CS9840 Learning and Computer Vision Prof. Olga Veksler

Lecture 2

Linear Machines, Optical Flow

Some Slides are from Cornelia, Fermüller,

Gary Bradski, Sebastian Thrun

Last Time: Supervised Learning

- Training samples (or examples) X¹, X²,...Xⁿ
- Each example is typically multi-dimensional
 - Xⁱ₁, Xⁱ₂,..., Xⁱ_d are typically called *features*, Xⁱ is sometimes called a *feature vector*
 - How many features and which features do we take?
- Know desired output for each example (labeled samples) Y¹,Y²,...Yⁿ
 - This learning is supervised ("teacher" gives desired outputs).
 - Yⁱ are often one-dimensional, but can be multidimensional

Outline

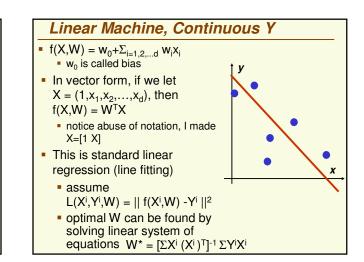
- Linear Machines
- Start preparation for the first paper
 - "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - there should be a link to PDF file on our web site
- Next time:
 - Discuss the paper and watch video
 - Prepare for the second paper

Last Time: Supervised Learning

- Wish to design a machine f(X,W) s.t.
 f(X,W) = true output value at X
 - In classification want f(X,W) = label of X
 - How do we choose f?
 - when we choose a particular f, we are making implicit assumptions about our problem
 - W is typically multidimensional vector of weights (also called *parameters*) which enable the machine to "learn"
 - $W = [w_1, w_2, \dots w_k]$

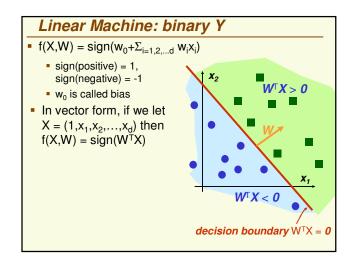
Training and Testing

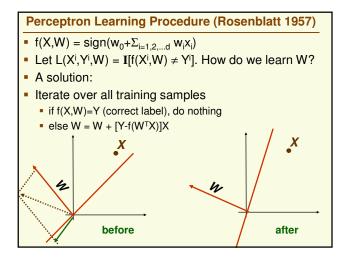
- There are 2 phases, training and testing
 - Divide all labeled samples X¹,X²,...Xⁿ into 2 sets, training set and testing set
 - Training phase is for "teaching" our machine (finding optimal weights W)
 - Testing phase is for evaluating how well our machine works on unseen examples
- Training phase
 - Find the weights W s.t. f(Xⁱ,W) = Yⁱ "as much as possible" for the *training* samples Xⁱ
 - "as much as possible" needs to be defined
 - Training can be quite complex and time-consuming



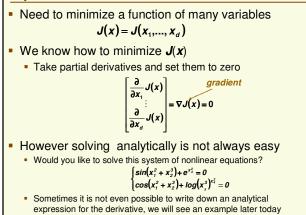
Loss Function

- How do we quantify what it means for the machine f(X,W) do well in the training and testing phases?
- f(X,W) has to be "close" to the true output on X
- Define Loss (or Error) function L
 - This is up to the designer (that is you)
- Typically first define per-sample loss L(Xⁱ,Yⁱ,W)
 Some examples:
 - for classification, $L(X^i, Y^i, W) = I[f(X^i, W) \neq Y^i]$,
 - where $\mathbf{I}[\text{true}] = 1$, $\mathbf{I}[\text{false}] = 0$
 - we just care if the sample has been classified correctly
 - For continuous Y, L(Xⁱ,Yⁱ,W) =|| f(Xⁱ,W) -Yⁱ ||²,
 how far is the estimated output from the correct one?
- Then loss function $L = \Sigma_i L(X^i, Y^i, W)$
 - Number of missclassified example for classification
 - Sum of distances from the estimated output to the correct output



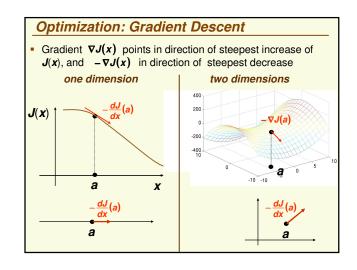


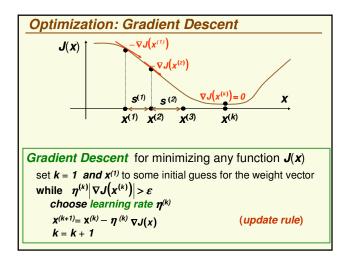
Optimization

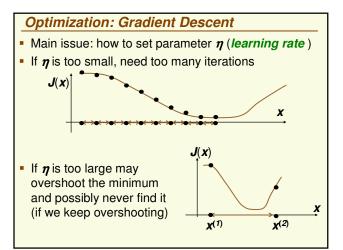


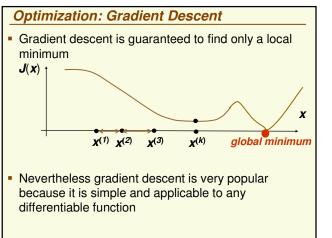
Perceptron Learning Procedure (Rosenblatt 1957)

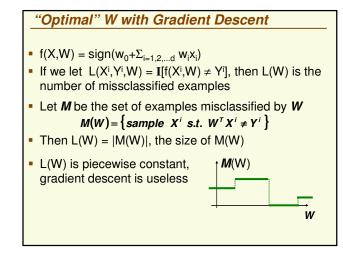
- Amazing fact: If the samples are linearly separable, the perceptron learning procedure will converge to a solution (separating hyperplane) in a finite amount of time
- Bad news: If the samples are not linearly separable, the perceptron procedure will not terminate, it will go on looking for a solution which does not exist!
- For most interesting problems the samples are not linearly separable
- Is there a way to learn W in non-separable case?
 - Remember, it's ok to have training error, so we don't have to have "perfect" classification

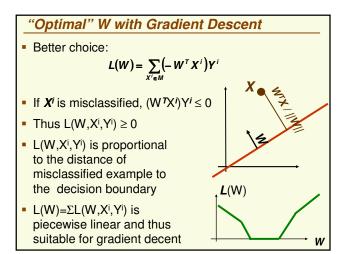












- Thus gradient decent single sample rule for L(W) is: $W^{(k+1)} = W^{(k)} + \eta^{(k)}(XY)$
 - apply for any sample X misclassified by W^(k)
 - must have a consistent way of visiting samples

Batch Rule

$$L(W, X^{i}, Y^{i}) = \sum_{i=1}^{N} (-W^{T}X)^{i}$$

Gradient of *L* is
$$\nabla L(W) = \sum_{X \in M} (-X)Y$$

- **M** are samples misclassified by W
- It is not possible to solve $\nabla L(W) = 0$ analytically
- Update rule for gradient descent: $\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} \boldsymbol{\eta}^{(k)} \nabla \mathbf{J}(\mathbf{x})$
- Thus gradient decent batch update rule for L(W) is:

$$W^{(k+1)} = W^{(k)} + \eta^{(k)} \sum_{Y \in M} XY$$

It is called batch rule because it is based on all misclassified examples

Convergence

- If classes are linearly separable, and $\eta^{(k)}$ is fixed to a constant, i.e. $\eta^{(1)} = \eta^{(2)} = \dots = \eta^{(k)} = c$ (fixed learning rate)
 - both single sample and batch rules converge to a correct solution (could be any W in the solution space)
- If classes are not linearly separable:
 - Single sample algorithm does not stop, it keeps looking for solution which does not exist
 - However by choosing appropriate learning rate, heuristically stop algorithm at hopefully good stopping point

$$\eta^{(k)}
ightarrow 0$$
 as $k
ightarrow \infty$

for this learning rate convergence in the linearly separable case can also be proven

Learning by Gradient Descent

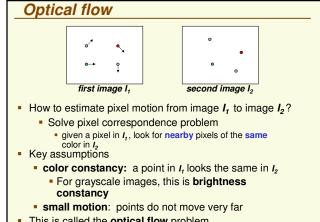
- Suppose we suspect that the machine has to have functional form f(X,W), not necessarily linear
- Pick differentiable per-sample loss function $L(X^{i}, Y^{i}, W)$.
- We need to find W that minimizes $L = \sum_i L(X^i, Y^i, W)$
- Use gradient-based minimization:
 - Batch rule: W = W $\eta \nabla L(W)$
 - Or single sample rule: $W = W \eta \nabla L(X^i, Y^i, W)$

Background Preparation for Paper

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - Optical Flow Field (related to motion field)
 - Correlation

Important Questions

- How do we choose the feature vector X?
- How do we split labeled samples into training/testing sets?
- How do we choose the machine f(X,W)?
- How do we choose the loss function L(Xⁱ, Yⁱ, W)?
- How do we find the optimal weights W?



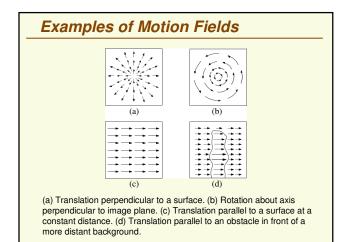
Optical Flow Field

Motion Field (MF)

- The MF assigns a velocity vector to each pixel in the image
- These velocities are INDUCED by the RELATIVE MOTION between the camera and the 3D scene
- The MF is the <u>projection</u> of the 3D velocities on the image plane

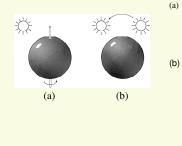
Optical Flow and Motion Field

- Optical flow field is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
- Why does brightness change between frames?
- Assuming that illumination does not change:
 - changes are due to the RELATIVE MOTION between the scene and the camera
 - There are 3 possibilities:
 - Camera still, moving scene
 - Moving camera, still scene
 - Moving camera, moving scene



Optical Flow vs. Motion Field

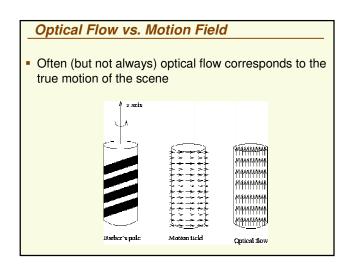
- Recall that Optical Flow is the apparent motion of brightness patterns
- We equate Optical Flow Field with Motion Field
- Frequently works, but now always:



- (a) A smooth sphere is rotating under constant illumination. Thus the optical flow field is zero, but the motion field is not
- (b) A fixed sphere is illuminated by a moving source—the shading of the image changes. Thus the motion field is zero, but the optical flow field is not

Computing Optical Flow: Brightness Constancy Equation

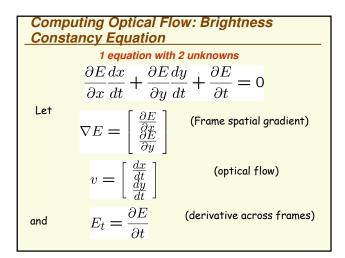
- Let **P** be a moving point in 3D:
 - At time t, P has coordinates (X(t), Y(t), Z(t))
 - Let p=(x(t), y(t)) be the coordinates of its image at time t
 - Let E(x(t), y(t), t) be the brightness at p at time t.
- Brightness Constancy Assumption:
 - As *P* moves over time, *E*(*x*(*t*), *y*(*t*), *t*) remains constant

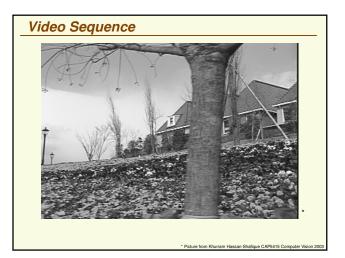


Computing Optical Flow: Brightness Constancy Equation
E(x(t), y(t), t) = Constant
Taking derivative wrt time:

$$\frac{dE(x(t), y(t), t)}{dt} = 0$$

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$





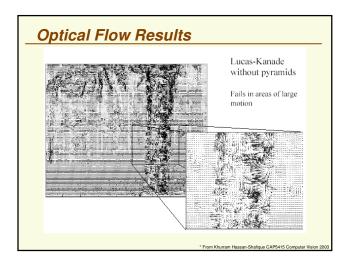
Computing Optical Flow: Brightness Constancy Equation

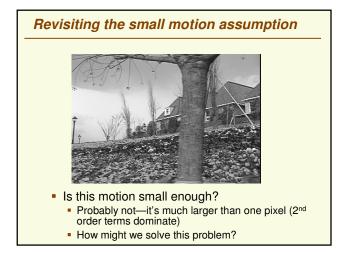
- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

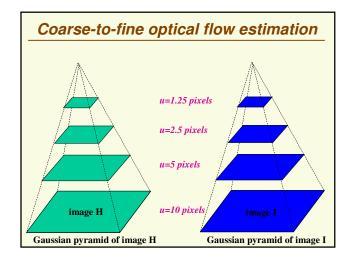
$$E_{t}(p_{i}) + \nabla E(p_{i}) \cdot [u \quad v] = 0$$

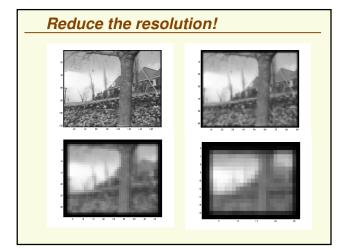
$$\begin{bmatrix} E_{x}(p_{1}) & E_{y}(p_{1}) \\ E_{x}(p_{2}) & E_{y}(p_{2}) \\ \vdots & \vdots \\ E_{x}(p_{25}) & E_{y}(p_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} E_{t}(p_{1}) \\ E_{t}(p_{2}) \\ \vdots \\ E_{t}(p_{25}) \end{bmatrix}$$
matrix E vector d vector b

$$25x2 \quad 2x1 \quad 25x1$$



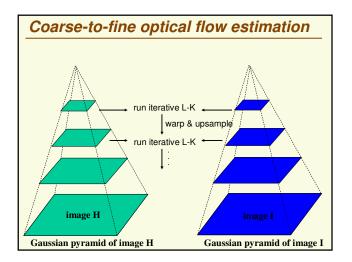


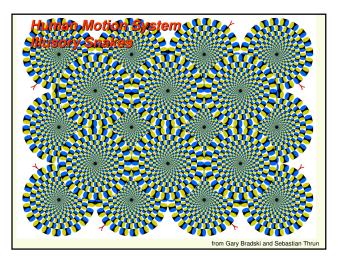


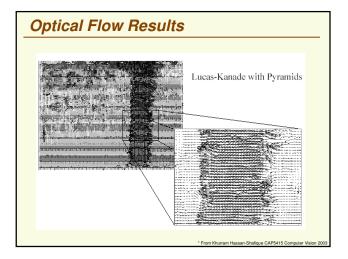


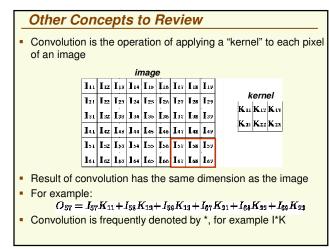
Iterative Refinement

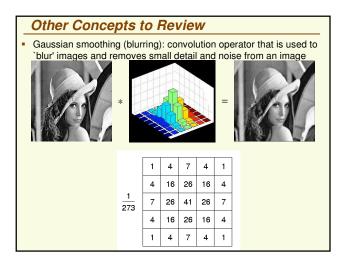
- Iterative Lukas-Kanade Algorithm
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using the estimated flow field - use image warping techniques
 - 3. Repeat until convergence

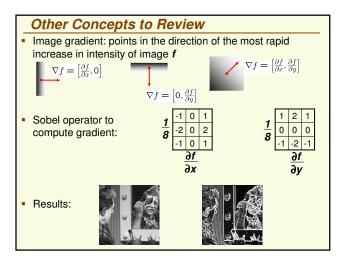


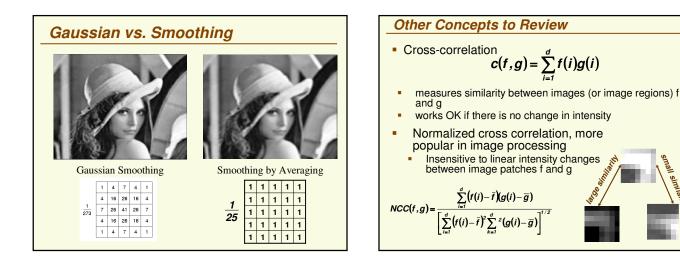












Next Time

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
- When reading the paper, think about following:
 - What is the problem paper tries to solve
 - What makes this problem difficult?
 - What is the method used in the paper to solve the problem
 - What is the contribution of the paper (what new does it do)?
 - Do the experimental results look "good" to you?