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CS9840 

Learning and Computer Vision 

Prof. Olga Veksler

Lecture 4

Cross Validation, Bagging 

and Boosting
Cross Validation slides are from Andrew Moore 

(CMU)

Some slides are due to Robin Dhamankar

Vandi Verma & Sebastian Thrun

Today

� New Machine Learning Topics:

1) Performance evaluation methods

� cross-validation

2) Ensemble Learning

� Bagging 

� Boosting

� Next time two papers:

� “Rapid Object Detection using a Boosted Cascade of 
Simple Features” by P. Viola and M. Jones from 
CVPR2001

� “Detecting Pedestrians Using Patterns of Motion and 
Appearance” by P. Viola, M.J.Jones, D. Snow

A Regression Problem

x

y

y = f(x) + noise

Can we learn f from this data?

Let’s consider three methods…

from Andrew Moore (CMU)

Linear Regression

x

y

from Andrew Moore (CMU)
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Linear Regression

Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..
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Linear Regression

Univariate Linear regression with a constant term:

::
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ββββ=(ZTZ)-1(ZTy)

yest = β0+ β1 x

from Andrew Moore (CMU)

Quadratic Regression

x

y

from Andrew Moore (CMU)
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Quadratic Regression

::

31

73

YX
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yest = β0+ β1 x+ β2 x
2

from Andrew Moore (CMU)

Join-the-dots

x

y

Also known as piecewise 
linear nonparametric 

regression if that makes 
you feel better

from Andrew Moore (CMU)

Which is best?

x

y

x

y

Why not choose the method with the 
best fit to the data?

from Andrew Moore (CMU)

What do we really want?

x

y

x

y

Why not choose the method with the 
best fit to the data?

“How well are you going to predict 
future data drawn from the same 

distribution?”

from Andrew Moore (CMU)
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The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

from Andrew Moore (CMU)

The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

3. Perform your 
regression on the training 
set

(Linear regression example)
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The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Linear regression example)

Mean Squared Error = 2.4

from Andrew Moore (CMU)

The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Quadratic regression example)

Mean Squared Error = 0.9

from Andrew Moore (CMU)



5

The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Join the dots example)

Mean Squared Error = 2.2

from Andrew Moore (CMU)

The test set method

� Good news:

� Very very simple

� Can then simply choose the method with the best 
test-set score

� Bad news:

� What’s the downside?

from Andrew Moore (CMU)

The test set method

�Good news:

�Very very simple

�Can then simply choose the method with 
the best test-set score

�Bad news:

�Wastes data: we get an estimate of the 
best method to apply to 30% less data

�if we don’t have much data, our test-
set might just be lucky or unlucky

We say the 

“test-set 

estimator of 
performance 

has high 
variance”

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

from Andrew Moore (CMU)
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LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints
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LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints

4. Note your error (xk,yk)

x

y

from Andrew Moore (CMU)

LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints

4. Note your error (xk,yk)

When you’ve done all points, 
report the mean error.

x

y

from Andrew Moore (CMU)
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LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove
(xk,yk) from 

the dataset

3. Train on the 
remaining 
R-1 

datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 

report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV 

= 2.12

from Andrew Moore (CMU)

LOOCV for Quadratic Regression
For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove
(xk,yk) from 

the dataset

3. Train on the 
remaining 
R-1 

datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 

report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV

=0.962

from Andrew Moore (CMU)

LOOCV for Join The Dots
For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove
(xk,yk) from 

the dataset

3. Train on the 
remaining 
R-1 

datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 

report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV

=3.33

from Andrew Moore (CMU)

Which kind of Cross Validation?

Doesn’t 
waste data

Expensive Leave-
one-out

CheapVariance: unreliable 
estimate of future 
performance

Test-set

UpsideDownside

..can we get the best of both worlds?

from Andrew Moore (CMU)
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x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 

partitions colored Red Green and Blue)

k-fold Cross 

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 

partitions colored Red Green and 

Yellow)

For the red partition: Train on all the 

points not in the blue partition. Find 
the test-set sum of errors on the 

blue points.

k-fold Cross 

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 

partitions colored Red Green and 

Yellow)

For the blue partition: Train on all the 

points not in the blue partition. Find 
the test-set sum of errors on the 

blue points.

For the green partition: Train on all the 

points not in the green partition. 
Find the test-set sum of errors on 

the green points.

k-fold Cross 

Validation

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 

partitions colored Red Green and 

Yellow)

For the red partition: Train on all the 

points not in the blue partition. Find 
the test-set sum of errors on the 

blue points.

For the green partition: Train on all the 

points not in the green partition. 
Find the test-set sum of errors on 

the green points.

For the yellow partition: Train on all the 

points not in the gray partition. Find 

the test-set sum of errors on the 
gray points.

k-fold Cross 

Validation

from Andrew Moore (CMU)
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Randomly break the dataset into k 
partitions (in our example we’ll have k=3 

partitions colored Red Green and 

Yellow)

For the red partition: Train on all the 

points not in the blue partition. Find 
the test-set sum of errors on the 

blue points.

For the green partition: Train on all the 

points not in the green partition. 
Find the test-set sum of errors on 

the green points.

For the yellow partition: Train on all the 

points not in the gray partition. Find 

the test-set sum of errors on the 
gray points.

Then report the mean error

Linear Regression 
MSE3FOLD=2.05

k-fold Cross 

Validation

x

y

from Andrew Moore (CMU)

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 

partitions colored Yellow, Green and 

Blue)

For the blue partition: Train on all the 

points not in the blue partition. Find 
the test-set sum of errors on the 

blue points.

For the green partition: Train on all the 

points not in the green partition. 
Find the test-set sum of errors on 

the green points.

For the yellow partition: Train on all the 

points not in the gray partition. Find 

the test-set sum of errors on the 
gray points.

Then report the mean error

Quadratic Regression 
MSE3FOLD=1.11

k-fold Cross 

Validation

from Andrew Moore (CMU)

k-fold Cross 

Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 

partitions colored Yellow Green and 

Blue)

For the blue partition: Train on all the 

points not in the blue partition. Find 
the test-set sum of errors on the 

blue points.

For the green partition: Train on all the 

points not in the green partition. 
Find the test-set sum of errors on 

the green points.

For the gray partition: Train on all the 

points not in the gray partition. Find 

the test-set sum of errors on the 
gray points.

Then report the mean error

Joint-the-dots 
MSE3FOLD=2.93

from Andrew Moore (CMU)

Which kind of Cross Validation?

Doesn’t waste dataExpensive Leave-
one-out

Only wastes 10%. Only 
10 times more expensive 
instead of R times.

Wastes 10% of the data. 
10 times more expensive 
than test set

10-fold

Slightly better than test-
set

Wastier than 10-fold. 
Expensivier than test set

3-fold

Identical to Leave-one-outN-fold

CheapVariance: unreliable 
estimate of future 
performance

Test-set

UpsideDownside

from Andrew Moore (CMU)
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CV-based Model Selection

� We’re trying to decide which algorithm to use.

� We train each machine and make a table…

f44

f55

f66

⌦f33

f22

f11

Choice10-FOLD-CV-ERRTRAINERRfii

from Andrew Moore (CMU)

CV-based Model Selection

� Example: Choosing number of hidden units in a one-
hidden-layer neural net.

� Step 1: Compute 10-fold CV error for six different model 
classes:

3 hidden units

4 hidden units

5 hidden units

⌦2 hidden units

1 hidden units

0 hidden units

Choice10-FOLD-CV-ERRTRAINERRAlgorithm

� Step 2: Whichever model class gave best CV score: train it 
with all the data, and that’s the predictive model you’ll use.

from Andrew Moore (CMU)

CV-based Model Selection

� Example: Choosing “k” for a k-nearest-neighbor regression.

� Step 1: Compute LOOCV error for six different model 
classes:

� Step 2: Whichever model class gave best CV score: train it 
with all the data, and that’s the predictive model you’ll use.

⌦K=4

K=5

K=6

K=3

K=2

K=1

Choice10-fold-CV-ERRTRAINERRAlgorithm

from Andrew Moore (CMU)

⌦K=4

K=5

K=6

K=3

K=2

K=1

ChoiceLOOCV-ERRTRAINERRAlgorithm

CV-based Model Selection

� Example: Choosing “k” for a k-nearest-neighbor 
regression.

� Step 1: Compute LOOCV error for six different model 
classes:

� Step 2: Whichever model class gave best CV score: train it 
with all the data, and that’s the predictive model you’ll use.

Why did we use 10-fold-CV for 

neural nets and LOOCV for k-

nearest neighbor?

And why stop at K=6

Are we guaranteed that a local 

optimum of K vs LOOCV will be 

the global optimum?

What should we do if we are 

depressed at the expense of 

doing LOOCV for K= 1 through 

1000?

The reason is Computational. For k-

NN (and all other nonparametric 
methods) LOOCV happens to be as 
cheap as regular predictions.

No good reason, except it looked 
like things were getting worse as K 
was increasing

Sadly, no. And in fact, the 
relationship can be very bumpy.

Idea One: K=1, K=2, K=4, K=8, 
K=16, K=32, K=64 … K=1024

Idea Two: Hillclimbing from an initial 
guess at K

from Andrew Moore (CMU)
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CV-based Model Selection

� Can you think of other decisions we can ask Cross 
Validation to make for us, based on other machine 
learning algorithms in the class so far?

from Andrew Moore (CMU)

⌦Quad reg’n

LWR, KW=0.1

LWR, KW=0.5

Linear Reg’n

10-NN

1-NN

Choice10-fold-CV-ERRTRAINERRAlgorithm

CV-based Algorithm Choice

� Example: Choosing which regression algorithm to use

� Step 1: Compute 10-fold-CV error for six different model 
classes:

� Step 2: Whichever algorithm gave best CV score: train it 
with all the data, and that’s the predictive model you’ll use.

from Andrew Moore (CMU)

Cross-validation for classification

� Instead of computing the sum squared 

errors on a test set, you should compute…

from Andrew Moore (CMU)

Cross-validation for classification

� Instead of computing the sum squared 

errors on a test set, you should compute…

The total number of misclassifications on 

a testset.

from Andrew Moore (CMU)
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Cross-validation for classification

� Instead of computing the sum squared 

errors on a test set, you should compute…

The total number of misclassifications on 

a testset. • What’s LOOCV of 1-NN?

• What’s LOOCV of 3-NN?

• What’s LOOCV of 22-NN?

from Andrew Moore (CMU)

Cross-Validation for classification

� Choosing k for k-nearest neighbors

� Choosing h for the Parzen windows

� Any other “free” parameter of a classifier

� Choosing which classifier to use

� Choosing Features to use

from Andrew Moore (CMU)

Ensemble Learning: Bagging and Boosting

� So far we have talked about design of a single classifier 
that generalizes well (want to “learn” f(x) )

� From statistics, we know that it is good to average your 
predictions (reduces variance)

� Bagging
� reshuffle your training data to create k different trainig sets and  

learn f1(x),f2(x),…,fk(x) 

� Combine the k different classifiers by majority voting

fFINAL(x) =sign[Σ 1/k fi(x) ]

� Boosting
� Assign different weights to training samples in a “smart” way so 

that different classifiers pay more attention to different samples

� Weighted majority voting, the weight of individual classifier is
proportional to its accuracy

� Ada-boost (1996) was influenced by bagging, and it is  superior 
to bagging

Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� each classifier is trained on the average of 63.2% of the 
training examples
� For a dataset with N examples, each example has a probability of

1-(1-1/N)N of being selected at least once in the N samples. For N→∞, 
this number converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is 
constructed for each of these training sets, using the same 
classification algorithm 

� To classify an unknown sample x, let each classifier predict.  

� The bagged classifier fFINAL(x) then combines the predictions 
of the individual classifiers to generate the final outcome, 
frequently this combination is simple voting
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Boosting: motivation

� It is usually hard to design an accurate classifier which 

generalizes well

� However it is usually easy to find many “rule of thumb”
weak classifiers

� A classifier is weak if it is only slightly better than random 
guessing

� Can we combine several weak classifiers to produce an 
accurate classifier?

� Question people have been working on since 1980’s

Ada Boost

� Let’s assume we have 2-class classification 

problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function: 

(((( )))) (((( ))))∑∑∑∑
====

====
T

t

tt xfxg
1

αααα

� where ft(x) is the “weak” classifier

� As usual, the final classifier is the sign of the 
discriminant function, that is ffinal(x) = sign[g(x)]

Idea Behind Ada Boost

� Algorithm is iterative

� Maintains distribution of weights over the training 
examples

� Initially distribution of weights is uniform

� At successive iterations, the weight of misclassified 
examples is increased, forcing the weak learner to 
focus on the hard examples in the training set

More Comments on Ada Boost

� Ada boost is very simple to implement, provided you 
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at 
least slightly better than random 

� will work if the error rate of ft(x) is less than  0.5 (0.5 is the 
error rate of a random guessing classifier for a 2-class 
problem)

� Can be applied to boost any classifier, not 
necessarily weak
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Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training 
points ∑ d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute the error rate  εt  as 

εt= ∑i=1…N dt(xi ) · I[yi ≠ ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that ∑i=1 dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

Ada Boost

� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as 

εt= ∑ dt(xi ) · I[yi ≠ ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that  ∑t+1d(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� If the classifier does not take weighted samples, this 
step can be achieved by sampling from the training 
samples according to the distribution dt(x)

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt  the error rate as 

εt= ∑ dt(xi ) · I[yi ≠ ft(xi )]
� assign weight αt  the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that  ∑ dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� Since the weak classifier is better than random, we 
expect εt < 1/2

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as 

εt= ∑ d(xi ) · I(yi ≠ ft(xi )

� assign weight αt  the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )
� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that  ∑ dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αtft (x) ]

� Recall that  εt < ½

� Thus (1- εt)/ εt > 1  ⇒ αt > 0

� The smaller is εt, the larger is αt, and thus the more 
importance (weight) classifier ft(x) gets in the final classifier 

fFINAL(x) =sign [ ∑ αt ft (x) ]
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Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt   the error rate as 

εt= ∑ dt (xi ) · I(yi ≠ ft(xi )

� assign weight αt   the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that  ∑dt+1(xi ) = 1
� fFINAL(x) =sign [ ∑ αt ft (x) ]

� Weight of misclassified examples is increased and the 
new dt+1(xi)’s are normalized to be a distribution again

AdaBoost Example 
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training 
samples

Note: in the following slides, ht(x) is used instead of ft(x), 
and D instead of d

AdaBoost Example

ROUND 1

AdaBoost Example

ROUND 2
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AdaBoost Example

ROUND 3

AdaBoost Example

fFINAL(x)=

AdaBoost Comments

� It can be shown that the training error drops 
exponentially fast, if each weak classifier is slightly 
better than random

(((( ))))∑∑∑∑−−−−≤≤≤≤
t ttrainErr 22exp γγγγ

� Here γγγγt = εεεεt – 1/2, where is classification error at 
round t (weak classifier ft ) 

AdaBoost Comments

� But we are really interested in the generalization properties of
fFINAL(x), not the training error

� AdaBoost was shown to have excellent generalization 
properties in practice

� the more rounds, the more complex is the final classifier, so overfitting is 
expected as the training proceeds

� but in the beginning researchers observed no overfitting of the data

� It turns out it does overfit data eventually, if you run it really long

� It can be shown that boosting “aggressively” increases the 
margins of training examples, as iterations proceed

� margins continue to increase even when training error reaches zero

� Helps to explain empirically observed phenomena: test error continues 

to drop even after training error reaches zero
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AdaBoost Example

fFINAL(x)=

The Margin Distribution

0.550.520.14Minimum margin

0.00.07.7%margins≤0.5

3.13.38.4test error

0.00.00.0training error

10001005epoch

Boosting As Additive Model

� The final prediction in boosting g(x) can be 
expressed as an additive expansion of individual 
classifiers

);x(f)x(g kk

M

1k

k γγγγαααα∑∑∑∑
====

====

∑∑∑∑ ∑∑∑∑
==== ====








N

1i

M

1k

kikki
,,...,,

);x(f,yLmin
MM11

γγγγαααα
ααααγγγγγγγγαααα

� Typically we would try to minimize a loss function
on the N training examples

� For example, under squared-error loss:

∑∑∑∑ ∑∑∑∑
==== ====









−−−−

N

1i

2M

1k

kikki
,,...,,

);x(fymin
MM11

γγγγαααα
ααααγγγγγγγγαααα

fixed

fixed

Boosting As Additive Model

( )2

titti1ti );x(f)x(gy γα−−= −

=+− ));x(f)x(g,y(L titti1ti γα

� Under the squared difference loss function:

� Forward stage-wise optimization seems to produce 
classifier with better generalization, doing the 
process stagewise seems to overfit less quickly

);()()( 1 ttttt xfxgxg γγγγαααα++++==== −−−−

� Forward stage-wise modeling is iterative and fits 
the fk(x,γk) sequentially, fixing the results of 
previous iterations

model at 
iteration t

fit γγγγt, ααααt to produce 
improved gt(x) 
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Boosting As Additive Model

� It can be shown that AdaBoost uses forward stage-
wise modeling under the following loss function:

� L(y, g (x)) = exp(-y · g (x))  -- the exponential loss function

� At stage (or iteration) m, we fit:
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Exponential Loss vs. Squared Error Loss

� L(y, g (x)) = exp(-y · g (x))

y · g (x)
0-2 -1 1 2

� L(y, g (x)) = (y - g (x))2

1

SE loss

exponential loss

� Squared Error Loss penalizes classifications that are “too 
correct”, with  y · g (x) >1, and thus it is inappropriate for 
classification

� Exponential loss encourages large margins, want y · g (x) large

Loss

Logistic Regression Model

� It can be shown that Adaboost builds a logistic regression 
model:
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� It can also be shown that the the training error on the samples 
is at most:

Practical Advantages of AdaBoost

� fast

� simple

� Has only one parameter to tune (T)

� flexible: can be combined with any classifier 

� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses 
that are better than random guessing

� finds outliers

� The hardest examples are frequently the “outliers”



19

Caveats

� performance depends on data & weak learner

� AdaBoost can fail if
� weak hypothesis too complex (overfitting)

� weak hypothesis too weak (γ
t
→0 too quickly),

� underfitting

� Low margins → overfitting

� empirically, AdaBoost seems especially 
susceptible to noise


