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Last Time: Supervised Learning

= Training samples (or examples) X',X?,...X"
= Each example is typically multi-dimensional
= Xi,, Xi, ..., Xiy are typically called features, Xi is
sometimes called a feature vector

= How many features and which features do we

take?
= Know desired output for each example (labeled

samples) Y',Y2,...Y"

= This learning is supervised (“teacher” gives desired
outputs).

= Yiare often one-dimensional, but can be
multidimensional

Outline

Last Time: Supervised Learning

= Linear Machines
= Start preparation for the first paper

= “Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

= there should be a link to PDF file on our web site
= Next time:

= Discuss the paper and watch video

= Prepare for the second paper

= Wish to design a machine f(X,W) s.t.
f(X,W) = true output value at X
= In classification want f(X,W) = label of X
= How do we choose f?
= when we choose a particular f, we are making implicit
assumptions about our problem
= W is typically multidimensional vector of weights
(also called parameters) which enable the machine
to “learn”
=W o= [wy,Wo,... W]




Training and Testing

= There are 2 phases, training and testing

= Divide all labeled samples X',X2,...X" into 2 sets,
training set and testing set

= Training phase is for “teaching” our machine
(finding optimal weights W)
= Testing phase is for evaluating how well our
machine works on unseen examples
= Training phase

= Find the weights W s.t. f(X,W) = Y “as much as
possible” for the training samples X

= “as much as possible” needs to be defined
= Training can be quite complex and time-consuming

Linear Machine, Continuous Y

= f(X\W) = Wo+Zi1 5 g WiX;
= W, is called bias

= |n vector form, if we let
X = (1,X1,Xy,-..,Xg), then
f(X,W) = WTX
= notice abuse of notation, | made

X=[1X]

= This is standard linear

regression (line fitting)

= assume
LOXYLW) = || HXW) - 2

= optimal W can be found by
solving linear system of
equations W* = [ZXI (X')T]-T ZYiX

Loss Function

= How do we quantify what it means for the machine
f(X,W) do well in the training and testing phases?

f(X,W) has to be “close” to the true output on X

Define Loss (or Error) function L
= This is up to the designer (that is you)
= Typically first define per-sample loss L(X!,Y,W)
= Some examples:
= for classification, L(X,Y,W) = I[f(X,W) = Y],
where I[true] = 1, I[false] = 0
= we just care if the sample has been classified correctly
= For continuous Y, L(X,Y,W) =|| f(X,W) -Y! ||2,
= how far is the estimated output from the correct one?
Then loss function L = X; L(XL,Y,W)
= Number of missclassified example for classification

= Sum of distances from the estimated output to the correct
output

Linear Machine: binary Y

= sign(positive) = 1,
signgﬁegativg) =-1 \
= W, is called bias
= |n vector form, if we let
X =(1,X,X,,...,Xg) then
f(X,W) = sign(WTX)

decision boundary WX = 0




Perceptron Learning Procedure (Rosenblatt 1957)

= Let L(X,Y W) = I[f(X,W) # Yi]. How do we learn W?
= A solution:
= lterate over all training samples

= if f(X,W)=Y (correct label), do nothing

= else W = W + [Y-f(WTX)]X

before after

Optimization

= Need to minimize a function of many variables
J(x) = J(X;50eey X))

= We know how to minimize J(x)
= Take partial derivatives and set them to zero

KB gradient
ax J(x)
: =VJ(x)=0
2 ()
ox,

= However solving analytically is not always easy
= Would you like to solve this system of nonlinear equations?
sin(x?+ x3)+eX =0
{cos(xf +x3)+ Iog(xf Y=o
= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Perceptron Learning Procedure (Rosenblatt 1957)

= Amazing fact: If the samples are linearly separable,
the perceptron learning procedure will converge to a
solution (separating hyperplane) in a finite amount of
time

= Bad news: If the samples are not linearly separable,
the perceptron procedure will not terminate, it will go
on looking for a solution which does not exist!

= For most interesting problems the samples are not
linearly separable
= |s there a way to learn W in non-separable case?

= Remember, it's ok to have training error, so we don’t have
to have “perfect” classification

Optimization: Gradient Descent

= Gradient VJ(x) points in direction of steepest increase of
J(x),and -VJ(x) in direction of steepest decrease

one dimension two dimensions
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Optimization: Gradient Descent
J(x) -vJ(x™)

s s
X x2 x@  x®

Gradient Descent for minimizing any function J(x)
set k=1 and x(") to some initial guess for the weight vector
while 77(")‘ VJ(x("))‘ >e

choose learning rate p®
Xtk )= X0 — 1 (9 ()
k=k+1

(update rule)

Optimization: Gradient Descent

= Main issue: how to set parameter 7 (learning rate )
= |f pis too small, need too many iterations

J(x)

¢
J(x)
= If pis too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting) o -
x(N x@

Optimization: Gradient Descent

= Gradient descent is guaranteed to find only a local
minimum
J(x)

X x2 x(3 x;k) global minimum
= Nevertheless gradient descent is very popular

because it is simple and applicable to any
differentiable function

“Optimal” W with Gradient Descent

= If we let L(X,Yi,W) = I[f(X|,W) = Yi], then L(W) is the
number of missclassified examples
= Let Mbe the set of examples misclassified by W
M(W)={sample X' s.t. W' X' Y’}
= Then L(W) = [M(W)], the size of M(W)

= L(W) is piecewise constant, M(W)
gradient descent is useless —_—

<




“Optimal” W with Gradient Descent

= Better choice:
Lw)= Y w'x')y’
X'em
I " . 2
= If X7is misclassified, (WTX)Yi< 0 *
= Thus L(W,X\,Yi) >0 =
= L(W,X\Y) is proportional
to the distance of

misclassified example to
the decision boundary L(W)

= L(W)=ZL(W,X.Y) is
piecewise linear and thus

suitable for gradient decent f w

Single Sample Rule

= Thus gradient decent single sample rule for L(W) is:
wk+) — ) 4 7’(k)()(y)

= apply for any sample X misclassified by WK
= must have a consistent way of visiting samples

Batch Rule
Lw,x',y')= 3 (wrx)y

XeM

= Gradientof Lis VvL(W)= (- X)¥
XeM
= M are samples misclassified by W

= |tis not possible to solve VL(W) =0 analytically

Update rule for gradient descent: xt*7)= x(0—p (k) g y(x)

= Thus gradient decent batch update rule for L(W) is:
w k) — w6 +77(k) ZXY

YeM
It is called batch rule because it is based on all
misclassified examples

Convergence
= If classes are linearly separable, and n® is fixed to a
constant, i.e. " =p@=...=p®=c (fixed learning rate)

= both single sample and batch rules converge to a correct
solution (could be any Win the solution space)

= [f classes are not linearly separable:
= Single sample algorithm does not stop, it keeps looking for
solution which does not exist
= However by choosing appropriate learning rate,
heuristically stop algorithm at hopefully good stopping point

7% >0 as k- o

= for example, ) 7](‘)
=y

= for this learning rate convergence in the linearly separable
case can also be proven




Learning by Gradient Descent

= Suppose we suspect that the machine has to have functional
form f(X,W), not necessarily linear

= Pick differentiable per-sample loss function L(X1,Y!,W)
= We need to find W that minimizes L = ; L(X!,Y,W)
= Use gradient-based minimization:

= Batch rule: W = W - nVL(W)

= Or single sample rule: W = W - nVL (X1, YL,W)

Background Preparation for Paper

= Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

= Optical Flow Field (related to motion field)
= Correlation

Important Questions

= How do we choose the feature vector X?

= How do we split labeled samples into training/testing
sets?

= How do we choose the machine f(X,W)?
= How do we choose the loss function L(Xi,Y,W)?
= How do we find the optimal weights W?

Optical flow
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first image I, second image I,

= How to estimate pixel motion from image /, to image I,?

= Solve pixel correspondence problem

= given a pixel in I, look for nearby pixels of the same
colorin I,
= Key assumptions

= color constancy: a point in /, looks the same in I,

= For grayscale images, this is brightness
constancy

= small motion: points do not move very far
= This is called the optical flow problem




Optical Flow Field

Motion Field (MF)

= The MF assigns a velocity vector to each pixel in
the image

= These velocities are INDUCED by the RELATIVE
MOTION between the camera and the 3D scene

= The MF is the projection of the 3D velocities on
the image plane

Optical Flow and Motion Field

= Optical flow field is the apparent motion of
brightness patterns between 2 (or several) frames
in an image sequence

= Why does brightness change between frames?

= Assuming that illumination does not change:

= changes are due to the RELATIVE MOTION between
the scene and the camera

= There are 3 possibilities:
= Camera still, moving scene
= Moving camera, still scene
= Moving camera, moving scene

Examples of Motion Fields
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(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a
more distant background.




Optical Flow vs. Motion Field

= Recall that Optical Flow is the apparent motion of

brightness patterns

= We equate Optical Flow Field with Motion Field

= Frequently works, but now always:

(a) A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is

zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image
changes. Thus the motion
field is zero, but the optical
flow field is not

Computing Optical Flow: Brightness
Constancy Equation

= Let P be a moving point in 3D:
= Attime t, P has coordinates (X(), Y(1),Z(1))

= Let p=(x(t),y(t)) be the coordinates of its image
attime ¢

= Let E(x(1),y(f),t) be the brightness at p at time t.
= Brightness Constancy Assumption:

= As P moves over time, E(x(1),y(1),f) remains
constant

Optical Flow vs. Motion Field

= Often (but not always) optical flow corresponds to the
true motion of the scene
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Computing Optical Flow: Brightness
Constancy Equation

E(x(t),y(t),t) = Constant

Taking derivative wrt time:

dE(x(t),y(t),t)
dt B

0

0Bdw  0Bdy  9F _
dx dt  dydt ot




Computing Optical Flow: Brightness Video Sequence
Constancy Equation —
1 equation with 2 unknowns
OEdr  OEdy L OFE
Ox dt Oy dt ot
Let
¢ VE — %—g (Frame spatial gradient)
oy
{ da } (optical flow)
v=| ¢
Yy
dt
and B, = <987E (derivative across frames)
t

~ Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Computing Optical Flow: Brightness
Constancy Equation

= How to get more equations for a pixel?
= Basic idea: impose additional constraints
= most common is to assume that the flow field is smooth locally

= one method: pretend the pixel's neighbors have the same (u,v)
= If we use a 5x5 window, that gives us 25 equations per pixel!

Et(pl)+VE(pl)'[u V]= 0

Ex(p1) Ey(p1) E{p,;
Ex(pz) Ey(Pz) l‘:il - _|E P
E,(pss) E,(pzs) E,(ps)
matrix E vector d vector b
25x2 2x1 25x1

Optical Flow Results

Lucas-Kanade
without pyramids

Fails in areas of large
motion

- From Khurram Hassan Shafique CAP5415 Computer Vision 2003



Revisiting the small motion assumption

Coarse-to-fine optical flow estimation

= |s this motion small enough?
= Probably not—it's much larger than one pixel (24
order terms dominate)

= How might we solve this problem?

u=1.25 pixels

u=2.5 pixels

u=10 pixels/

Gaussian pyramid of image H Gaussian pyramid of image I

Reduce the resolution!

Iterative Refinement

= [terative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-
Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

10



Coarse-to-fine optical flow estimation

- . runiterative L-K ._-
Lo lwarp & upsam| Lo

."—’ run iterative L-K +—— .

Gaussian pyramid of image H

Gaussian pyramid of image I

from Gary Bradski and Sebastian Thrun

Optical Flow Results

Lucas-Kanade with Pyramids

* From Khurram Hassan-Shafique CAP5415 Gomputer Vision 2003

Other Concepts to Review

= Convolution is the operation of applying a “kernel” to each pixel
of an image

image
Ty |Tiz| Lus | Tua | Lis| Lus| Tuv | Lis| Lus
Y21 |Xoz| L23| X2a| X25| Las| 27| D28 | I25 kel
Ku[Kiz[K
Tou|Toz| Tsa | Tas | Tas| Tas| Too| T | T i s
KaKezlKas
Yar|Laz| Las | Xas | Las| Las| Tav| Las| Las

Ts1|Isz| Iss| Isa| Iss|Iss|Is7| Iss| Iso
To1|Toz| Lsa| Los| Los|Tos|Tov| Iss| Leo

= Result of convolution has the same dimension as the image

= For example:
Oy = Ly Kys + Iyg Kaa+ Tug Kg + Top Foy + Tog oy + Tog Hog
= Convolution is frequently denoted by *, for example I"K

11



Other Concepts to Review

= Gaussian smoothing (blurring): convolution operator that is used to
“blur' images and removes small detail and noise from an image

4 16| 26| 16| 4

—- | 7|26 41| 26| 7

4 | 16| 26| 16| 4

= Results:

Other Concepts to Review

= |mage gradient: points in the direction of the most rapid

increase in intensity of i |mage f

o7 = [ =g
oo T K

= Sobel operator to 7 |10 1 2L
compute gradient: gl2lo]2 ] R
101 -1]-2]-1

oaf of

ox oy

Gaussian vs. Smoothing

Smoothing by Averaging
1al 7|4 111111
4 | 16| 26| 16| 4 1 1 1 1 1 1
1
I MEIEIEIE 25 P[]
4 | 16| 26| 16| 4 1 1 1 1 1
1 4 7 4 1
11111

Other Concepts to Review

= Cross-correlation o
c(f,g)=> f(ia(i)

i=1

Q

. medasures similarity between images (or image regions) f
and g

= works OK if there is no change in intensity

= Normalized cross correlation, more
popular in image processing

= Insensitive to linear intensity changes 6 Y
between image patches f and g N =
& <
& Y
(f(,) Xa(i)-9) & s
<

NCC(f,g)=

[Z(f(') 75 ai-a)
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Next Time

= Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik
= When reading the paper, think about following:
= What is the problem paper tries to solve
= What makes this problem difficult?

= What is the method used in the paper to solve the
problem

= What is the contribution of the paper (what new does it
do)?

= Do the experimental results look “good” to you?
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