
1

CS9840

Learning and Computer Vision

Prof. Olga Veksler

Lecture 4

Cross Validation, Bagging

and Boosting
Cross Validation slides are from Andrew Moore

(CMU)

Some slides are due to Robin Dhamankar

Vandi Verma & Sebastian Thrun

Today

� New Machine Learning Topics:

1) Performance evaluation methods

� cross-validation

2) Ensemble Learning

� Bagging

� Boosting

� Next time two papers:

� “Rapid Object Detection using a Boosted Cascade of
Simple Features” by P. Viola and M. Jones from
CVPR2001

� “Detecting Pedestrians Using Patterns of Motion and
Appearance” by P. Viola, M.J.Jones, D. Snow

A Regression Problem

x

y

y = f(x) + noise

Can we learn f from this data?

Let’s consider three methods…

from Andrew Moore (CMU)

Linear Regression

x

y

from Andrew Moore (CMU)

2

Linear Regression

Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..

from Andrew Moore (CMU)

Linear Regression

Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..

1

3

:

1

1

:

3

7
Z= y=

z1=(1,3)..

zk=(1,xk)

y1=7..

from Andrew Moore (CMU)

Linear Regression

Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..

1

3

:

1

1

:

3

7
Z= y=

z1=(1,3)..

zk=(1,xk)

y1=7..

ββββ=(ZTZ)-1(ZTy)

yest = β0+ β1 x

from Andrew Moore (CMU)

Quadratic Regression

x

y

from Andrew Moore (CMU)

3

Quadratic Regression

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3,2).. y1=7..

1

9

1

3

:

1

1

:

3

7
Z=

y=

z=(1 , x, x2
,)

ββββ=(ZTZ)-1(ZTy)

yest = β0+ β1 x+ β2 x
2

from Andrew Moore (CMU)

Join-the-dots

x

y

Also known as piecewise
linear nonparametric

regression if that makes
you feel better

from Andrew Moore (CMU)

Which is best?

x

y

x

y

Why not choose the method with the
best fit to the data?

from Andrew Moore (CMU)

What do we really want?

x

y

x

y

Why not choose the method with the
best fit to the data?

“How well are you going to predict
future data drawn from the same

distribution?”

from Andrew Moore (CMU)

4

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

from Andrew Moore (CMU)

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
set

(Linear regression example)

from Andrew Moore (CMU)

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
set

4. Estimate your future
performance with the test
set

(Linear regression example)

Mean Squared Error = 2.4

from Andrew Moore (CMU)

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
set

4. Estimate your future
performance with the test
set

(Quadratic regression example)

Mean Squared Error = 0.9

from Andrew Moore (CMU)

5

The test set method

x

y

1. Randomly choose
30% of the data to be in a
test set

2. The remainder is a
training set

3. Perform your
regression on the training
set

4. Estimate your future
performance with the test
set

(Join the dots example)

Mean Squared Error = 2.2

from Andrew Moore (CMU)

The test set method

� Good news:

� Very very simple

� Can then simply choose the method with the best
test-set score

� Bad news:

� What’s the downside?

from Andrew Moore (CMU)

The test set method

�Good news:

�Very very simple

�Can then simply choose the method with
the best test-set score

�Bad news:

�Wastes data: we get an estimate of the
best method to apply to 30% less data

�if we don’t have much data, our test-
set might just be lucky or unlucky

We say the

“test-set

estimator of
performance

has high
variance”

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

from Andrew Moore (CMU)

6

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1
datapoints

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1
datapoints

4. Note your error (xk,yk)

x

y

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1
datapoints

4. Note your error (xk,yk)

When you’ve done all points,
report the mean error.

x

y

from Andrew Moore (CMU)

7

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be
the kth

record

2. Temporarily
remove
(xk,yk) from

the dataset

3. Train on the
remaining
R-1

datapoints

4. Note your
error (xk,yk)

When you’ve
done all points,

report the mean
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV

= 2.12

from Andrew Moore (CMU)

LOOCV for Quadratic Regression
For k=1 to R

1. Let (xk,yk) be
the kth

record

2. Temporarily
remove
(xk,yk) from

the dataset

3. Train on the
remaining
R-1

datapoints

4. Note your
error (xk,yk)

When you’ve
done all points,

report the mean
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV

=0.962

from Andrew Moore (CMU)

LOOCV for Join The Dots
For k=1 to R

1. Let (xk,yk) be
the kth

record

2. Temporarily
remove
(xk,yk) from

the dataset

3. Train on the
remaining
R-1

datapoints

4. Note your
error (xk,yk)

When you’ve
done all points,

report the mean
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV

=3.33

from Andrew Moore (CMU)

Which kind of Cross Validation?

Doesn’t
waste data

Expensive Leave-
one-out

CheapVariance: unreliable
estimate of future
performance

Test-set

UpsideDownside

..can we get the best of both worlds?

from Andrew Moore (CMU)

8

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and Blue)

k-fold Cross

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and

Yellow)

For the red partition: Train on all the

points not in the blue partition. Find
the test-set sum of errors on the

blue points.

k-fold Cross

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and

Yellow)

For the blue partition: Train on all the

points not in the blue partition. Find
the test-set sum of errors on the

blue points.

For the green partition: Train on all the

points not in the green partition.
Find the test-set sum of errors on

the green points.

k-fold Cross

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and

Yellow)

For the red partition: Train on all the

points not in the blue partition. Find
the test-set sum of errors on the

blue points.

For the green partition: Train on all the

points not in the green partition.
Find the test-set sum of errors on

the green points.

For the yellow partition: Train on all the

points not in the gray partition. Find

the test-set sum of errors on the
gray points.

k-fold Cross

Validation

from Andrew Moore (CMU)

9

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Red Green and

Yellow)

For the red partition: Train on all the

points not in the blue partition. Find
the test-set sum of errors on the

blue points.

For the green partition: Train on all the

points not in the green partition.
Find the test-set sum of errors on

the green points.

For the yellow partition: Train on all the

points not in the gray partition. Find

the test-set sum of errors on the
gray points.

Then report the mean error

Linear Regression
MSE3FOLD=2.05

k-fold Cross

Validation

x

y

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Yellow, Green and

Blue)

For the blue partition: Train on all the

points not in the blue partition. Find
the test-set sum of errors on the

blue points.

For the green partition: Train on all the

points not in the green partition.
Find the test-set sum of errors on

the green points.

For the yellow partition: Train on all the

points not in the gray partition. Find

the test-set sum of errors on the
gray points.

Then report the mean error

Quadratic Regression
MSE3FOLD=1.11

k-fold Cross

Validation

from Andrew Moore (CMU)

k-fold Cross

Validation

x

y

Randomly break the dataset into k
partitions (in our example we’ll have k=3

partitions colored Yellow Green and

Blue)

For the blue partition: Train on all the

points not in the blue partition. Find
the test-set sum of errors on the

blue points.

For the green partition: Train on all the

points not in the green partition.
Find the test-set sum of errors on

the green points.

For the gray partition: Train on all the

points not in the gray partition. Find

the test-set sum of errors on the
gray points.

Then report the mean error

Joint-the-dots
MSE3FOLD=2.93

from Andrew Moore (CMU)

Which kind of Cross Validation?

Doesn’t waste dataExpensive Leave-
one-out

Only wastes 10%. Only
10 times more expensive
instead of R times.

Wastes 10% of the data.
10 times more expensive
than test set

10-fold

Slightly better than test-
set

Wastier than 10-fold.
Expensivier than test set

3-fold

Identical to Leave-one-outN-fold

CheapVariance: unreliable
estimate of future
performance

Test-set

UpsideDownside

from Andrew Moore (CMU)

10

CV-based Model Selection

� We’re trying to decide which algorithm to use.

� We train each machine and make a table…

f44

f55

f66

⌦f33

f22

f11

Choice10-FOLD-CV-ERRTRAINERRfii

from Andrew Moore (CMU)

CV-based Model Selection

� Example: Choosing number of hidden units in a one-
hidden-layer neural net.

� Step 1: Compute 10-fold CV error for six different model
classes:

3 hidden units

4 hidden units

5 hidden units

⌦2 hidden units

1 hidden units

0 hidden units

Choice10-FOLD-CV-ERRTRAINERRAlgorithm

� Step 2: Whichever model class gave best CV score: train it
with all the data, and that’s the predictive model you’ll use.

from Andrew Moore (CMU)

CV-based Model Selection

� Example: Choosing “k” for a k-nearest-neighbor regression.

� Step 1: Compute LOOCV error for six different model
classes:

� Step 2: Whichever model class gave best CV score: train it
with all the data, and that’s the predictive model you’ll use.

⌦K=4

K=5

K=6

K=3

K=2

K=1

Choice10-fold-CV-ERRTRAINERRAlgorithm

from Andrew Moore (CMU)

⌦K=4

K=5

K=6

K=3

K=2

K=1

ChoiceLOOCV-ERRTRAINERRAlgorithm

CV-based Model Selection

� Example: Choosing “k” for a k-nearest-neighbor
regression.

� Step 1: Compute LOOCV error for six different model
classes:

� Step 2: Whichever model class gave best CV score: train it
with all the data, and that’s the predictive model you’ll use.

Why did we use 10-fold-CV for

neural nets and LOOCV for k-

nearest neighbor?

And why stop at K=6

Are we guaranteed that a local

optimum of K vs LOOCV will be

the global optimum?

What should we do if we are

depressed at the expense of

doing LOOCV for K= 1 through

1000?

The reason is Computational. For k-

NN (and all other nonparametric
methods) LOOCV happens to be as
cheap as regular predictions.

No good reason, except it looked
like things were getting worse as K
was increasing

Sadly, no. And in fact, the
relationship can be very bumpy.

Idea One: K=1, K=2, K=4, K=8,
K=16, K=32, K=64 … K=1024

Idea Two: Hillclimbing from an initial
guess at K

from Andrew Moore (CMU)

11

CV-based Model Selection

� Can you think of other decisions we can ask Cross
Validation to make for us, based on other machine
learning algorithms in the class so far?

from Andrew Moore (CMU)

⌦Quad reg’n

LWR, KW=0.1

LWR, KW=0.5

Linear Reg’n

10-NN

1-NN

Choice10-fold-CV-ERRTRAINERRAlgorithm

CV-based Algorithm Choice

� Example: Choosing which regression algorithm to use

� Step 1: Compute 10-fold-CV error for six different model
classes:

� Step 2: Whichever algorithm gave best CV score: train it
with all the data, and that’s the predictive model you’ll use.

from Andrew Moore (CMU)

Cross-validation for classification

� Instead of computing the sum squared

errors on a test set, you should compute…

from Andrew Moore (CMU)

Cross-validation for classification

� Instead of computing the sum squared

errors on a test set, you should compute…

The total number of misclassifications on

a testset.

from Andrew Moore (CMU)

12

Cross-validation for classification

� Instead of computing the sum squared

errors on a test set, you should compute…

The total number of misclassifications on

a testset. • What’s LOOCV of 1-NN?

• What’s LOOCV of 3-NN?

• What’s LOOCV of 22-NN?

from Andrew Moore (CMU)

Cross-Validation for classification

� Choosing k for k-nearest neighbors

� Choosing h for the Parzen windows

� Any other “free” parameter of a classifier

� Choosing which classifier to use

� Choosing Features to use

from Andrew Moore (CMU)

Ensemble Learning: Bagging and Boosting

� So far we have talked about design of a single classifier
that generalizes well (want to “learn” f(x))

� From statistics, we know that it is good to average your
predictions (reduces variance)

� Bagging
� reshuffle your training data to create k different trainig sets and

learn f1(x),f2(x),…,fk(x)

� Combine the k different classifiers by majority voting

fFINAL(x) =sign[Σ 1/k fi(x)]

� Boosting
� Assign different weights to training samples in a “smart” way so

that different classifiers pay more attention to different samples

� Weighted majority voting, the weight of individual classifier is
proportional to its accuracy

� Ada-boost (1996) was influenced by bagging, and it is superior
to bagging

Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� each classifier is trained on the average of 63.2% of the
training examples
� For a dataset with N examples, each example has a probability of

1-(1-1/N)N of being selected at least once in the N samples. For N→∞,
this number converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is
constructed for each of these training sets, using the same
classification algorithm

� To classify an unknown sample x, let each classifier predict.

� The bagged classifier fFINAL(x) then combines the predictions
of the individual classifiers to generate the final outcome,
frequently this combination is simple voting

13

Boosting: motivation

� It is usually hard to design an accurate classifier which

generalizes well

� However it is usually easy to find many “rule of thumb”
weak classifiers

� A classifier is weak if it is only slightly better than random
guessing

� Can we combine several weak classifiers to produce an
accurate classifier?

� Question people have been working on since 1980’s

Ada Boost

� Let’s assume we have 2-class classification

problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function:

(((()))) (((())))∑∑∑∑
====

====
T

t

tt xfxg
1

αααα

� where ft(x) is the “weak” classifier

� As usual, the final classifier is the sign of the
discriminant function, that is ffinal(x) = sign[g(x)]

Idea Behind Ada Boost

� Algorithm is iterative

� Maintains distribution of weights over the training
examples

� Initially distribution of weights is uniform

� At successive iterations, the weight of misclassified
examples is increased, forcing the weak learner to
focus on the hard examples in the training set

More Comments on Ada Boost

� Ada boost is very simple to implement, provided you
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at
least slightly better than random

� will work if the error rate of ft(x) is less than 0.5 (0.5 is the
error rate of a random guessing classifier for a 2-class
problem)

� Can be applied to boost any classifier, not
necessarily weak

14

Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training
points ∑ d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute the error rate εt as

εt= ∑i=1…N dt(xi) · I[yi ≠ ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑i=1 dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

Ada Boost

� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as

εt= ∑ dt(xi) · I[yi ≠ ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑t+1d(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� If the classifier does not take weighted samples, this
step can be achieved by sampling from the training
samples according to the distribution dt(x)

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ dt(xi) · I[yi ≠ ft(xi)]
� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑ dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� Since the weak classifier is better than random, we
expect εt < 1/2

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ d(xi) · I(yi ≠ ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)
� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑ dt+1(xi) = 1

� fFINAL(x) =sign [∑ αtft (x)]

� Recall that εt < ½

� Thus (1- εt)/ εt > 1 ⇒ αt > 0

� The smaller is εt, the larger is αt, and thus the more
importance (weight) classifier ft(x) gets in the final classifier

fFINAL(x) =sign [∑ αt ft (x)]

15

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ dt (xi) · I(yi ≠ ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑dt+1(xi) = 1
� fFINAL(x) =sign [∑ αt ft (x)]

� Weight of misclassified examples is increased and the
new dt+1(xi)’s are normalized to be a distribution again

AdaBoost Example
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training
samples

Note: in the following slides, ht(x) is used instead of ft(x),
and D instead of d

AdaBoost Example

ROUND 1

AdaBoost Example

ROUND 2

16

AdaBoost Example

ROUND 3

AdaBoost Example

fFINAL(x)=

AdaBoost Comments

� It can be shown that the training error drops
exponentially fast, if each weak classifier is slightly
better than random

(((())))∑∑∑∑−−−−≤≤≤≤
t ttrainErr 22exp γγγγ

� Here γγγγt = εεεεt – 1/2, where is classification error at
round t (weak classifier ft)

AdaBoost Comments

� But we are really interested in the generalization properties of
fFINAL(x), not the training error

� AdaBoost was shown to have excellent generalization
properties in practice

� the more rounds, the more complex is the final classifier, so overfitting is
expected as the training proceeds

� but in the beginning researchers observed no overfitting of the data

� It turns out it does overfit data eventually, if you run it really long

� It can be shown that boosting “aggressively” increases the
margins of training examples, as iterations proceed

� margins continue to increase even when training error reaches zero

� Helps to explain empirically observed phenomena: test error continues

to drop even after training error reaches zero

17

AdaBoost Example

fFINAL(x)=

The Margin Distribution

0.550.520.14Minimum margin

0.00.07.7%margins≤0.5

3.13.38.4test error

0.00.00.0training error

10001005epoch

Boosting As Additive Model

� The final prediction in boosting g(x) can be
expressed as an additive expansion of individual
classifiers

);x(f)x(g kk

M

1k

k γγγγαααα∑∑∑∑
====

====

∑∑∑∑ ∑∑∑∑
==== ====

N

1i

M

1k

kikki
,,...,,

);x(f,yLmin
MM11

γγγγαααα
ααααγγγγγγγγαααα

� Typically we would try to minimize a loss function
on the N training examples

� For example, under squared-error loss:

∑∑∑∑ ∑∑∑∑
==== ====

−−−−

N

1i

2M

1k

kikki
,,...,,

);x(fymin
MM11

γγγγαααα
ααααγγγγγγγγαααα

fixed

fixed

Boosting As Additive Model

()2

titti1ti);x(f)x(gy γα−−= −

=+−));x(f)x(g,y(L titti1ti γα

� Under the squared difference loss function:

� Forward stage-wise optimization seems to produce
classifier with better generalization, doing the
process stagewise seems to overfit less quickly

);()()(1 ttttt xfxgxg γγγγαααα++++==== −−−−

� Forward stage-wise modeling is iterative and fits
the fk(x,γk) sequentially, fixing the results of
previous iterations

model at
iteration t

fit γγγγt, ααααt to produce
improved gt(x)

18

Boosting As Additive Model

� It can be shown that AdaBoost uses forward stage-
wise modeling under the following loss function:

� L(y, g (x)) = exp(-y · g (x)) -- the exponential loss function

� At stage (or iteration) m, we fit:

∑∑∑∑

∑∑∑∑

∑∑∑∑

====

−−−−

====

−−−−

====

⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅−−−−====

⋅⋅⋅⋅++++⋅⋅⋅⋅−−−−====

====

N

1i

immii1mi
f,

N

1i

immi1mi
f,

i

N

1i

i
f,

))x(fyexp())x(gyexp(minarg

)])x(f)x(g[yexp(minarg

))x(g,y(Lminarg

mm

mm

mm

αααα

αααα

αααα

αααα

αααα

);x(f)x(g kk

M

1k
k γγγγαααα∑∑∑∑

====

====

Exponential Loss vs. Squared Error Loss

� L(y, g (x)) = exp(-y · g (x))

y · g (x)
0-2 -1 1 2

� L(y, g (x)) = (y - g (x))2

1

SE loss

exponential loss

� Squared Error Loss penalizes classifications that are “too
correct”, with y · g (x) >1, and thus it is inappropriate for
classification

� Exponential loss encourages large margins, want y · g (x) large

Loss

Logistic Regression Model

� It can be shown that Adaboost builds a logistic regression
model:

(((())))
(((())))

(((())))
(((())))∑∑∑∑

====

====
−−−−====

====
====

M

1k
mm xf

x|1YPr

x|1YPr
logxg αααα

(((())))(((()))) (((())))∑∑∑∑ ∑∑∑∑∑∑∑∑
==== ========

⋅⋅⋅⋅−−−−====⋅⋅⋅⋅−−−−

N

1i

M

1k

immi

N

1i

ii xfyexpxgyexp αααα

� It can also be shown that the the training error on the samples
is at most:

Practical Advantages of AdaBoost

� fast

� simple

� Has only one parameter to tune (T)

� flexible: can be combined with any classifier

� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses
that are better than random guessing

� finds outliers

� The hardest examples are frequently the “outliers”

19

Caveats

� performance depends on data & weak learner

� AdaBoost can fail if
� weak hypothesis too complex (overfitting)

� weak hypothesis too weak (γ
t
→0 too quickly),

� underfitting

� Low margins → overfitting

� empirically, AdaBoost seems especially
susceptible to noise

