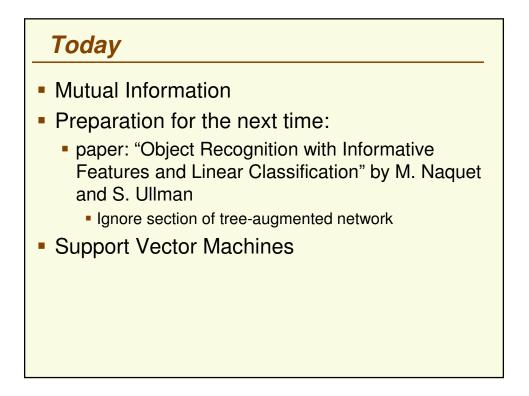
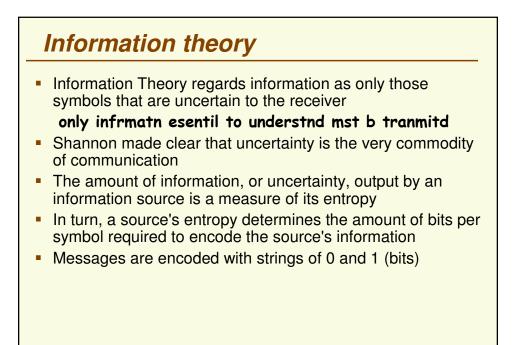
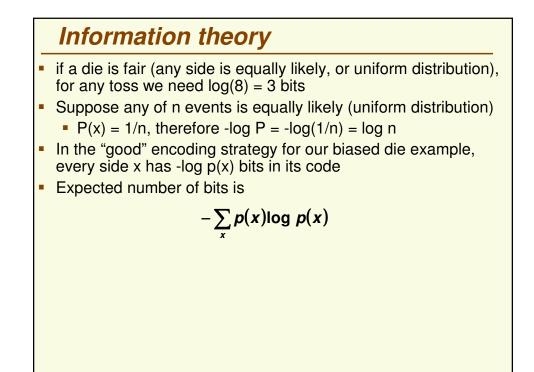
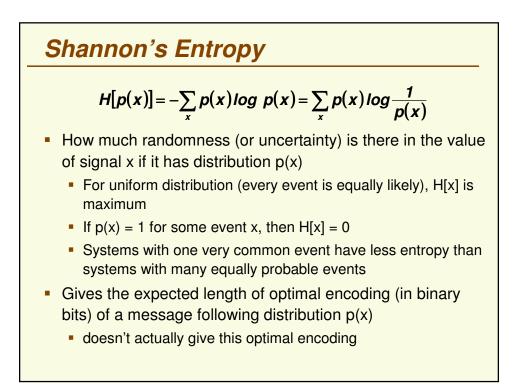
CS840a Learning and Computer Vision Prof. Olga Veksler Lecture 3 Information Theory (a little BIT) SVM Some pictures from C. Burges

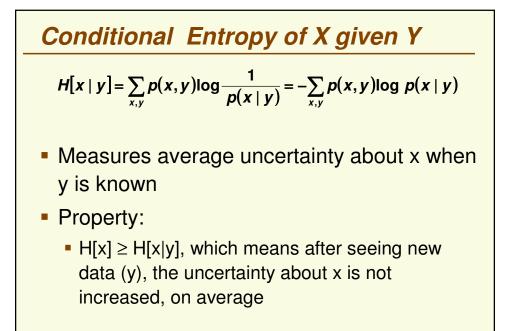


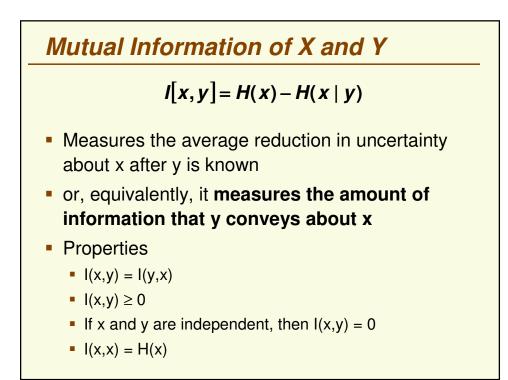


	Information theory
-	Suppose we toss a fair die with 8 sides
	 need 3 bits to transmit the results of each toss
	 1000 throws will need 3000 bits to transmit
•	Suppose the die is biased
	 side A occurs with probability 1/2, chances of throwing B are 1/4, C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
	Encode A= 0, B = 10, C = 110, D = 1110,, so on until G = 1111110, H = 1111111
	 We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128 = 1.984 bits to encode results of a toss
	1000 throws require 1984 bits to transmit
	Less bits to send = less "information"
	 Biased die tosses contain less "information" than unbiased die tosses (know in advance biased sequence will have a lot of A's)
	What's the number of bits in the best encoding?
•	Extreme case: if a die always shows side A, a sequence of 1,000 tosses has no information, 0 bits to encode





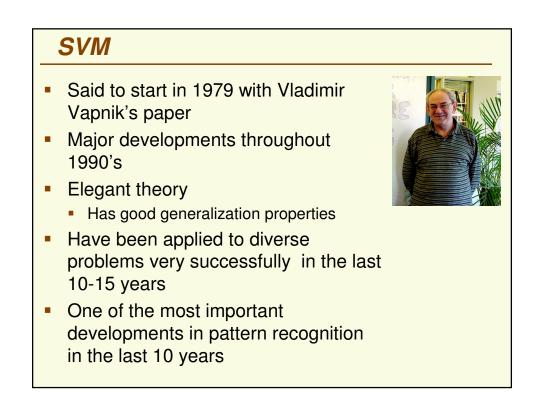


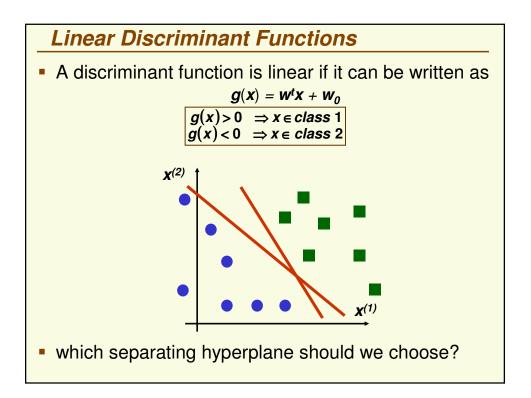


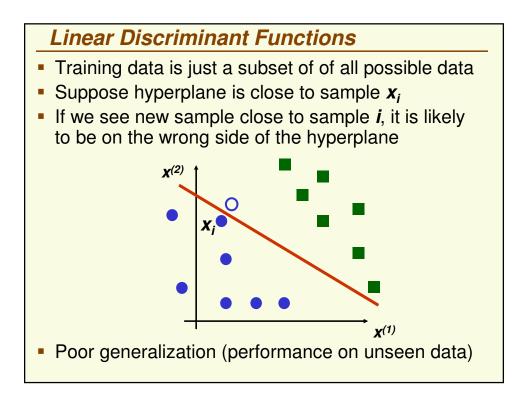
MI for Feature Selection

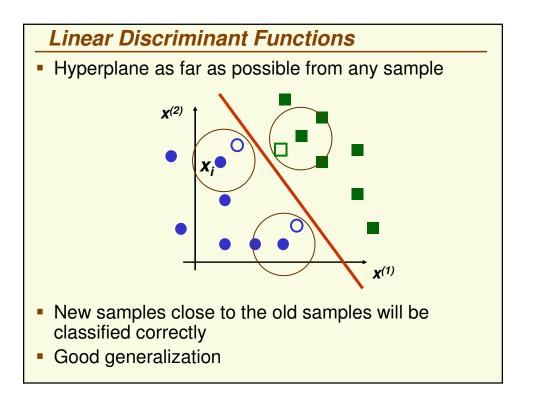
I[x,c] = H(c) - H(c | x)

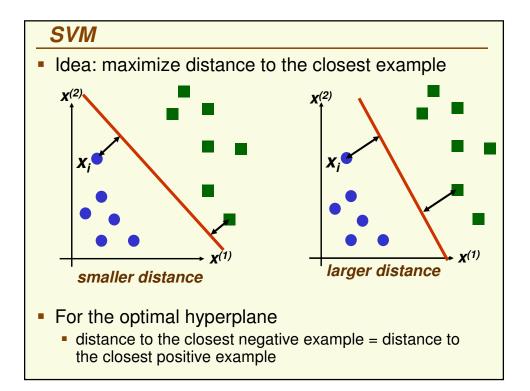
- Let x be a proposed feature and c be the class
- If I[x,c] is high, we can expect feature x be good at predicting class c

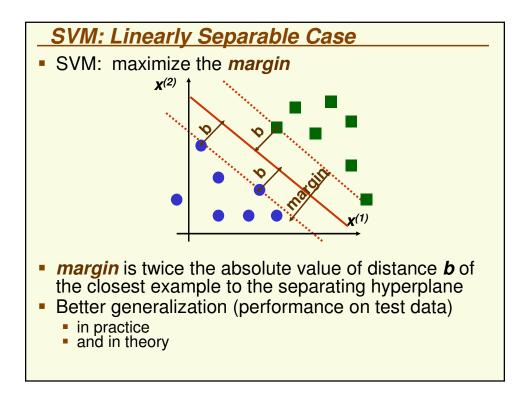


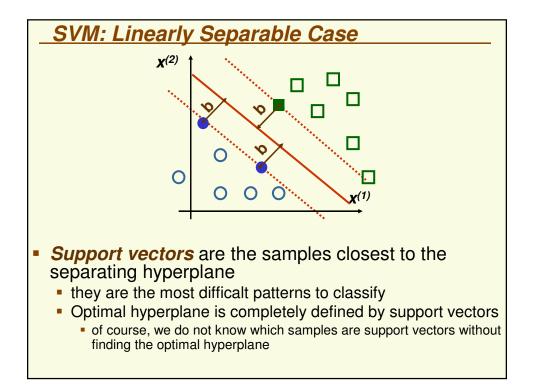


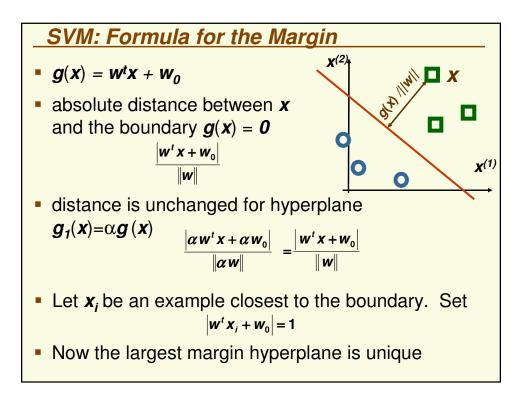


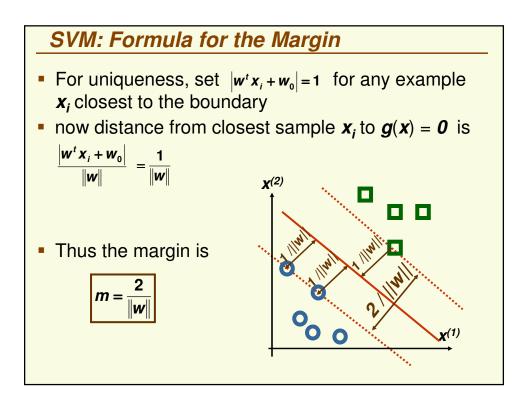


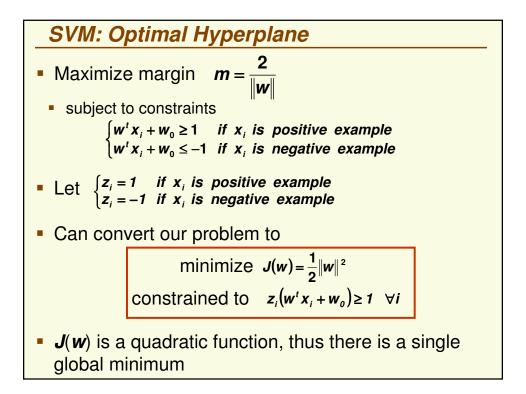


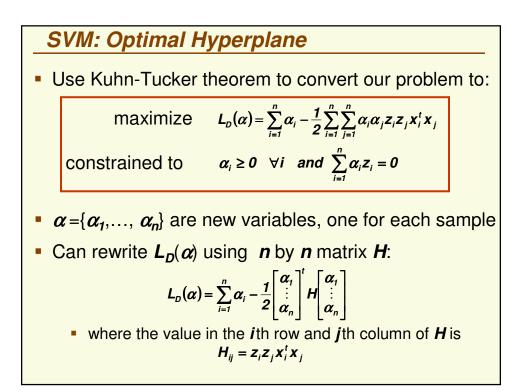


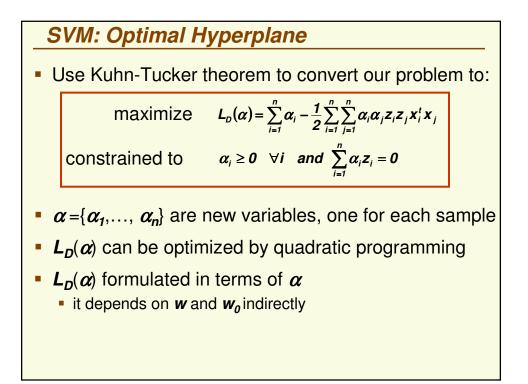


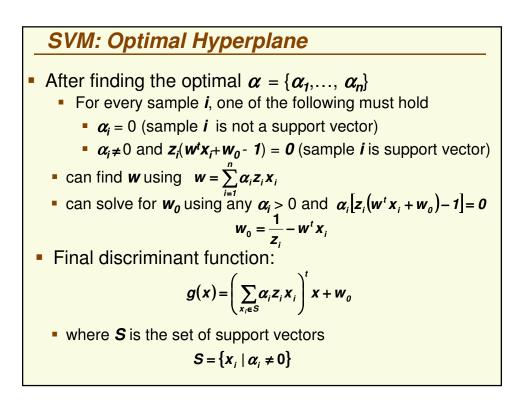


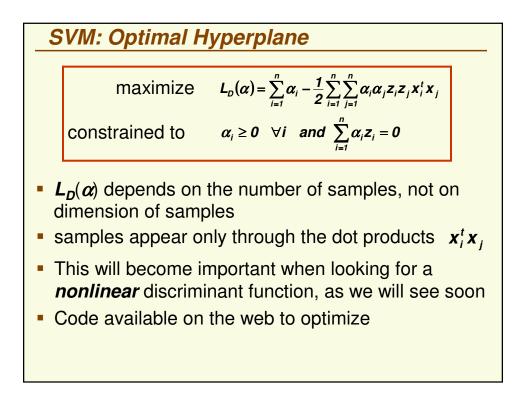


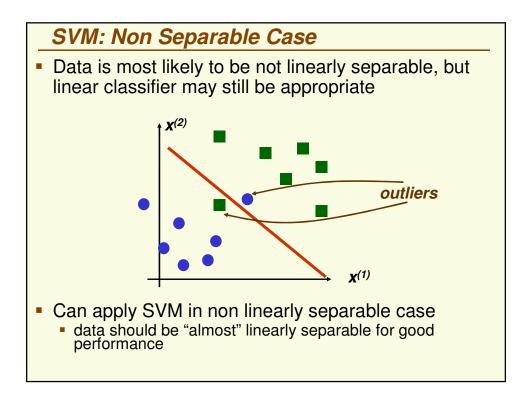


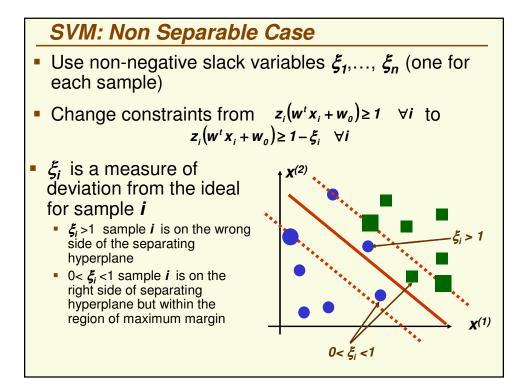


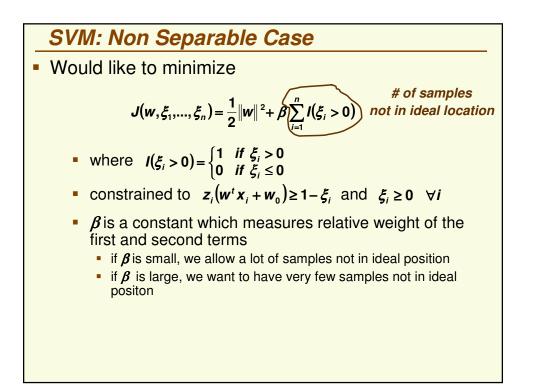


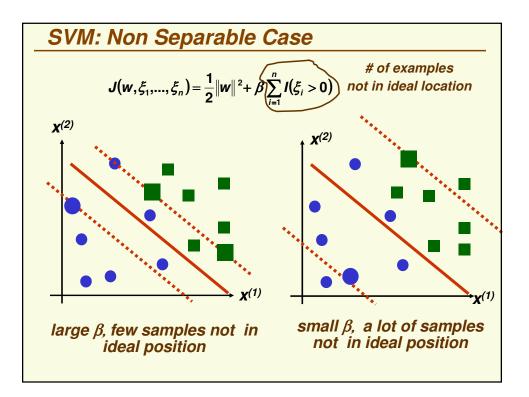


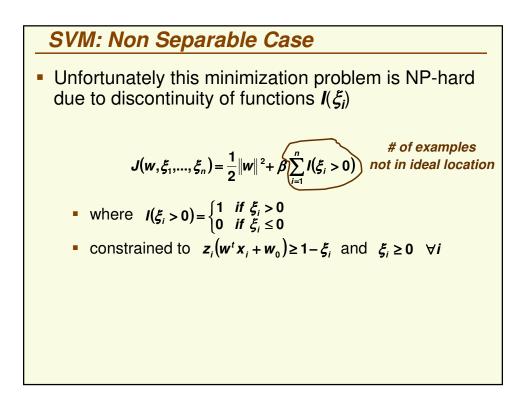


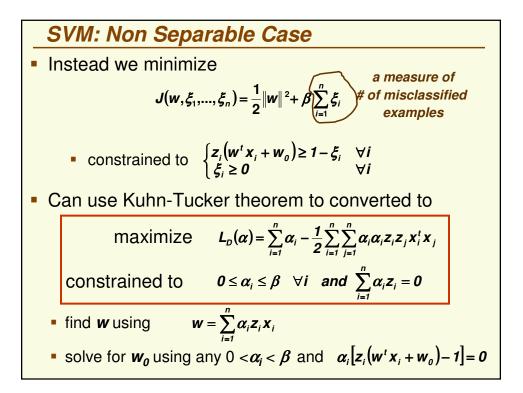


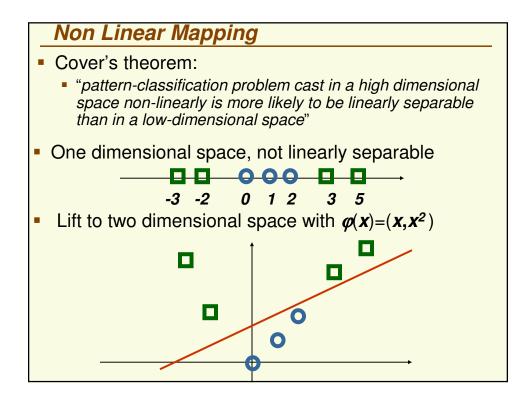


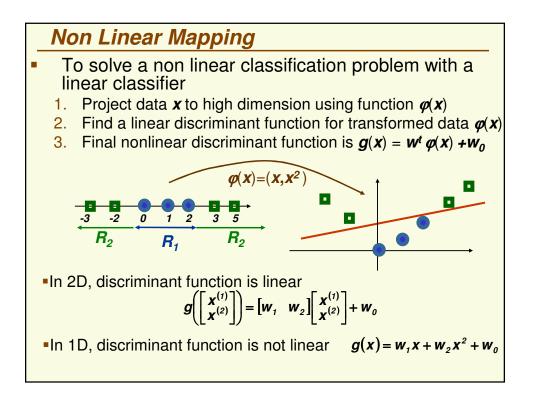


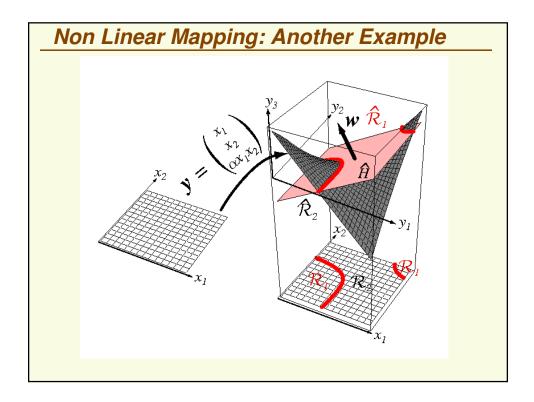


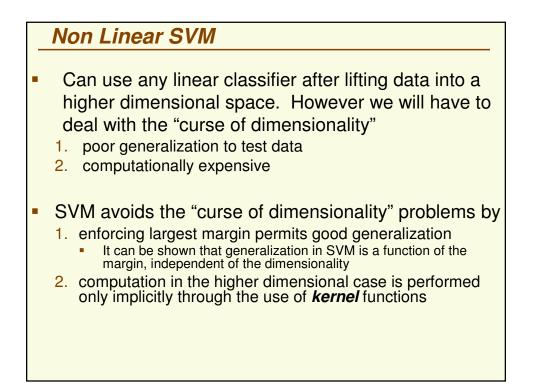






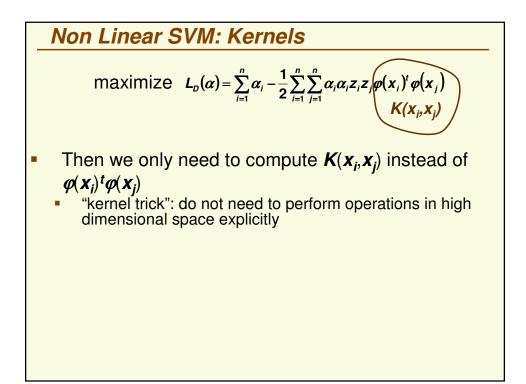


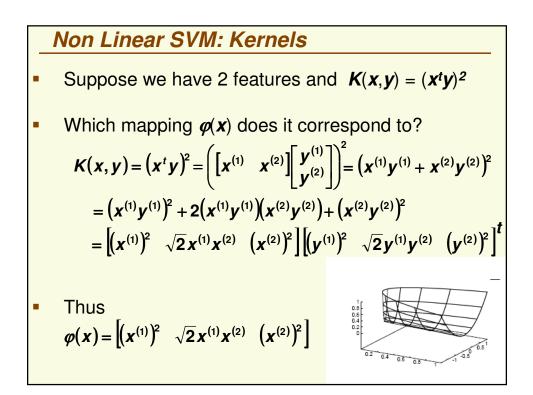


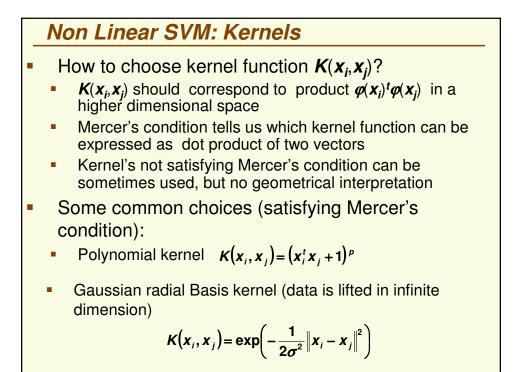


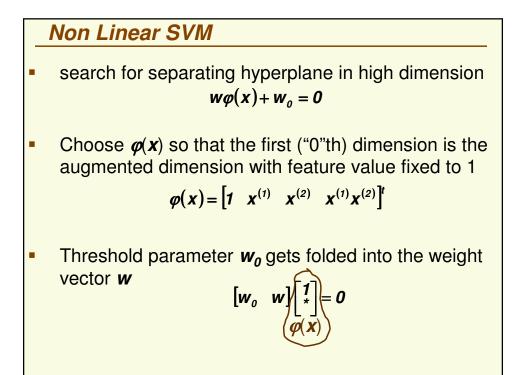
Non Linear SVM: Kernels
• Recall SVM optimization
maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j x_i^t x_j$$

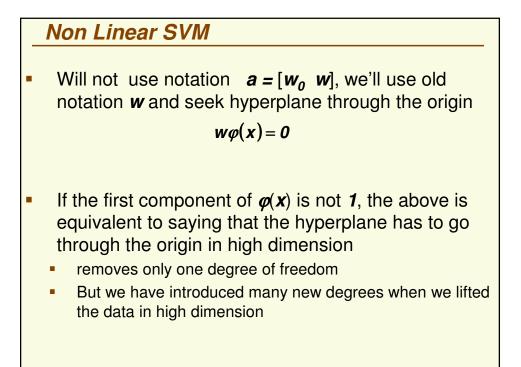
• Note this optimization depends on samples x_i only through the dot product $x_i^t x_j$
• If we lift x_i to high dimension using $\varphi(x)$, need to compute high dimensional product $\varphi(x_i)^t \varphi(x_j)$
maximize $L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j \varphi(x_i)^t \varphi(x_j)$
• Idea: find *kernel* function $K(x_i, x_j)$ s.t.
 $K(x_i, x_j) = \varphi(x_i)^t \varphi(x_j)$

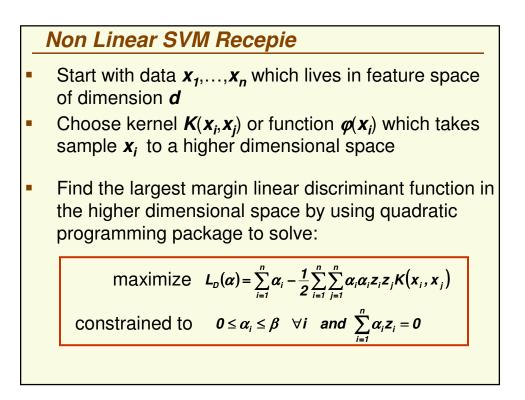












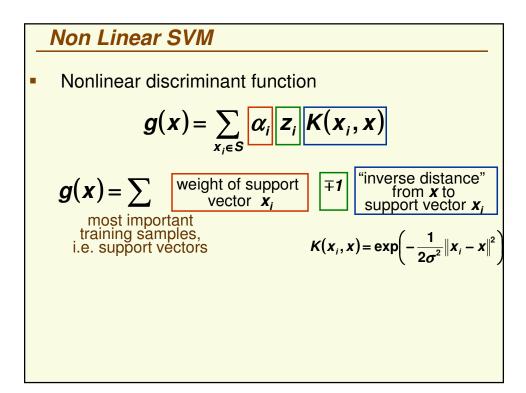
Non Linear SVM Recipe

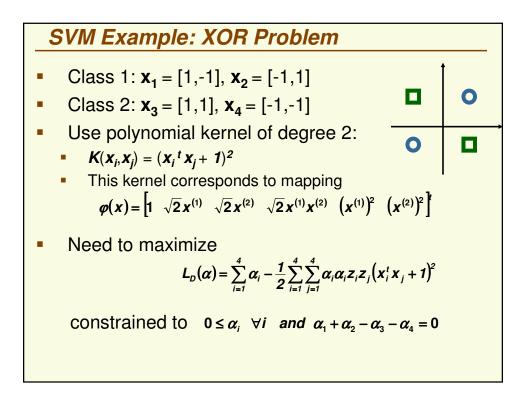
- Weight vector \boldsymbol{w} in the high dimensional space: $\boldsymbol{w} = \sum_{\boldsymbol{x}_i \in S} \alpha_i \boldsymbol{z}_i \boldsymbol{\varphi}(\boldsymbol{x}_i)$
 - where **S** is the set of support vectors $S = \{x_i | \alpha_i \neq 0\}$
- Linear discriminant function of largest margin in the high dimensional space:

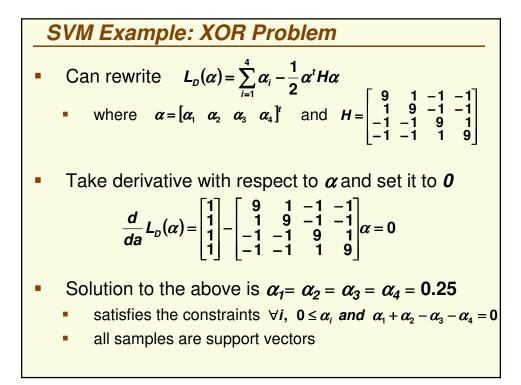
$$g(\varphi(\mathbf{x})) = \mathbf{w}^t \varphi(\mathbf{x}) = \left(\sum_{x_i \in S} \alpha_i \mathbf{z}_i \varphi(\mathbf{x}_i)\right)^t \varphi(\mathbf{x})$$

Non linear discriminant function in the original space $g(x) = \left(\sum_{x_i \in S} \alpha_i z_i \varphi(x_i)\right)^t \varphi(x) = \sum_{x_i \in S} \alpha_i z_i \varphi^t(x_i) \varphi(x) = \sum_{x_i \in S} \alpha_i z_i \mathcal{K}(x_i, x)$

• decide class 1 if g(x) > 0, otherwise decide class 2







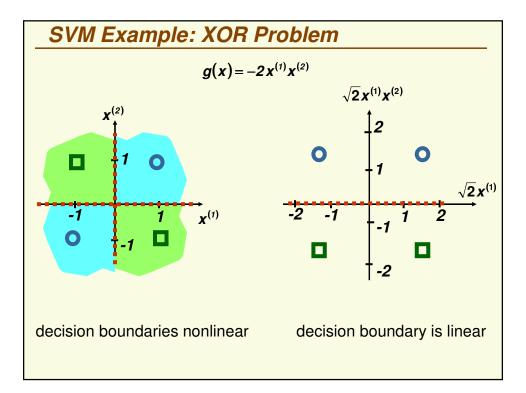
SVM Example: XOR Problem

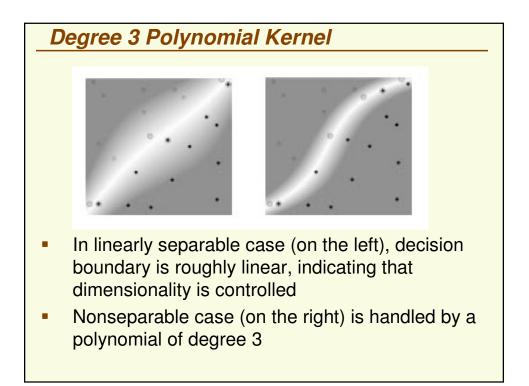
$$\varphi(x) = \left[1 \quad \sqrt{2} x^{(1)} \quad \sqrt{2} x^{(2)} \quad \sqrt{2} x^{(1)} x^{(2)} \quad (x^{(1)})^2 \quad (x^{(2)})^2\right]^2$$
• Weight vector **w** is:

$$w = \sum_{i=1}^{4} \alpha_i z_i \varphi(x_i) = 0.25(\varphi(x_1) + \varphi(x_2) - \varphi(x_3) - \varphi(x_4))$$

$$= \left[0 \quad 0 \quad 0 \quad -\sqrt{2} \quad 0 \quad 0\right]$$
• Thus the nonlinear discriminant function is:

$$g(x) = w\varphi(x) = \sum_{i=1}^{6} w_i \varphi_i(x) = -\sqrt{2}(\sqrt{2} x^{(1)} x^{(2)}) = -2 x^{(1)} x^{(2)}$$





_	SVM Summary
•	Advantages:
	 Based on nice theory
	 excellent generalization properties
	 objective function has no local minima
	 can be used to find non linear discriminant functions
	 Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space
•	Disadvantages:
	 tends to be slower than other methods
	 quadratic programming is computationally expensive
	 Not clear how to choose the Kernel