
On the Design of Cascades of Boosted Ensembles for Face Detection

S. Charles Brubaker Jianxin Wu Jie Sun Matthew D. Mullin James M. Rehg

Abstract

Cascades of boosted ensembles have become popular in the
object detection community following their highly success-
ful introduction in the face detector of Viola and Jones [25].
Since then, researchers have sought to improve upon the
original approach by incorporating new methods along a va-
riety of axes (e.g. alternative boosting methods, feature sets,
etc). We explore several axes that have not yet received ad-
equate attention in this context: cascade learning, stronger
weak hypotheses, and feature filtering. We present a novel
strategy to determine the appropriate balance between false
positive and detection rates in the individual stages of the
cascade, enabling us to control our experiments to a degree
not previously possible. We show that while the choice of
boosting method has little impact on the detector’s perfor-
mance and feature filtering is largely ineffective, the use of
stronger weak hypotheses based on CART trees can signif-
icantly improve upon the standard results.

1 Introduction

Object detection is one of the classic problems in computer
vision, having applications to surveillance, robotics, multi-
media processing, and HCI. Developing a generic object de-
tection system is still an open problem, but there have been
important successes over the past several years for some vi-
sual patterns. Among the most influential systems is the
face detector of Viola and Jones [25], which can be credited
with the widespread popularity of cascaded detectors.

The influence of the Viola-Jones face detector, how-
ever, extends beyond the use of cascades to their partic-
ular approach for learning cascades of boosted ensembles
(CoBEs). The key elements of the original approach are

1. The cascade structure, which enables the detector to be
fast and helps achieve a low false positive rate.

2. The use of Adaboost [5] to combine weak hypotheses
into a strong one.

3. Thresholding on single feature values to form weak hy-
potheses (threshold-based hypotheses).

4. Feature selection from a large set of features, each of
which might be only weakly discriminative in itself.

This seminal work has spawned a large body of literature
that explores various aspects of the CoBE architecture. De-
spite this great interest, however, there is no concensus
about which design decisions are most important to the final
performance of the detector. Here we examine each of the
key elements outlined above and evaluate the importance of
the major design decisions in a systematic and controlled
way.

Cascade Learning The stages of the cascade are trained
sequentially, as the output of one stage affects the training
examples given to the next. Deciding when to stop training
one stage and move on to the next and knowing the appro-
priate operating point on a stage’s ROC curve are critical
steps in the training of a cascade. Despite the guidelines
provided in [25] and [24], however, these decisions are of-
ten made by hand in practice.Is there a fully automatic way
of making these decisions that still yields state of the art
results?

We present a novel method for cascade learning, in
which the user specifies detection and false positive rate
goals for the whole cascade and the system adaptively
chooses the detection and false positive rates for the indi-
vidual stages to meet these goals. We show that the method
is robust in the sense that a single set of parameters yields
excellent performance over a variety of detection strategies
and that it is capable of producing state of the art results.
Because the method is fully automatic, it enables us to con-
trol the cascade learning and rigorously compare strategies
for the other learning tasks in the CoBE architecture.

Boosting Several previous papers attribute improved de-
tection results to their use of different boosting methods.
Unfortunately, these changes are often coupled with other
changes to the detector, making a fair comparison difficult.
Is the particular boosting method an important factor in the
performance of a CoBE face detector?

Of the boosting algorithms we implemented, none con-
sistently outperformed the others in our experiments. How-
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ever, we did observe that depending on the type of weak
learner, the choice of boosting algorithm can affect the num-
ber of boosting iterations required to meet the goal criteria
for a stage. For instance, when CART-based [1] hypothe-
ses are used, Realboost [19] requires fewer iterations than
several other boosting methods. For threshold-based hy-
potheses, however, Realboost actually requires many more
iterations than the other methods.

Weak Hypotheses The original Viola and Jones strategy
for forming weak hypotheses is to threshold on single fea-
tures. The advantage of this approach is that the hypotheses
are fast to train and evaluate; however, every individual hy-
pothesis has high error.What is the effect of using more
powerful methods to obtain more discriminative weak hy-
potheses? Are fewer total features required? Are better re-
sults achieved?

Combining several features into a single weak hypoth-
esis based on CART classifiers consistently and signifi-
cantly improved the detection performance in our experi-
ments. As the learning task becomes more difficult in the
later stages, ensembles of threshold-based hypotheses are
unable to achieve the needed performance, whereas the en-
sembles of the CART-based hypotheses are. Our experi-
ments also show that using histograms over single features
gives good results for the early stages with fewer iterations
of Adaboost, but does not produce better results in the later
stages. Thus, the detector runs faster, but the classification
peformance is not significantly better than when threshold-
based hypotheses are used.

Feature Selection While several authors have already
experimented with using more discriminative feature sets
within the CoBE framework (e.g. [12, 7]), we focus on re-
ducing the size of the feature set with filtering techniques
before the boosting framework is applied. As we discuss in
section 6, feature filtering can have a dramatic effect on the
training time of the ensemble, and is useful in prototyping
detectors. Despite the popularity of feature filtering in other
fields and the attention it has received in the machine learn-
ing literature [9], however, we are unaware of any published
attempts to apply feature filtering in the CoBE architecture.
Is there an effective way to filter the features so that the
weak learner has fewer to examine? Can other algorithms
improve upon the greedy feature selection strategy of Ad-
aboost?

For the feature set from the original Viola and Jones pa-
per [25], we found that several standard filtering methods
are largely ineffective. Typically, Adaboost itself plays a
feature selection role, using only a small subset of the avail-

able features to form the weak hypotheses. Filtering meth-
ods that are significantly faster than Adaboost seem to se-
lect a redundant feature set, where the individual features
all tend to misclassify the same examples, and offer no ad-
vantage over random selection. Methods that have running
times closer to that of Adaboost perform better than ran-
dom selection, but offer no advantage over the Adaboost’s
inherent greedy feature selection strategy. Thus, randomly
filtering out as few features as the computing resources per-
mit seems to be as good a strategy as any other.

In summary, the major contributions of this paper are

• an improved cascade learning algorithm that views the
actual detection performance as a random variable and
enables us to perform controlled experiments on other
aspects of the detector; and

• a controlled empirical analysis showing that several
popular approaches to feature filtering are largely in-
effective in the CoBE context,

• the choice of boosting algorithm has more impact on
the detector’s speed than it does on classification per-
formance, and

• the use of stronger weak hypotheses can significantly
improve the detector’s results.

2 Architecture Overview

Here we present a generic framework that encompasses
much of the variation in the literature of CoBEs. At the
highest level, a CoBE detector is a cascade of increasingly
specialized stages, each one being trained to reject the false
positives of previous stages, while detecting all positive in-
stances. When an instance enters the detector, it is examined
by the first stage, which either rejects the instance immedi-
ately, or passes it on to the next stage for further scrutiny.
This process is repeated for subsequent stages until the in-
stance is either rejected or it passes all stages, thereby be-
ing detected. An individual stage consists of an ensemble of
weak classifiers, whose outputs are combined by a weighted
vote. Each weak classifier is based on a small subset of the
image features, which can be any function computed over a
sub-window of the image.

The cascade architecture was designed to handle the rare
event nature of the face detection problem. In practice,
detectors are scanned across images in a brute force fash-
ion. To reliably detect faces without littering the image with
false positives therefore requires a false positive rate on the
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order of10−7. Because of the conjunctive nature of the cas-
cade, however, not all negative instances need be rejected at
once by a single stage. Instead, each stage of the cascade
is left with the potentially easier task of carving away part
of the negative class, leaving fewer and fewer false posi-
tives. Its conjunctive nature also makes the detector fast,
because most instances are non-faces and will be rejected
by the first few stages of the cascade before the detector has
invested much time on them.

To express these ideas mathematically, letX be the in-
stance space, and letc : X → {0, 1} be the target con-
cept. The stages of the cascade{si}Ni=1 consist of a set of
weak classifiers{hij}Mi

j=1 and a thresholdθi such that for
all x ∈ X

si(x) = χ[
Mi∑
j=1

hij(x) > θi], (1)

whereχ is the indicator function. Here we follow the con-
vention of using confidence rated classifiers that return an
unbounded real value, instead of{0, 1} or {−1, 1}, remov-
ing the need for a weighing coefficient1. The hypotheses
for the entire cascade can then be expressed as

∧N
i=1 si(x).

It is important to note, however, that while a stage concept
si is defined over allX, it will only ever be applied to the
setXi = {x ∈ X : ∧i−1

k=1sk(x)}. Thus, a stage that per-
forms well on such a subset might perform poorly on all of
X and still fulfill its role in the detector.

2.1 Training a CoBE

A generic version of the original Viola-Jones training al-
gorithm is presented in the LEARN-COBE procedure. The
subroutines serve as placeholders for any number of solu-
tions to the subproblem in question. Before training a stage,
we first apply the standard bootstrapping practice [22] to
acquire appropriate training and validation data. Positive
examples that would be rejected by the current cascade are
removed from the training and validation sets, and false pos-
itives of the current cascade are extracted from an image
corpus, in which the object is either absent or blacked out,
to form the negative examples (BOOTSTRAP). Thus, these
data sets consist only of instances not rejected by any stage
of the cascade that has already been trained. Since the set of
features available is often too large (134,736 for the original
Viola-Jones set), we then filter the set down to a manage-
able size (FILTER-FEATURES). To build the ensemble of
classifiers, we first learn a classifier (WEAK-LEARN) based
on the current set of weights. We then reweigh the exam-
ples (REWEIGH-EXAMPLES), giving the misclassified ex-
amples more weight. Finally, we search for a suitableθi to

balance the detection versus false positive tradeoff (FIND-
BEST-THRESHOLD2). To assess the peformance, we apply
the stage to the validation set to calculate the false posi-
tive and detection rate pair〈f̂i, d̂i〉 (VALIDATE ). This mea-
surement and the analogous measurements for all previous
stages are used to predict an overall cost for the cascade
that is to be minimized (PREDICT-COST). If this cost is low
enough, then we are done with the current stage and proceed
to the next one; otherwise, we repeat the cycle of learning
a new hypothesis, reweighing the examples, and evaluating
the ensemble.

Let F be the set of features and E the set of examples. We
denote the weights for E as W . No more than L iterations
of Adaboost are permitted. G refers to the goal cost for the
cascade, and 〈f̂i, d̂i〉 denotes the false positive and detection
rate pair for the ith stage.

procedure LEARN-COBE()
C ← ∅ { C initialize an empty cascade}
for each stagei do

E ← BOOTSTRAP()
F ′ ← FILTER-FEATURES()
si ← ∅
W ← INITIALIZE -WEIGHTS()
repeat

h← WEAK-LEARN()
W ← REWEIGH-EXAMPLES()
si ← si ∪ h
θi ← FIND-BEST-THRESHOLD()
〈f̂i, d̂i〉 ← VALIDATE ()

until |si| > L or PREDICT-COST() ≤ G
C ← C ∪ 〈si, θi〉

end for

It should be noted that in choosing the stage thresholds
θi, the goal should not be to maximize the performance of
the stage in isolation, but rather to maximize the perfor-
mance of the cascade as a whole. We will shown how to
address this problem in section 4.

Next, we turn to the WEAK-LEARN routine, which out-
lines the standard procedure for training weak classifiers.
The form of the classifier defines partitionsP of the in-
stance space considered by the algorithm. For instance, if
the classifier thresholds a single feature to make its deci-
sion, then the setP could contain all dichotomies produced
by all possible thresholds of all features inF ′. For a given
partitionp we denote the corresponding disjoint sets of the
instance space as{Xp

j }, wherej indexes over the sections
of the partition. We denote the weight of the positive and
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negatives examples in these sets as{W+
j } and{W−

j }. The
WEAK-LEARN routine builds a hypothesis for each parti-
tion p by deciding on a confidence value for each subset of
the instance spaceXp

j based on the weightsW+
j andW−

j .
It then evaluates each hypothesis and returns the best hy-
pothesis for use in the ensemble.

Let P be the set of partions of the examples induced by the
classifier’s form; e.g. thresholding on a single feature.

procedure WEAK-LEARN()
ε←∞
for all p ∈ P do

hp ← CONFIDENCE(p)
if ε > ERROR(hp) then

hbest← hp

ε← ERROR(hp)
end if

end for
return hbest

Although not all changes made to the original Viola and
Jones implementation strictly fit into the above architecture,
we believe it provides a useful abstraction of the CoBE ap-
proach.

3 Previous Work

Despite the critical importance of the FIND-BEST-
THRESHOLD and PREDICT-COST functions to the perfor-
mance of the final detector, these aspects of the training
process have received comparatively little attention in the
literature. A preliminary version of our approach was pub-
lished in [21]. In comparison, our new algorithm views the
actual cascade performance as a random variable and uses
a smaller and more intuitive set of parameters (see sections
4.3 and 4.4 for details).

Huitao Luo has recently published a method for adjust-
ing the stage thresholds after the full cascade has been
trained [16]. While the success of this method illus-
trates the importance of the stage thresholds for classifi-
cation performance, it does not address how the thresh-
olds should be chosen in the cascade training phase (FIND-
BEST-THRESHOLD), which critically influences the boot-
strapped data, or when it is appropriate to begin training a
new stage (PREDICT-COST).

Despite the great interest in cascaded detectors, there
have been few controlled, comparative studies that address
questions about which factors have the greatest impact on

cascade performance. In this regard, the study of Lienhart et
al [14] is closest to the analysis presented in this paper. Our
work differs both in its methodology and in its conclusions.
The stopping criterion for a stage proposed in [14] is based
on a fixed performance goal on the training data. In con-
trast, we use a probablistic framework based on validation
data, as discussed section 4.4. Another important difference
lies in the evaluation methodology. The ROC curves in [14]
are produced by varying a post-processing parameter that
regulates the density of detected windows required for a lo-
cation to be labeled as a face. We produce ROC curves by
varying the thresholds of the last several stage classifiers as
described in section 4.1. Our method allows us to account
for the effects of post-processing as well (see section 7).

Our major results also differ from [14] in several im-
portant respects. Lienhart et al found that Gentleboost
outperforms Realboost and Discrete Adaboost. We found
that these three boosting algorithms did not produce signif-
icantly different results but, depending on the weak learner,
they could produce detectors of varying speed. Our re-
sults also show a much more striking difference between
threshold-based and CART-based hypotheses. Indeed, in all
of our experiments, the use of CART weak classifiers pro-
duced the most consistent and significant improvements.

Much of the early research on the CoBE architecture fo-
cused on the boosting algorithm. In their 2002 paper, Viola
and Jones observe that the goal of a stage in the cascade
is not to minimize error, but to retain very high detection
rates, while accepting modest false positive rates if nec-
essary [24]. They propose Asymmetric Adaboost, which
changes the REWEIGH-EXAMPLES routine to keep most of
the weight on the positive examples (instead of treating pos-
itive and negative examples equally), ensuring that a high
percentage is detected by each weak classifier.

In a more dramatic change, [28] uses forward feature se-
lection (FFS), which does not re-weigh the data between
iterations, but instead greedily chooses the hypothesis that
most improves the performance of the entire ensemble. [27]
introduces the Linear Asymmetric Classifier (LAC) algo-
rithm, which is used to re-weigh hypotheses after they have
been selected by FFS or Adaboost. Like Asymmetric Ad-
aboost, this method is designed for the requirements of clas-
sification in the cascade context.

Li and Zhang have proposed another alternative boosting
algorithm in their paper on FloatBoost [13], which instead
of greedily adding hypotheses to the ensemble, allows back-
tracking to eliminate the less useful or even hurtful hypothe-
ses. In other respects, the algorithm proceeds as RealBoost.

Liu and Shum [15] found that using KL-boost combined
with weak classifiers based on histograms of 1D projections
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in feature space improved detection performance over the
original approach. However, it is not clear whether it is the
changes to the weighing scheme or the means of forming
the weak hypotheses that is critical to the improvement.

A more radical departure from the LEARN-COBE rou-
tine is due to Xiao et al [29]. Inspired by the observation
that the operating point of a stage may not minimize er-
ror, they allow the hypothesis formed by the minimum error
threshold of the previous stage to play the role of a weak
hypothesis in the next stage of the cascade. Having thus
produced a cascaded detector, they convert it to a single
weighted voting scheme and train an SVM to relearn the
confidence (vote) weights.

Others have changed the feature set while keeping the
other key aspects of the CoBE architecture. Lienhart et al
[14] proposed another Haar-like feature set including diag-
onal features that can also be quickly computed via an in-
tegral image. Froba and Ernst [7] use a modified census
transform and achieve state of the art performance using
only three cascade stages. Levi and Weiss [12] also achieve
state of the art performance using a small number of training
examples with features based on edge oriented histograms.

CoVEs A class of detectors closely related to the CoBE
family are the cascades of voting ensembles. By a voting
ensemble, we mean a classifier of the form3∑

i

hi(x) > θ, (2)

wherex is an instance andhi returns an unbounded real.
Included in this class are the cascade of semi-Naive Bayes
classifiers used by Schneiderman [20], the cascades of
SVMs used by Heisele et al [10], and the linear classifiers
of Keren et al [11], Elad et al [2], and Romdhani et al
[17]. The critical difference between these detectors and the
CoBEs is that they do not use boosting. Nevertheless, the
cascade learning algorithm and some of the empirical re-
sults may have implications for these architectures as well.

For a more detailed history of face detection see [30].

4 Cascade Learning

Two of the most important decisions in building a cascade
of boosted ensembles are:

1. When to stop training a stage to move on to the next
one.

2. How to balance the detection versus false positive
trade-off within a stage.

In terms of our LEARN-COBE algorithm these decisions
are determined by the function FIND-BEST-THRESHOLD,
which choosesθi, fixing the stage’s operating point, and
by the function PREDICT-COST which determines when to
move on to the next stage of the cascade.

4.1 The Cascade ROC

Before addressing how to make these decisions, we review
the effect of the individual stage operating points on the
overall cascade performance and explain how to build a
ROC curve for the entire cascade. We believe that this cas-
cade ROC curve can be a useful tool for visualizing the cas-
cade training process and that it is a novel contribution of
this paper.

If the true false positive and detection rates for the stages
are{fi} and{di}, then the false positive and detection rates
for the whole cascade areF =

∏N
i=1 fi andD =

∏N
i=1 di.

This is not a statement of independence, but a factorization
of the probability that all stages accept an instance; i.e.,

Pr[s1(x), . . . , sN (x)|c(x) = y] =
N∏

i=1

Pr[si(x)|si−1(x), . . . , s1, c(x) = y], (3)

wherey is either−1 or 1 (face or non-face). Knowing the
relationship between{fi} and{di} will enable us to reason
aboutF andD and thus about the overall performance of
the cascade.

For a single ensemble classifier, the ROC curve is formed
by adjusting theθi parameter and counting the number of
detections and false positives. To build a ROC curve for
a cascade, we need a way in which the detector scores the
instances so that we can adjust an analogous threshold for
the entire cascade. We accomplish this by assigning higher
scores to instances that are accepted by more stages in the
cascade. For instances rejected by the same stagesi, ties are
broken according to the score assigned by the stagesi(x).
For accepted instances, ties are broken according the score
in the last stage. With this definition of a cascade scoring,
we can plot not just the ROC curve for the full cascade,
but the ROC curve for partial cascadesCn = ∪n

i=1〈si, θi〉,
wheren is less than the total number of stagesN . Such a
plot is shown for several partial cascades in figure 1.

Notice how the curves are identical in the upper right
corner, where the instances are being rejected by a shared
(early) part of the cascade. The points where the curves
diverge correspond to theθi thresholds of the stages, as the
new stage is applied in one partial cascade where it is not in
the other.
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Figure 1: ROC Curve for several partial cascades. The
curves diverge at points corresponding to the stage thresh-
olds.

Another way to think about a cascade ROC curve is that
it shows scaled versions of the individual stage ROC curves
that are pieced together. Tracing the three stage cascade
from the right (high false positive) end of figure 1, we start
with the ROC curve for the first stage. After the threshold
for the first stage is crossed, then the ROC curve for the
second stage is shown, but it is scaled so that the operat-
ing point 〈1, 1〉 corresponds to the point〈f1, d1〉. For all
subsequent stages,n + 1, the stage ROC curve is scaled to
〈
∏n

i=1 fi,
∏n

i=1 di〉. The choice ofθi determines where the
cascade ROC curve stops following one stage’s ROC curve
and starts following the next.

Thus, we can think about the LEARN-COBE algorithm
as building this ROC curve in this stagewise manner. The
addition of a weak hypothesis to the ensemble changes the
shape of the curve. The FIND-BEST-THRESHOLD proce-
dure then selects a point on the curve to serve as the starting
point for the remaining stages and PREDICT-COST evalu-
ates whether this point is good enough. If it is not, the curve
is reshaped by adding another weak hypothesis, and the pro-
cess is repeated. The challenge here is that the shape of the
next stage’s ROC curve is not known until the choice ofθi

is made, the bootstrapping is performed, and new weak hy-
potheses are trained.

4.2 Fixed Stage Goal

The standard approach outlined in [25, 24] is to choose a
goal operating point〈Fg, Dg〉 and then take itsLth root to
obtain〈fg, dg〉, whereL is the intended number of stages in
the cascade. Each stage is constrained to achieve one offg

or dg (typically fg works better) and then terminates when
either the other goal criterion is achieved or the maximum
number of boosting iterations is exceeded.

This goal-based strategy leaves something to be desired,
however. First, it rigidly fixes the number of stages in the
cascade before any training is done. Second, it does not
permit any trade-off between the detection and false posi-
tive rates within the stages. For instance, when selecting
the threshold of a stage, one might be able to significantly
improve the false positive rate at a small expense to the de-
tection rate, improving the chances of meeting the goal cri-
teria. The extra leeway on the false positive criterion might
also be used at a later stage to improve a stage’s detection
at the expense of the false positive rate. By fixing one el-
ement of the operating point, this strategy precludes taking
advantage of such trade-offs.

The most natural way to trade-off the detection and false
positive rates of a stage is to use a Bayes riskηfi +(1−di).
This approach, however, offers little control over how the
overall cascade performs. Depending on the choice ofη
and the shapes of the stages’ ROC curves, the stage oper-
ating points tend to gravitate towards one extreme or the
other, so that when the whole cascade is trained, one is left
with good detection and a poor false positive rate or a good
false positive rate and poor detection rate. Controlling the
η parameter to obtain a goal operating point for the entire
cascade is not only non-intuitive, but it is also possible that
no single choice will give acceptable results on all stages,
as argued in [21].

4.3 Cascade Indifference Curve

In [21], we introduced the notion of the indifference curve
and presented a novel method for cascade learning that re-
tains the benefits of both these approaches, while address-
ing many of their weaknesses. Although there are well
established methods for choosing the appropriate trade-off
between detection and false positive rates for single-stage
classifiers, it is far from clear what it means for one oper-
ating point to be better than another in the cascade context.
Our solution is to assume that the operating point for the
current stage can be replicated in any number of subsequent
stages. To compare two operating points, we simply assume
as many repetitions as are necessary to bring the false posi-
tive rate to a fixed value and compare the predicted detection
rates.

For instance, suppose that we are comparing the operat-
ing pointsa = 〈0.7, 0.99〉 andb = 〈0.49, 0.97〉. We assume
thata can be repeated in the next stage, making it equivalent
to a2 = 〈0.49, 0.98〉. We call this therepeatability assump-
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tion. The operating pointa2 has the same false positive rate
asb but a higher detection rate. We conclude, therefore, that
a is a better operating point thanb.4 It is this type of reason-
ing that underlies the FIND-BEST-THRESHOLDdecision.

To decide when to move on to the next stage (PREDICT-
COST), we use a cost function that is a linear combination
of the predicted detection rateCb at some small false pos-
itive rate and the predicted number of features applied per
windowCc

costold = Cb + λCc.

One difficulty with this approach is that it choses operat-
ing points with high false positive rates when they are cou-
pled with perfect or extremely high detection rates. Achiev-
ing the desired false positive rate of approximately10−7

with such operating points requires an impractical number
of stages. To cope with this problem, the method requires
that the user specify a range of acceptable false positive
rates for the stages[fmin, fmax].

The result is that the user must specify a set of rather
unintuitive parameters. The quantitiesfmin andfmax may
make sense to someone understands the inner workings of
the algorithm, but they are not directly related to the quan-
tites he cares about most (e.g. how well does it perform?
how fast does it run?). Even more difficult is theλ param-
eter, which balances speed and the predicted detection rate.
If λ is too large, then the detector will not perform well.
If too small, then the detector will be unnecessarily slow.
Finding a value that gives the desired result can require ex-
tensive experimentation.

4.4 Cascade Learning with Beta Variables

We now describe a novel alternative method for cascade
learning which is governed by a much more intuitive set
of parameters. The inputs to the learning method are:

1. A goal operating point for the entire cascade〈Fg, Dg〉.

2. A ratio η that reflects the relative importance of the
false positive and detection criteria.

3. A maximum number of stagesL.

The cascade learner then builds the fastest detector it can
while achieving the goal performance with high probability.

A key element of our approach is that the algorithm
views the performance of the cascade〈F,D〉 as a random
variable and treats the empirical results on validation data
for the individual stages,{f̂i} and{d̂i}, as evidence. Dur-
ing training, we use the repeatability assumption to infer
the probability that the cascade will meet the goal criteria.

Each stage is then trained to use the minimum number of
features that ensure that this probability of success is suffi-
ciently high.

4.4.1 Cost Function

Because a reasonable goal might not be known a priori, the
algorithm must be robust to unattainable goals and produce
results that are as close as possible. Depending on the at-
tainability of the goal, therefore, we adjust our cost func-
tion. For simplicity, assume thatη > 1.0, meaning that the
false positive criterion is more important. We consider the
following cases

1. If Pr[D < Dg] < γ andPr[F > Fg] < γ, then

cost= Pr[D < Dg] + η Pr[F > Fg].

2. If Pr[F > Fg] < Pt, then cost= 2 + η −D.

3. Otherwise, cost= 2 + η + F .

The first cost function is suitable when both goals are
attainable with some substantial probability, sayγ. How-
ever, when this is not possible, then the function provides
no incentive to trade a small decrease in the false positive
rate for a large improvement in the detection rate (an anal-
ogous statement holds ifη < 1.0, giving detection greater
importance). Therefore, if both criteria cannot be met with
probabilityγ, then we constrain the false positive rate to be
met with probabilityγ and maximize the detection rate. Fi-
nally, if the criterion for false positive rate cannot be met
with probability γ, we simply minimize the false positive
rate. Typically, this means that the false positive rate is re-
duced to zero, effectively terminating the training process.

4.4.2 Cost Prediction

Minimizing this cost function requires the ability to com-
putePr[D > Dg] andPr[F < Fg]. We will only treat the
detection criterion, because the false positive one is anal-
ogous. Consider the likelihoodPr[d̂i|di], whered̂i is the
measured detection rate overM positive examples. Given
the true detection ratedi, the probability ofm out of M
examples being detected is just the binomial distribution(

M
m

)
(1− di)M−mdm

i .

Taking a uniform priorPr[di] over[0, 1] and applying Bayes

7



Assume that the cascade has already been trained through
stage i and that we are predicting the cost if the measured
operating point of the next stage is 〈f̂i+1, d̂i+1〉.

PREDICT-COST-SAMPLE maintains a set of sampled
operating points for the currently trained cascade
{〈F k

i , Dk
i 〉}Kk=1. All measurements are made with

validation sets of M negative examples and the same
number of positive examples.

procedure PREDICT-COST-SAMPLE()
for j = i + 1 to N do

for k = 1 to K do
F k

j ← F k
j−1 ·βf̂i

, whereβf̂i
is a random beta deviate

with parameterŝfiM + 1 and(1− f̂i)M + 1.
Dk

j ← Dk
j−1 · βd̂i

, whereβd̂i
is a random beta devi-

ate with parameterŝdiM + 1 and(1− d̂i)M + 1.
end for
Gf ← |{k : F k

j > Fg}|/M
Gd ← |{k : Dk

j < Dg}|/M
costj ← COST(Gf , Gd).

end for
return minj costj .

PREDICT-COST-APPROX maintains the first and second
moments of the distribution for of cascade operating points
〈Sf

i , Sd
i 〉 and 〈T k

i , T d
i 〉. I(z; a, b) refers to the regularized

beta function.

procedure PREDICT-COST-APPROX()
for j = i + 1 to N do
〈Sf

j , Sd
j 〉 ← 〈S

f
j−1

f̂iM+1
M+2 , Sd

j−1
d̂iM+1
M+2 〉

〈T f
j , T d

j 〉 ← 〈T
f
j−1

(f̂iM+1)(f̂iM+2)
(M+2)(M+3) , T d

j−1
(d̂iM+1)(d̂iM+2)

(M+2)(M+3) 〉

Gf ← I

(
Fg;

(Sf
j −T f

j )Sf
j

Tj−Sf
j

,
(Sf

j −T f
j )(1−Sf

j )

Tj−Sf
j

)
,

Gd ← 1− I

(
Dg;

(Sd
j −T d

j )Sd
j

Tj−Sd
j

,
(Sd

j −T d
j )(1−Sd

j )

Tj−Sd
j

)
,

costj ← COST(Gf , Gd).
end for
return minj costj .

Either of the procedures above can be used for PREDICT-
COST.
procedure FIND-BEST-THRESHOLD()

chooseθi for which PREDICT-COST() is lowest.

Figure 2: Samples generated by PREDICT-COST-SAMPLE

of the operating point for a fully trained cascade.

rule gives

Pr[di|m,M ] =
Pr[m|di,M ] Pr[di]∫ 1

0
Pr[m|p, M ] Pr[p]dp

=
(1− di)M−mdm

i∫ 1

0
(1− p)M−mpmdp

,

which is precisely the beta distribution with parametersm+
1 andM −m + 1.

Therefore, conditioned on the validation measurements,
D is the product of beta variables. The exact distribution
only admits a clean analytic form in a few specialized cases
[8], but it can easily be approximated. One strategy is to
sample from the distribution forD by taking a sample from
the distributiondi for each stage and taking their product.
The quantityPr[D > Dg] can be estimated by counting the
fraction of samples greater thanDg. This method is used
in the PREDICT-COST-SAMPLE procedure. A final set of
samples for a fully trained cascade is shown in figure 2.

Another approximation strategy due to Fan [3] is to com-
pute the first and second moments of distribution ofD and
then to approximate it as a beta distribution having this first
and second moments. The first and second moments of the
product of beta variables are given by

S =
N∏

i=1

ai

ai + bi
and T =

N∏
i=1

ai(ai + 1)
(ai + bi)(ai + bi + 1)

,

respectively. The parameters for the beta distribution with
these statistics are

a =
(S − T )S
T − S2

and b =
(S − T )(1− S)

T − S2
.
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This method is used in the PREDICT-COST-APPROXproce-
dure.

Either of these procedures allows us to estimate the cost
once the cascade is fully trained, but it is still not clear how
to train the cascade. We therefore adapt the repeatability
assumption and apply it to the validation data, meaning that
if we can achieve〈f̂i, d̂i〉 on a validation set for the current
stage, then we assume that we can achieve the same result
for all subseqent stages. Therefore, as we are training the
ith stage, we use the results on the validation set to estimate
〈f̂j , d̂j〉 for all previous stages (j < i), but we use the re-
sults for theith stage on validation data for any subsequent
stages (j > i). The operating point having the lowest cost
according to this estimate is chosen for each stage, as shown
in the FIND-BEST-THRESHOLDprocedure.

The advantage of this approach is that it offers the con-
trol of the goal-based strategy over the cascade’s overall
performance, while allowing some subtle tradeoffs between
detection and false positive rates in the stages. Moreover,
it can “remember” past trade-offs to help decide whether a
new trade-off will improve the chances of achieving the cas-
cade’s goal operating point. Note that though we specify a
maximum number of stages, we do not specify a minimum.
If the learner predicts better performance with fewer stages,
then it will plan for fewer stages.

5 Boosting Methods

Although many modifications to Adaboost have been pro-
posed and applied to face detection, most of the methods
can be implemented with the WEAKLEARN routine of sec-
tion 2.1 simply by varying the CONFIDENCE and ERROR

functions. Recall that the strong hypothesis is formed by
taking a weighted vote of weak hypotheses, so that stage
decisions are made according to equation 1.

Each hypothesishij is a classifier that encodes a parti-
tion of the input space and returns the confidence for the
section of the partition in which the instancex falls. During
training phase, the partition of the instance space is selected
according to which induces the lowest error as measured by
the ERRORfunction. The confidence for each section of the
partition is determined by the CONFIDENCE function.

Discrete Adaboost, Realboost, and Gentleboost (the
methods implented in this study) are summarized in terms
of these functions in figure 3. Consider a sectionj of the
partition. LetW+

j be the total weight of positives examples
in the section and letW−

j be defined analogously. The ER-
ROR measure and the CONFIDENCE for sectionj are given
in the table. The graphs show the ERROR summand and

CONFIDENCE for sectionj as a function of the fraction of
the positive weight in the partitionW+

j /(W+
j + W−

j ). We
will not review the various assumptions behind these formu-
lae or review their derivation, but refer the reader to [19, 6].

It is interesting to observe how the methods treat pure
(high or lowW+

j /(W+
j +W−

j )) sections. Realboost seems
to encourage these pure partitions by retaining a higher error
for less pure partitions. It also places great confidence in
these high partitions by giving pure partitions much more
weight than less pure ones. This contrasts with Discrete
Adaboost, which gives all partitions equation weight up to
a sign.

6 Weak Learning

Although thresholding on a single feature has been the dom-
inant practice in CoBEs for object detection, Adaboost does
not restrict how the weak learning takes place. The thresh-
olding strategy may be efficient in terms of training or exe-
cution time, but it seems doubtful that such a simple weak
learner would give the best results.

The act of thresholding converts a real-valued feature to
binary, throwing away information. Even if the optimal de-
cision based on a single feature could be described by a
threshold (as opposed to something more complicated such
as a union of intervals), the real-valued feature still might
contain valuable information about the confidence associ-
ated with such a decision. With this in mind, we try to
preserve some of this information by discretizing the fea-
ture values and using histogram learning to build hypothe-
ses. The disadvantage of this approach is that because of the
coarse discretization some ability to make a fine distinction
between feature values is lost.

Another weakness of thresholding on single features can
be seen by the following XOR-like example. Letx and
y be two features and let the target distribution be uni-
form over [−1, 1] × [−1, 1], with the only positive class
in ([−1, 0] × [−1, 0]) ∪ ([0, 1] × [0, 1]) and the only nega-
tive class elsewhere. Regardless of the number of iterations,
Adaboost cannot learn the concept if the weak hypotheses
are formed by examining onlyx or y, nor can any voting
scheme for that matter.

With this example in mind, a natural way to make weak
hypotheses stronger is to combine several features. In our
experiments, we learn CART trees by greedily adding the
feature-threshold pair that results in the greatest reduction
in the ERRORmeasure, filling out the binary tree to a fixed
depth. With these more powerful hypotheses, Adaboost can
solve the trivial XOR-like problem given above. As was the
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∑
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∑
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Figure 3: Confidence and Error Measures used by several boosting algorithms. In the table,W+
j andW−

j refer to the
total positive and negative weight in the part of the sectionj in question. In the graphs, positive weight is defined as
W+

j /(W+
j + W−

j ).

case for histograms, the use of CART trees also allows the
hypothesis to return a variety of confidences.

sectionFeature Selection One of the greatest obstacles to
wider use of cascades of boosted ensembles is that they take
a long time to train. Chief among the reasons for this slow-
ness is that in every round of boosting the WEAK-LEARN

routine examines every example for every feature. Since re-
ducing the example corpus weakens the generalization, re-
ducing the feature pool via the FILTER-FEATURES routine
is an attractive option.

To actually improve the training time, however, the fil-
tering algorithm itself must be faster than Adaboost. Un-
fortunately, few filtering algorithms offer an asymptotic im-
provement in training time. Nevertheless, asymptotically
equivalent methods often admit implementation speed-ups,
which make the actual run-time faster than the worst-case
analysis time would indicate. Moreover, because Ad-
aboost’s greedy selection of features is not optimal, limiting
the feature pool available to Adaboost may actually improve
the results. The idea is that Adaboost may produce a better
classifier when it is presented with a small set of features, all
of which are good, rather than a large set containing these
same good features in addition to many spurious ones.

For purposes of this discussion, therefore, we divide fil-
tering techniques into two broad categories:

Fast Filters: This category consists primarily of ranking
schemes which examine each feature once and sort ac-
cording to some measure of the feature’s discrimina-
tive power. These filters are typically much faster than
Adaboost and run inO(|F | log |F |) time.

Slow Filters: This category includes methods that exam-
ine each feature inF before choosing the next feature
to add to the selected poolF ′. These filters run in
O(|F ′||F ||E|) time and are about as fast as Adaboost
with a thresholding weak learner.

Notice that the running times given above assume that the
precomputation strategy of [27] has been used. With this
strategy, the evaluation of a feature, either for selection or
for use in a weak classifier, can be performed inO(|E|)
time.

In this context, we hope for the filters from the first cat-
egory to improve the training time significantly without di-
minishing the quality of the results. On the other hand, we
hope for filters from the second category to improve the
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quality of the results and perhaps offer a modest improve-
ment in training time.

6.1 Fast Filters

RND The most obvious filtering strategy is simply to se-
lect a subset of the features at random. This method can be
counted on to maintain most of the diversity of the original
feature set and to avoid any of the systematic mistakes asso-
ciated with other methods. However, in cases where there
are but a few useful features among many useless ones in
the feature set, the method can select the good features only
by being lucky. The running time for this filter isO(|F ′|).

RANK Another simple strategy is to rank the features,
taking only those that are most discriminative in them-
selves. For instance, one can measure each feature’s dis-
criminative power by first finding a threshold that maxi-
mizes the corresponding binary feature’s mutual informa-
tion with the class label. The features having the greatest
mutual information with the class label are retained, while
the rest are filtered out. The problem with this method is
that the selected features might be redundant, meaning that
they tend to classify the same instances correctly [9]. In
an extreme case, the set of instances classified correctly by
at least one feature might be no larger than the set classi-
fied correctly by the single best feature. That is, one feature
would be as discriminative as the entire selected pool.

6.2 Slow Filters

One natural way, to avert this redundancy problem is to it-
eratively add the feature that contains the most information
about the class label given the features that have already
been selected. That is, iteratively add the feature that con-
tains the most “new” information about the class label. Un-
fortunately, it is impractical to consider the joint distribution
of examples over many feature values.

CMIM One strategy used by Vidal-Naquet and Ullman
[23], as well as Fleuret [4], to cope with this problem is to
consider only pairwise distributions of examples. We as-
sume that the feature has been converted to binary by se-
lecting the threshold that gives the greatest mutual informa-
tion with the class label, just as was done for the ranking
method. We call these binary features{ωj}. Let F ′

n be the
set of selected features whenn features have been selected,
and letPn = F − F ′

n be the set of remaining features. In
the first iteration,F ′

1 is initialized to contain only the feature
with the greatest mutual information with the class labelC,

i.e arg maxωj∈P0
I(ωj ;C). In all subsequent iterations, we

add the feature that contributes the most pairwise mutual
information with the class label; i.e. forn > 1,

arg max
ωi∈Pn

{
min

ωj∈F ′
n

I(ωi;C|ωj)
}

is added toF ′
n to formF ′

n+1 and the feature is deleted from
Pn to form Pn+1. Intuitively, one can think of the quan-
tity I(ωi;C|ωj) as an asymmetric distance, so that the al-
gorithm picks the feature that is furthest away from all pre-
viously selected features, thus obtaining a set that spans the
feature space.

Although this method avoids the particular redundancy
associated with ranking, other types of redundancy may
persist in the feature set. The problem lies is the fact that
the algorithm only considers pairs of features. Again, we
consider the extreme case, where a featureω3 ∈ Pn is
the XOR ofω1, ω2 ∈ F ′

n. Although the inclusion ofω3

would add no new information to the selected feature pool,
the selection criterion would not capture this fact, as both
I(ω3;C|ω1) and I(ω3;C|ω2) could be non-zero. Thus,
considering the class distribution over pairs of features does
not eliminate the redundancy problem.

Fleuret [4] has recently published a faster implemen-
tation of the algorithm based on a lazy evaluation of
the conditional information. The key observation is that
maxωi∈Pn

minωj∈F ′
n

I(ωi;C|ωj) can only decrease as
more features are selected. Thus, once we have evaluated
this quantity for an iteration, we have an upper bound of the
quantity for all subsequent iterations. We only need to up-
date the quantity when this upper bound no longer assures
us that another feature is better. In practice, this makes a
dramatic difference in the computational cost.

FFS Another alternative to considering the joint distribu-
tion over large feature sets is to assume that the utility of a
feature set can be summarized in the majority vote of the
binarized features. With this assumption, Forward Feature
Selection (FFS) [28] is a natural, greedy approach to feature
filtering. Instead of adding the feature with minimum error
with respect to a changing weight distribution, as Adaboost
does, FFS keeps the weight distribution over the examples
constant and adds the feature that most improves the ma-
jority vote classification of the ensemble of features as a
whole.

7 Results

All experiments presented in this paper are performed on
the CMU-MIT face detection data set. We use the original
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Viola-Jones features and the automatic cascade training pro-
cedure described in section 4.4. Unless otherwise indicated,
all experiments were performed with a goal detection rate
of Dg = 0.95, a goal false positive rate ofFg = 3 · 10−8,
η = 1.0 (though the false positive goal is favored when both
are unachievable), an overall cost ofG = 0.05, and a max-
imum number of hypotheses in an ensemble ofL = 200.
Although this methodology is not guaranteed to produce the
best ROC curves, we hope this consistency will help make
comparisons with other work straightforward.

The detector is applied to an image by scanning a detec-
tion window over the image at a sequence of scales, each
scale being a factor of1.25 larger than the previous one.
Naturally, the detector returns positive results on overlap-
ping windows, so some post-processing is required to clean
up the output. Our post-processing step is to define a graph
over the positive windows by placing edges between win-
dows where intersection is a high percentage (63%) of the
larger window. This ensures that windows that actually de-
tecting the same thing have an edge between them. We then
return one averaged window for each sufficiently large con-
nected component in the graph. An example of this process
is shown in figure 4.

The best comparison between two detectors is realized
by visualizing the full ROC curve5, which shows the full
detection versus false positive tradeoff. Unfortunately, vi-
sualizing an ROC curve for every comparison made in this
section is impractical. Therefore, in some cases we will
summarize the overall performance of a detector by averag-
ing the detection rate over 0-130 false positives. This mea-
sure is analogous to the standard “area under curve”, used
when the detection rate is plotted against the false positive
rate, rather than the number of false positives. Because there
are 130 images in the CMU-MIT data set, this upper bound
on the number of false positives represents an average of
one false positive per image.

To account for the effects of post-processing, we produce
a ROC curve for the entire CMU-MIT data set for several
rule sets and then take the highest detection rate for each
number of false positives. Thus, for every point on the ROC
curve, there is a post-processing rule that achieves that re-
sult.

To measure the speed of the detector, we calculate the
average number of features applied to the detection window
as it is scanned over entire data set. Note that this can be dif-
ferent from the number of hypotheses applied when CART
trees are used in the detector.

7.1 Feature Selection

7.1.1 “Fast” Filters

As discussed in section 6.1, we examine two fast feature se-
lection methods: random selection and ranking by mutual
information. Each of these methods was used to reduce
the feature pool by 90% (RND13473 and RANK13473)
and 99% (RND1347 and RANK1347) during the training
of several detectors. We performed a full factorial analy-
sis over the amount of filtering (90% and 99%), the filter-
ing method (random selection or ranking), and the boosting
method (Adaboost, RealBoost, or GentleBoost), training a
total of twelve detectors. Results for Adaboost are shown in
figure 5.

In both cases, random selection gives comparable per-
formance to the ranking method. Table 5 shows that these
results hold regardless of whether Adaboost, Realboost,
or Gentleboost is used. At first, this may seem counter-
intuitive. The ranking method does, after all, include the
most discriminative features. How can a random selection
of features produce detectors that perform just as well? The
answer is the redundancy problem identified in section 6.1.
The “best” features tend to misclassify the same examples,
making it difficult for Adaboost to learn an ensemble of hy-
potheses that classifies these examples correctly. This con-
firms the well-known problems of ranking for feature selec-
tion [9].

We illustrate this redundancy phenomenon by plotting
the cumulative distribution of the fraction of features that
misclassify an example. Mathematically, we define this dis-
tribution by lettingV be the set of either positive or negative
validation examples and letting

M(s) =
|{f ∈ F ′ : s ismisclassifiedby f}|

|F ′|

be the fraction of selected features that misclassify the ex-
amples ∈ V . We then plot the distribution

R(x) = Pr
s∈V

[M(s) ≤ x] .

One can think of this distribution as being formed by plot-
ting the fraction of incorrect features for each example on
the real line, and then counting the fraction of these points
that are less thanx to form the cumulative distribution
R(x). This distribution is similar to the cumulative distribu-
tion of the margin, a more familiar concept in the machine
learning literature (e.g. [18] ). In our plots, we remove the
need for choosing a decision boundary by plotting the pos-
itive and negative examples separately, while still showing
the same phenomena.
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Figure 4: Detected windows before (left) and after (right) post-processing.
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Figure 5: Comparison of ROC curves for detectors trained with random feature selection (RND) and ranking by mutual
information (RANK) for 90% feature reduction (left) and 99% feature reduction (right). Results for disrete Adaboost shown.
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Figure 7: ROC curves of the voting ensemble formed by the
features selected by the RND and RANK filters for the 5th
stage. The ROC curve for the RND features is clearly better,
but Adaboost is able to make the RANK method more com-
petitive by changing the feature threshold and using more
features.

In figure 6, we compare these distributions for positive
and negative examples for a representative stage (the fifth
one) of the detectors trained with Adaboost. We observe
that there is much greater variance in the number of fea-
tures that misclassify an example when the ranking method
is used. For instance, most positive examples are misclas-
sified by between 10% and 35% of the the features when
random selection is used, but this range widens to 5% to
80% when ranking is used.

This observation is a clear indication of the redundancy
problem in the ranking method. Some examples are almost
always classified correctly, while others are almost always
misclassified. Note that althoughR(x) is greater when the
ranking method is applied for manyx, this is not an indi-
cation that the feature set is better. If we consider a voting
ensemble of the selected features, there is no point on the
ROC curve where the ranking method is better than the ran-
dom one, as shown in figure 7. This means that Adaboost’s
task of combining these features to meet the performance
goals for the stage is more difficult when ranking selection
is used. In fact, for the fifth stage shown in the figures, 190
iterations of Adaboost are required, instead of the 101 iter-
ations when random selection is used.

7.1.2 “Slow” Filters

To assess the asymtotically slower methods, conditional
mutual information maximization (CMIM) and forward
feature selection (FFS), we first randomly selected 10% of
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Figure 8: ROC curves for detectors using CMIM and FFS
filtering methods. Results for random feature pools also
shown for comparision. Both “slow” filtering methods per-
form than random selection (RND200), but do no better
than not filtering at all (RND13473). Results shown with
Gentleboost.

the features and then used the methods to filter down to
200 features. For a baseline comparison we also trained
a detector with200 randomly selected features (RND200).
The ROC curves for the resulting detectors trained with
Gentleboost are shown in figure 8. Both FFS and CMIM
produce ROC curves comparable to the one produced by
RND13473. That is, the detectors perform as well as they
would if no filtering had been applied at all. Thus, although
these methods offer a modest improvement in training time,
they do not outperform the greedy selection naturally em-
ployed by Adaboost.

Our results also show that CMIM and FFS are effec-
tive at eliminating the redundancy problem associated with
ranking. Figure 9 shows the distributionsR(x) for the fifth
stage of detectors employing the filtering methods. The
distributions show approximately the same amount of vari-
ance as RND in the number of misclassifications, though
the means differ more markedly.

7.2 Alternative Weak Learners

7.2.1 CART-based Hypotheses

Our experiments show that CART-based detectors offer im-
proved detection rates with only small drops in speed. The
ROC curve of figure 10 shows the improvement coming
from using CART trees of depth 2, 4, and 6, as opposed
to stumps (i.e. threshold-based hypotheses). This result is
especially significant, because using deeper CART trees is
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Figure 6: The distributionsR(x), wherex is the fraction of features that misclassify an example, for positive examples (left)
and negative examples (right) for the fifth stage of detectors using random (RND) and ranking (RANK) feature selection.
Notice the greater variance in the RANK distribution. Results for the 5th stage shown.

Figure 9: The distributionR(x), wherex is the fraction of features that misclassify an example, for positive examples (left)
and negative examples (right) for the fifth stage of detectors using CMIM and FFS with analgous distributions shown for
random selection. Notice how the distributions for CMIM and FFS do not have a large variance and are comparable to the
RND distributions with slightly shifted means.
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Figure 10: CART depths up to 4 significantly and consis-
tently improve performance. Results shown for discrete Ad-
aboost.

the only change in this study that shows results better than
our result for the original Viola and Jones strategy. A com-
parison among several standard detectors is given in table
1.

Table 2 shows that CART-based hypotheses improve re-
sults across the various boosting algorithms with a minimal
loss in speed. Unfortunately, the measurements for the av-
erage number of features applied the image do not show
much consistency, creating some uncertainty on the latter
point. We attribute this to the fact that the boosting algo-
rithms seek to minimize the misclassification error, or some
closely related quantity, rather than trying to meet the stage
criteria directly.

One might reasonably argue that the above comparison
is unfair to threshold-based detectors, because with the limit
of 200 hypotheses per stage the detectors using non-stump
CART trees are allowed to apply more features to the de-
tection window. For example a hypothesis using 4 deep
CART trees can apply up to 800 features to the detection
window in a given stage, whereas the threshold-based de-
tector can only apply 200 per stage. Therefore, we trained
two more detectors that allow 400 and 800 iterations of dis-
crete Adaboost and compared the results to the detectors us-
ing 2-deep and 4-deep CART trees. The results are shown
in figure 11. Although allowing more threshold-based hy-
potheses per stage does improve the results, better detection
results are achieved if these “extra” features are combined
with others in CART trees.

7.2.2 Histogram-base Hypotheses

Our experiments show that histogram based hypotheses are
more powerful than theshold-based hypotheses in the early
stages of the cascade, requiring fewer hypotheses to meet
the goal criteria for a stage. However, in the later stages,
as the task of separating the faces from the false positives of
the currently trained partial cascade becomes harder, the en-
semble of histogram-based hypotheses is no better at meet-
ing the goal criteria than threshold-based ensembles are.
The result is that histogram-based detectors are faster at run-
time, but do not produce better detection performance. Ta-
ble 3 shows that this result holds over the various boosting
methods employed in our experiments.

7.3 Variations on Boosting

Table 5 shows the full set of results obtained in this study.
Surprisingly, this reveals that the method of boosting has no
significant effect on the overall performance of the detector.
The boosting method does, however, seem to have an sig-
nifiant, though not always consistent, effect on the number
of features that need to be applied to the image. Thus, we
may say that the boosting method affects the efficiency of
the detector.

Table 4 shows the number of features applied per win-
dow averaged over the experiments in this study for meth-
ods of boosting and types of weak hypotheses. For all three
categories of weak hypotheses (threshold-based, CART-
based, and histogram-based) Gentleboost seems to be more
efficient than Adaboost. Realboost, however, is the most ef-
ficient when CART-based hypotheses are used and the least
efficient otherwise. A plausible explanation for this latter
result is that the ERROR and CONFIDENCE combination
associated with Realboost (see section 5) is well suited to
the case where the partitions are relatively pure (close to all
positive or to all negative), as one would expect for deeper
CART trees, but that they are poorly suited to impure par-
titions, as one would expect for threshold-based or coarse
histograms.

7.4 Cascade Learning

The effectiveness of our cascade learning strategy (see sec-
tion 4.4) has been demonstrated by the fact that all detectors
presented in the paper were trained using this method. Our
improved algorithm is powerful enough to produce state of
the art results without any manual intervention and is robust
enough to produce reasonable results even when the feature
pool is reduced to 200 randomly selected features.
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False Positives
Detector 6 10 21 46 50 65 78 95

Viola-Jones – 0.761 0.884 – 0.914 0.920 0.921 0.929
Schneiderman 0.897 – – 0.957 – – – –
Lienhart et al – 0.82 – – 0.90 – – –

CART-4 w/ Realboost 0.891 0.905 0.929 0.935 0.935 0.943 0.948 0.951

Table 1: A comparison of detection rates for several standard detectors. Results for Viola-Jones are from [26], results for
Schneiderman are from [20], and results for Lienhart are from the graphs in [14].

CART Depth Boosting # of Features Avg. # of Features Avg. Detection Rate
for first 3 stages applied per window

1 Adaboost 16, 41, 82 138.0 0.889
2 Adaboost 48, 50, 52 135.6 0.910
4 Adaboost 24, 44, 88 107.3 0.926
6 Adaboost 54, 66, 54 155.4 0.929
1 Realboost 29, 59, 83 162.3 0.868
2 Realboost 24, 48, 42 75.0 0.903
4 Realboost 20, 24, 44 75.6 0.930
6 Realboost 24, 24, 54 75.0 0.929
1 Gentleboost 17, 36, 32 93.3 0.866
2 Gentleboost 14, 60, 40 79.6 0.915
4 Gentleboost 44, 112, 48 126.4 0.929
6 Gentleboost 36, 78, 120 155.4 0.936

Table 2: Deeper CART-based detectors produce better detection results, sometimes at the expense of speed.
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Figure 11: CART-based hypotheses produce better detectors, when we control for the maximum number of features that can
be applied to a detection window. The notation HYPO-E indicates that the hypotheses were HYPO-based and that maximum
ensemble length was fixed at E.
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Weak Learner Boosting # of Features Avg. # of Features Avg. Detection Rate
for first 3 stages applied per window

Threshold Adaboost 16, 41, 82 138.0 0.889
Histogram Adaboost 14, 39, 48 89.7 0.877
Threshold RealBoost 29, 59, 83 125.5 0.877
Histogram RealBoost 33, 32, 70 114.8 0.875
Threshold GentleBoost 17, 36, 32 93.3 0.866
Histogram GentleBoost 13, 17, 23 57.2 0.870

Table 3: Histogram-based detectors are consistently faster but do not consistently produce better results than threshold-based
detectors. Average Detection rate is taken over 0 to 130 false positives.

Category Adaboost Realboost Gentleboost
Threshold-based 142.8 147.2 84.7

CART-based 132.8 75.5 95.8
Histogram-based 89.7 114.8 57.2

Table 4: Average number of features applied per detection
window in each of the weak learning categories. Gentle-
boost is consistently more efficient than discrete Adaboost.
RealBoost is the least efficient except when CART-based
hypotheses are used.

Two methods were presented for estimating the overall
cascade operating point. For consistency, only the sampling
method was used for experiments presented thus far, but
as shown in figure 12, the two methods seem to produce
similar results.

The reader may have noticed that the early stages of the
cascades include more hypotheses than other systems. In
most other systems, the number of hypotheses in a stage is
determined by hand, and in an effort to create a fast detector
the early stages are forced to contain only a few hypotheses.
Such intervention is compatible with the cascade learning
strategy presented here, so long as the cascade learner is
provided with measurement of the earlier stages’ detection
and false positive rates.

8 Conclusion

We have described a novel algorithm for fully-automatic
cascade training based on a probabilistic prediction of cas-
cade performance. The approach removes much of the
guess-work associated with training cascades of boosted
ensembles in the past, and we hope that it will provide a
framework for controlled experiments comparing cascaded
detectors in the future.

Using this approach, we analyzed the influence of sev-
eral other factors on the performance of the final detector.
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Figure 12: The sampling strategy and Fan’s approximation
strategy produce comparable results. Detectors were trained
using a random 10% feature set, threshold-based hypothe-
ses, and discrete Adaboost.

We found that the most effective way to improve the per-
formance of a CoBE detector is to learn stronger weak hy-
potheses. Combining the original Viola and Jones features
into CART trees produces significantly improved results.
We expect that others ways of creating stronger weak hy-
potheses would be effective as well.

Although feature filtering would seem to hold great
promise as a way to speed up the training process or
improve the detector performance, several standard tech-
niques, including ranking by mutual information, condi-
tional mutual information maximization, and forward fea-
ture selection, were ineffective in our experiments. We also
show that when the cascade learning is properly controlled,
the method of boosting has little impact on the overall per-
formance of the detector, though it can have an effect on its
efficiency.
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Feature Feature Weak Boosting Avg. # of Avg.
Selection Pool Size Learner Features Applied Detection Rate
Random 13473 Threshold Adaboost 138.0 0.889
Ranking 13473 Threshold Adaboost 168.8 0.872
Random 1347 Threshold Adaboost 147.0 0.880
Ranking 1347 Threshold Adaboost 157.7 0.860
CMIM 200 Threshold Adaboost 143.1 0.868
FFS 200 Threshold Adaboost 115.2 0.875

Random 200 Threshold Adaboost 148.9 0.841
Random 13473 Threshold Realboost 125.5 0.877
Ranking 13473 Threshold Realboost 162.3 0.868
Random 1347 Threshold Realboost 144.6 0.852
Ranking 1347 Threshold Realboost 196.7 0.848
CMIM 200 Threshold Realboost 127.4 0.871
FFS 200 Threshold Realboost 134.5 0.868

Random 200 Threshold Realboost 186.1 0.830
Random 13473 Threshold Gentleboost 71.1 0.881
Ranking 13473 Threshold Gentleboost 92.4 0.872
Random 1347 Threshold Gentleboost 78.5 0.874
Ranking 1347 Threshold Gentleboost 191.1 0.834
CMIM 200 Threshold Gentleboost 65.4 0.870
FFS 200 Threshold Gentleboost 93.5 0.860

Random 200 Threshold Gentleboost 101.2 0.829
Random 13473 CART-2 Adaboost 135.6 0.910
Random 13473 CART-4 Adaboost 107.3 0.926
Random 13473 CART-6 Adaboost 155.4 0.929
Random 13473 CART-2 Realboost 75.0 0.903
Random 13473 CART-4 Realboost 75.6 0.930
Random 13473 CART-6 Realboost 75.0 0.929
Random 13473 CART-2 Gentleboost 61.0 0.905
Random 13473 CART-4 Gentleboost 100.8 0.920
Random 13473 CART-6 Gentleboost 125.8 0.932
Random 13473 Histogram Adaboost 89.7 0.877
Random 13473 Histogram Realboost 114.8 0.875
Random 13473 Histogram Gentleboost 57.2 0.870
Random 13473 Threshold Adaboost 148.0 0.8986

Random 13473 Threshold Adaboost 153.2 0.9007

Table 5: Full table of all results of this study.
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Notes
1Schapire and Singer use the same convention in section 4 of [19], say-

ing the weight coefficients are “folded into” the hypothesis.
2We use the same “validation” data in the FIND-BEST-THRESHOLD

step as we do in the VALIDATE step. Although a purist would object, this
works well in practice.

3A more strict definition of a voting ensemble might require that the
classifier be of the form

∑
i aihi(x) > θ, wherehi is a concept returning

either0 or 1. This restriction causes a vote’s weight to be fixed; whereas
theh in the confidence-rated hypotheses used in equation 2 might adjust
their weight according tox. If the confidence-rated hypotheses return only
two distinct values, then the two definitions are equivalent, but if they can
take on more values, then the classifier described in equation 2 does not
meet the more strict definition given here.

4A set of points that are equivalent in this sense form an indifference
curve.

5 Technically, we will be plotting the detection rate versus the number
of false positives on the CMU-MIT data set, rather than a true ROC curve
which plots the detection rate versus the false positive rate.

6Maximum Ensemble length is not 200 but 400.
7Maximum Ensemble length is not 200 but 800.
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