency term. This value is set to 1

10 of the maximum
possible overlap size between the two fragments. Fig. 8 demonstrates two cases of
overlapping horse fragments : one in which all the pixels are labeled consistently
and one in which some of the pixels are labeled inconsistently.

cij =
# Consistent Overlapping Pixels

max(Total Overlap, µij)
(4)
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Fig. 7. The examples show why a combination of templates and boundary similarity
are useful for segmentation. A1 – An image of a horse and a template of its back. A2
- Changes in the background reduce the similarity measure (measured using both the
figure and ground parts of the template), causing the template to be more similar to
another image region. B1 – In this example the template fit was measured using the
figure part of the template only. This reduces background effects but also results in the
loss of boundary information leading to inaccurate matches. C1,C2 – Adding an edge
detector to the similarity measure yields a more stable similarity measure resulting in
an accurate placement of the fragment regardless of background noise.

Fig. 8. Consistent (left) and inconsistent (right) cover by overlapping fragments. 1,4:
the fragments, placed over the images, 2,3: figure-ground assignment of the fragments.
Figure pixels are marked white, background pixels are grey. The inconsistent region is
marked in black.
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4.3 Fragment Reliability

The final criterion in determining an optimal cover is that of fragment reliability.
Similar to a jigsaw puzzle, the task of piecing together the correct cover can be
simplified by starting with some more “reliable” fragments, or anchor fragments,
and then proceeding with less reliable fragments that are consistent with the
initial cover (Fig. 9). Reliable fragments typically capture some distinguishing
features of the shapes in the class and are unlikely to be found anywhere else.
A fragment’s reliability is therefore evaluated by the likelihood ratio between
the detection rate and the false alarm rate. As explained, we set the minimal
threshold such that the false alarm rate does not exceed α. We can therefore
express this ratio using the detection rate and α:

ri =
p(Si > θi|C)

p(Si > θi|NC)
=

detection rate
α

(5)

Fig. 9. Reliable fragments guide the covering. Reliable fragments are used first (mid-
dle), and subsequently completed by less reliable ones (right).

4.4 The Cover Algorithm

A cover on an image by shape fragments determines a segmented figure. Among
all possible covers we seek a cover (2) that maximizes the three criteria above,
namely, individual match quality (3), consistency (4) and reliability (5). These
three factors are therefore combined in the cover score:

cs =
∑

i

ri · si · fi

︸ ︷︷ ︸
Individual match
and reliability

+
1
λ

∑
i,j

βij · fi · fj

︸ ︷︷ ︸
Consistency

(6)

The first term combines the match quality and reliability of the fragments, and
the second penalizes inconsistent overlapping pairs. We define the interaction
term βij between overlapping fragments as (cij −β) ·(risi+rjsj) where cij is the
pairwise consistency defined above (4) and β a global constant that determines
the magnitude of the penalty for insufficient consistency. For non-overlapping
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pairs βij is defined as 0. The contribution of a single fragment Fk in this expres-
sion is obtained by summing up all the terms in (6) for which i = k. When a
fragment contribution is negative, the score is improved by removing the frag-
ment from the cover. Negative contribution indicates poor consistency of the
fragment with other fragments and can happen only when ckj < β − λ for at
least one j. In our implementation β = 0.65, λ = 0.1.

The algorithm is iterative, but a small number of iterations (typically 2-3)
are used. It is described in the Appendix, but the main stages are summarized
next. At each stage, a small number M of good candidate fragments are identi-
fied. A subset of these M fragments, that maximally improve the current score,
are selected and added to the cover. In addition, existing fragments that are
inconsistent with the new match are removed. We use a small number of candi-
dates (M = 15) that allows us to check all 2M subsets and select the one with
the highest score. The algorithm is guaranteed to converge to a local maximum
since the score is bounded and increases at each iteration. To initialize the pro-
cess, we select a sub-window within the image with the maximal concentration
of reliable fragments. The similarity of all the reliable fragments is examined
at 5 scales at all possible locations – giving a complexity which is linear in the
number of reliable fragments, the number pixels of each image scale, and the
number of scales. Given this information it is possible to pick the most reliable
window and use the matched fragments inside as the initial M candidates for
the cover. If the combined evidence from the reliable fragments falls below a
classification threshold, the process terminates without producing a cover. In a
system containing multiple classes that compete for segmentation (rather than
just horse images), the class with the highest evidence will initiate the cover.

5 Experiments

We tested the algorithm on a database containing horse images. A bank of 485
fragments was constructed from a sample library of 41 horse containing images
of size (40x30) for which the figure-ground information was manually segmented.
For each fragment we estimated p(Si|C) and p(Si|NC) by measuring the dis-
tribution of the fragments’ similarity measure with 193 low-resolution images of
horses and 253 low-resolution images of non-horses. Using these estimated distri-
butions, the fragments were assigned their appropriate threshold and classified
to 146 reliable and 339 non-reliable fragments. The algorithm was then tested on
176 novel horse images (40x30 pixels). Examples are shown in Fig. 10 and com-
pared to the results of a normalized-cuts segmentation algorithm [15] tested on
the same images but with higher resolution (170x120). The algorithm obtains
high-quality segmentations of figure from background for a variety of images.
The algorithm can deal successfully with shape variations using a fixed reper-
toire of fragments extracted from the training set. The generalization to novel
shapes is based in part on the use of multiple alternative fragments for the same
object region, and in part in the flexibility in the fragments’ arrangement. We
also compared qualitatively the agreement between the figure regions produced
by the algorithm and the figure region judged by humans. This can be expressed
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by evaluating the ratio r = |S∩F |
|S∪F | where F is the human-segmented figure and

S is the algorithm’s segmented figure. |F |, |S| are the sizes of F, S and the size
of the entire image |I| = 1. The maximal value of r is r = 1 obtained only for
perfect segmentation. The average score for the current algorithm was r = 0.71.
The normalized-cuts algorithm, segmenting the images into two segments – fig-
ure and ground, gives much lower average score (r = 0.31). The last value can
also be compared with random segmentation (where |S| pixels are chosen ran-
domly to be figure) , which gives an average of r = 0.23. The most problematic
figure regions were the horse legs, where variability is high. The initialization
step was the most time consuming (about 30 seconds), where the similarity of
every reliable fragment was examined on 5 different scales of the target image.
Usually the algorithm converged after 2-3 iterations, with each iteration taking
a few seconds, giving a total time of about 40 seconds per target image. We used
Matlab 6.0 program on a Windows-NT, Pentium-600Mhz platform. The com-
plexity of the algorithm is linear in the number of scales, number of fragments,
and size of the fragment bank.

6 Discussion

The approach proposed in this paper emphasizes the role of high-level informa-
tion or class-specific criteria in image segmentation. We present a class-specific
segmentation method that successfully addresses ambiguities inherent to seg-
mentation schemes based exclusively on image-based criteria.

Segmentation is obtained by covering the image with a subset of class-specific
fragments and using this cover to delineate the figure boundaries. These frag-
ments serve as class-specific shape primitives, or “building blocks,” and are used
to handle a large variety of novel shapes within the class. The fragments are
represented by a template together with a figure-ground label, and a reliability
score.

The last two factors in this fragment representation are novel characteristics
of our approach and are essential for segmentation. The figure-ground label is
essential for: (a) constructing the figure-ground segmentation map; (b) defining
a robust similarity measure that reduces background noise; and (c) defining the
consistency between fragments. The fragment reliability enables us to detect
key fragments that serve as initial anchors in the cover construction. In order to
construct a complete cover we use both reliable and less reliable fragments. The
less reliable fragments are constrained by the consistency relations of the cover
and can therefore be used to complete the segmentation of difficult regions.

Compared with other schemes that apply segmentation and classification
in sequence, in our scheme the two processes are intimately linked. The initial
evidence from reliable class fragments is used to select the most likely class that
serves to initiate the cover, and the final classification decision may depend on
the segmentation result.

The algorithm results in the segmentation of images into two regions, figure
and ground, in contrast with image-based segmentation algorithms that usually
segment the image into multiple regions. The extraction of objects from these
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Fig. 10. Segmentation results arranged in 3 groups of 4 rows. First row in each group:
input images. Second row: results obtained from low-level segmentation. Third row:
class-based segmentation to figure and ground. Fourth row: segmentation superimposed
on the input images (boundary in red).
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images is challenging because objects are often broken into sub-regions, and some
of these sub-regions merge with the background. The main difficulty faced by
the current algorithm lies in covering highly variable parts, such as the horse’s
legs and tail. This difficulty is due in part to image processing limitations and
the use of relatively low-resolution images. In the future we intend to use higher
resolution images or a pyramid of image segments at different scales.

Compared with the class-based segmentation, traditional image-based seg-
mentation methods have two advantages. First, when they detect the correct
figure boundaries, they can determine these boundaries with higher accuracy
since they are guided directly by image discontinuities. Second, image-based al-
gorithms are general and do not require class-specific information. The relative
merits of class-specific and image-based segmentation methods suggest that they
can be usefully combined into an integrated scheme. For example, image-based
segmentation can be used to identify salient regions and direct class-based seg-
mentation to these regions. At the final segmentation stage, figure boundaries
produced by class-based segmentation could be refined by image-based methods
(e.g. [5]) resulting in a robust and accurate delineation of object boundaries that
cannot be achieved by either method alone.

7 Appendix: The Class-Based Segmentation Algorithm

Pre-processing:

– For all reliable fragments Fi, compute si(pj , I) for all image
positions pj and all scales (see(3)).

– Set s(pj) = maxi [ri · si(pj)] (best fragment at pj).
– For each image window W:

Pick in W at most M positions pj with maximal values of
s(pj). Define the score of the window Wscore =

∑
pj

s(pj).

Initialization:

– Choose window Wmax to be the window with maximal Wscore
together with its fragments. These fragments compose the
initial covering candidates Bcand.

– Set the current cover Bcover to be empty.

Choosing the new covering fragments:

– With all fragments (Fj ∈ Bcover) fixed to fj = 1, assign the
candidate fragments Fi ∈ Bcand to fi = {0, 1} such that (6) is
maximized.

– Add to Bcover all candidate fragments with fi = 1 and remove all
the fragments that reduce the score of (6).

– Use Bcover to construct the figure ground segmentation map.
– If Bcover did not change, then stop.
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Updating the candidate fragments sets:

– From all fragments in Wmax select the M with the highest
score (individual match and consistency with Bcover).

– Go to choosing the covering fragments.
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