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CS9840a 

Learning and Computer Vision 
Prof. Olga Veksler

Lecture 5

Unsupervised Learning

EM

Today

� New Topic: Unsupervised Learning
�Supervised vs. unsupervised learning

�Unsupervised learning
� nonparametric unsupervised learning = clustering

� Proximity Measures

� Criterion Functions

� k-means

� Very brief intro to Bayesian decision theory (need this 
for parametric supervised learning)

� parametric unsupervised learning
� Expectation Maximization (EM)
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Supervised vs. Unsupervised Learning

� Up to now we considered supervised learning 
scenario, where we are given

1. samples x1,…, xn

2. class label yi for all samples xi

� This is also called learning with teacher, since correct 
answer (the true class) is provided

� In the next few lectures we consider 
unsupervised learning scenario, where we are 
only given

1. samples x1,…, xn

� This is also called learning without teacher, since 
correct answer is not provided

� do not split data into training and test sets

Unsupervised Learning

� Data is not labeled

1. Parametric Approach
� assume parametric distribution of data 

� estimate parameters of this distribution

� much “harder” than supervised case

� NonParametric Approach

� group the data into clusters, each cluster (hopefully) 

says something about categories (classes) present in 

the data
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Why Unsupervised Learning?

� Unsupervised learning is harder 

� How do we know if results are meaningful? No answer 

labels are available.

� Let the expert look at the results (external evaluation)

� Define an objective function on clustering (internal evaluation)

� We nevertheless need it because

1. Labeling large datasets is very costly (speech recognition)

� sometimes can label only a few examples by hand

2. May have no idea what/how many classes there are (data 

mining)

3. May want to use clustering to gain some insight into the 

structure of the data before designing a classifier

� Clustering as data description

Clustering

� Seek “natural” clusters in the data

� Clustering is a way to discover new 
categories (classes)

� What is a good clustering?

� internal (within the cluster) distances should be  small

� external (intra-cluster) should be large
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What we Need for Clustering
1. Proximity measure, either 

� similarity measure s(xi,xk): large if xi,xk are similar

� dissimilarity(or distance) measure d(xi,xk): small if xi,xk are similar 

2. Criterion function to evaluate a clustering

good clustering

3. Algorithm to compute clustering
� For example, by optimizing the criterion function

large d, small s large s, small d

bad clustering

How Many Clusters?

3 clusters or 2 clusters?

� Possible approaches 

1. fix the number of clusters to k

2. find the best clustering according to the criterion 

function (number of clusters may vary)
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Proximity Measures

� good proximity measure is VERY application 
dependent

� Clusters should be invariant under the transformations 

“natural” to the problem

� For example for object recognition, should have 
invariance to rotation

� For character recognition,  no invariance to rotation

distance 0

9 6large distance 

Distance (dissimilarity) Measures

� Manhattan (city block) distance
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� approximation to Euclidean distance, 
cheaper to compute
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� Chebyshev distance

� approximation to Euclidean distance, 
cheapest to compute

� translation invariant



6

Similarity Measures

� Correlation coefficient

� Cosine similarity:
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� the smaller the angle, the larger the 
similarity

� scale invariant measure
� popular in text retrieval

� popular in image processing
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Feature Scale

� old problem: how to choose appropriate relative 
scale for features?

� [length (in meters or cms?), weight(in in grams or kgs?)]

� In supervised learning, can normalize to zero mean unit  

variance with no problems

� in clustering this is more problematic, if variance in 
data is due to cluster presence, then normalizing 
features is not a good thing

before normalization after normalization
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Criterion Functions for Clustering

� Have samples x1,…,xn

� Suppose partitioned samples into c subsets D1,…,Dc

1D

2D

3D

� Can define a criterion function J(D1,…,Dc) which 
measures the quality of a partitioning D1,…,Dc

� Then the clustering problem is a well defined 
problem

� the optimal clustering is the partition which optimizes the 

criterion function

� There are approximately cn/c! distinct partitions

Iterative Optimization Algorithms

� Now have both proximity measure and criterion 
function, need algorithm to find the optimal clustering

� Exhaustive search is impossible, since there are 
approximately  cn/c!  possible partitions

� Usually some iterative algorithm is used 

1. Find a reasonable initial partition

2. Repeat: move samples from one group to another s.t. the 

objective function J is improved

J = 777,777

move 

samples to 
improve J

J =666,666
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K-means Clustering

� for a different objective function, we need a different 

optimization algorithm, of course

� Iterative clustering algorithm

� Want to optimize the JSSE objective function
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� k-means is probably the most famous clustering 
algorithm

� it has a smart way of moving from current partitioning to 

the next one

� Fix number of clusters to k (c = k)

K-means Clustering

1. Initialize
� pick k cluster centers arbitrary
� assign each example to closest 

center

x
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2. compute sample 
means for each cluster

3. reassign all samples to the 
closest mean

4. if clusters changed at step 3, go to step 2

k = 3
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K-means Clustering

2. compute sample means for each cluster

3. reassign all samples to the closest mean

� Consider steps 2 and 3 of the algorithm

µµµµ1
µµµµ2
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If we represent clusters 

by their old means, the 
error has gotten smaller

K-means Clustering

3. reassign all samples to the closest mean

µµµµ1
µµµµ2

If we represent clusters 

by their old means, the 
error has gotten smaller

� However we represent clusters by their new 
means, and mean is always the smallest 
representation of a cluster
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K-means Clustering

� We just proved that by doing steps 2 and 3, the 
objective function goes down

� in two step, we found a “smart “ move which decreases 

the objective function

� Thus the algorithm converges after a finite number 
of iterations of steps 2 and 3

� However the algorithm is not guaranteed to find a 
global minimum

µµµµ1

µµµµ2

x

x

2-means gets stuck  here global minimum of JSSE

K-means Clustering

� Finding the optimum of JSSE is NP-hard

� In practice, k-means clustering performs usually 

well

� It is very efficient

� Its solution can be used as a starting point for 
other clustering algorithms

� Still 100’s of papers on variants and improvements 
of k-means clustering every year
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Bayesian Decision Theory

� Know probability distribution of the 

categories  

� Almost never the case in real life!

� Nevertheless useful since other cases can be 
reduced to this one after some work

� Do not even need training data

� Can design optimal classifier

Example: Fish Sorting

� Respected fish expert says that 

� Salmon’ length has distribution  N(5,1)

� Sea bass’s length has distribution N(10,4)

� Recall if r.v. is                then it’s density is
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� Thus class conditional densities are
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Likelihood function 
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� Thus class conditional densities are

fixed fixed

� Fix length, let fish class vary.  Then we get 

likelihood function (it is not density and not 
probability mass)
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Likelihood vs. Class Conditional Density

length7

Suppose a fish has length 7.  How do we classify it?

p(l | class)
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ML (maximum likelihood) Classifier
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� Instead, we choose class which maximizes likelihood

� We would like to choose salmon if 

[[[[ ]]]] [[[[ ]]]]bass|7lengthPrsalmon|7lengthPr ====>>>>====

� However, since length is a continuous r.v.,   

[[[[ ]]]] [[[[ ]]]] 0bass|7lengthPrsalmon|7lengthPr ================

� ML classifier: for an observed l:

(((( )))) (((( ))))bass|lp?salmon|lp
>>>>

<<<<

salmon

bass
in words: if p(l | salmon) > p(l | bass), 

classify as salmon, else classify as bass

> >

Interval Justification

7

p( 7 |bass)

p( 7 |salmon)

(((( ))))[[[[ ]]]] (((( ))))bass|7p2bass|7BlPr εεεε≈≈≈≈∈∈∈∈

(((( ))))[[[[ ]]]] (((( ))))salmon|7p2salmon|7BlPr εεεε≈≈≈≈∈∈∈∈

⇐⇐⇐⇐

Thus we choose 
the class (bass) 
which is more 

likely to have given 
the observation
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classify as salmon classify as sea bass

Decision Boundary

length6.70

Priors

� Suppose a fish expert says: in the fall, there 

are twice as many salmon as sea bass

� Prior for our fish sorting problem

� P(salmon) = 2/3

� P(bass) = 1/3

� Prior comes from prior knowledge, no data 

has been seen yet

� With the addition of prior to our model, how 

should we classify a fish of length 7?
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How Prior Changes Decision Boundary?

� Without priors

� How should this change with prior?

� P(salmon) = 2/3

� P(bass) = 1/3

6.70

salmon sea bass

? ?

length

6.70

salmon sea bass

length

Bayes Decision Rule

1. Have likelihood functions                  

p(length | salmon) and p(length | bass)

2. Have priors P(salmon) and P(bass)

� Question: Having observed fish of certain 

length, do we classify it as salmon or bass?

� Natural Idea:

� salmon if

� bass if 

(((( )))) (((( ))))length|bassPlength|salmonP >>>>

(((( )))) (((( ))))length|salmonPlength|bassP >>>>
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Posterior

� P(salmon | length) and P(bass | length)          

are called posterior distributions, because 

the data (length) was revealed (post data)

� How to compute posteriors? Not obvious

� From Bayes rule:
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(((( ))))lengthp
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� Similarly:

MAP (maximum a posteriori) classifier
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Back to Fish Sorting Example
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� likelihood

� Priors:    P(salmon) = 2/3,  P(bass) = 1/3
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� Solve inequality
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salmon sea bass

length7.18

new decision 

boundary

� New decision boundary makes sense since 

we expect to see more salmon

More on Posterior

(((( ))))
(((( )))) (((( ))))

(((( ))))lP

cPc|lP
l|cP ====

Prior
(given)

posterior density
(our goal)

likelihood
(given)

normalizing factor, often do not even need 
it for classification since P(l) does not 
depend on class c. If we do need it, from 

the law of total probability:

Notice this formula consists of likelihoods 
and priors, which are given

(((( )))) (((( )))) (((( )))) (((( )))) (((( ))))basspbass|lpsalmonpsalmon|lplP ++++====
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More on Priors

� Prior comes from prior knowledge, no data 

has been seen yet

� If there is a reliable source prior knowledge, 

it should be used
� Some problems cannot even be solved 

reliably without a good prior

� However prior alone is not enough, we still 

need likelihood

� P(salmon)=2/3, P(sea bass)=1/3

� If I don’t let you see the data, but ask you to 
guess, will you choose salmon or sea bass?

More on Map Classifier

(((( ))))
(((( )))) (((( ))))

(((( ))))lP

cPc|lP
l|cP ====

posterior
likelihood prior

� If P(salmon)=P(bass) (uniform prior) MAP classifier 
becomes ML classifier (((( )))) (((( ))))c|lPl|cP ∝∝∝∝

(((( )))) (((( )))) (((( ))))cPc|lPl|cP ∝∝∝∝

� Do not care about P(l) when maximizing P(c|l )
proportional

� If for some observation l, P(l|salmon)=P(l|bass), then 
this observation is uninformative and decision is 
based solely on the prior (((( )))) (((( ))))cPl|cP ∝∝∝∝
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Justification for MAP Classifier

� Let’s compute probability of error for the 

MAP estimate:

(((( )))) (((( ))))l|bassP?l|salmonP
<<<<

>>>>

bass

salmon

� For any particular l, probability of error

Pr[error| l ]=
if we decide salmonP(bass|l)

if  we decide bassP(salmon|l)

Thus MAP classifier is optimal  for each 

individual l !

Justification for MAP Classifier

� We are interested to minimize error not just for 
one l, we really want to minimize the average 
error over all l

[[[[ ]]]] (((( )))) [[[[ ]]]] (((( ))))dllpl|errorPrdll,errorperrorPr ∫∫∫∫∫∫∫∫
∞∞∞∞

∞∞∞∞−−−−

∞∞∞∞

∞∞∞∞−−−−

========

� If Pr[error| l ]is as small as possible, the integral is 
small as possible

Thus MAP classifier minimizes the probability of error!

� But Bayes rule makes  Pr[error| l ] as small as 
possible
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Parametric Unsupervised Learning

� Expectation Maximization (EM)

� one of the most useful statistical methods

� oldest  version in 1958 (Hartley)

� seminal paper in 1977 (Dempster et al.)

� can also be used when some samples are 
missing features

Parametric Supervised Learning

� Supervised parametric learning

� have m classes

� have samples x1,…, xn each of class 1, 2,…, m

� suppose Di  holds samples from class i

� probability distribution for class i is pi(x|θθθθi)

p1(x|θθθθ1) p2(x|θθθθ2)
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Parametric Supervised Learning

� Use the ML method to estimate parameters θθθθi

� find θθθθi which maximizes the likelihood function F(θθθθi)
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� or, equivalently, find θθθθi which maximizes the log 

likelihood l(θθθθi)
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Parametric Supervised Learning
� now the distributions are fully specified
� can classify unknown sample using MAP (Maximum A 

Posteriori) classifier
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Parametric Unsupervised Learning

� Assume the data was generated by a model with 
known shape but unknown parameters

� Advantages of having a model 

� Gives a meaningful way to cluster data

� adjust the parameters of the model to maximize the probability 

that the model produced the observed data

� Can sensibly measure if a clustering is good

� compute the likelihood of data induced by clustering

� Can compare 2 clustering algorithms

� which one gives the higher likelihood of the observed data?

P(x |θθθθ)

Parametric Unsupervised Learning

� In unsupervised learning, no one tells us the true 
classes for samples. We still know
� have m classes

� have samples x1,…, xn each of unknown class

� probability distribution for class i is pi(x|θθθθi)

� Can we determine the classes and parameters 
simultaneously?
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Example: MRI Brain Segmentation

� In MRI brain image, different brain tissues have different 
intensities

� Know that brain has 6 major types of tissues

� Each type of tissue can be modeled by a Gaussian N(µµµµi,σσσσi
2) 

reasonably well, parameters µµµµi,σσσσi
2 are unknown

� Segmenting (classifying) the brain image into different 
tissue classes  is very useful
� don’t know which image pixel corresponds to which tissue (class)
� don’t know parameters for each N(µµµµi,σσσσi

2) 

Picture from M. Leventon

segmentation

Mixture Density Model
� Model data with mixture density

(((( )))) (((( ))))j

m

j

jj cPcxpxp ∑∑∑∑
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,|)|( θθθθθθθθ

{{{{ }}}}mθθθθθθθθθθθθ ,...,1====� where

� To generate a sample from distribution p(x|θθθθ)
� first select class  j with probability P(cj)
� then generate x according to probability law p(x|cj ,θθθθj )

P(c 1
)

P
(c

2
)

P(c
3)

p(x|c1 ,θθθθ1 )
p(x|c2 ,θθθθ2 )

p(x|c3 ,θθθθ3 )

component densities

mixing parameters

(((( )))) (((( )))) (((( )))) 1...21 ====++++++++++++ mcPcPcP�
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Example: Gaussian Mixture Density

� Mixture of 3 Gaussians

(((( )))) (((( )))) (((( ))))xp5.0xp3.0xp2.0)x(p 321 ++++++++====
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Mixture Density

(((( )))) (((( ))))j

m

j
jj cPcxpxp ∑∑∑∑

====

====
1

,|)|( θθθθθθθθ

� P(c1),…, P(cm) can be known or unknown

� Suppose we know how to estimate θθθθ1,…, θθθθm and      

P(c1),…, P(cm)

� Can “break apart” mixture p(x|θθθθ ) for classification

� To classify sample x, use MAP estimation, that is 

choose class i which maximizes

),|( ii xcP θθθθ (((( ))))iii cP),c|x(p θθθθ∝∝∝∝

probability of component i 
to generate x

probability of 
component i 
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ML Estimation for Mixture Density

(((( )))) (((( ))))j

m

j
jj cPcxpxp ∑∑∑∑

====
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,|),|( θθθθρρρρθθθθ

� Can use Maximum Likelihood estimation for a 
mixture density; need to estimate
� θθθθ1,…, θθθθm

� ρρρρ1 = P(c1),…, ρρρρm = P(cm), and ρ ρ ρ ρ = {ρρρρ1 ,…, ρρρρm }

� As in the supervised case, form the logarithm 
likelihood function
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ML Estimation for Mixture Density

� need to maximize l(θθθθ,ρρρρ) with respect to θθθθ and ρρρρ

� As you may have guessed, l(θθθθ, ρρρρ) is not the easiest 
function to maximize

� If we take partial derivatives with respect to θθθθ, ρρρρ and 
set them to 0, typically we have a “coupled” nonlinear 
system of equation

� usually closed form solution cannot be found

� We could use the gradient ascent method
� in general, it is  not the greatest method to use, should 

only be used as last resort

� There is a better algorithm, called EM
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Mixture Density

(((( )))) j

m

j
jjcxpxp ρρρρθθθθρρρρθθθθ ∑∑∑∑

====

====
1

,|),|(

� Before EM, let’s look at the mixture density again

(((( )))) iiiiii cxpcPcxp ρρρρθθθθθθθθ ),|(),|( ====

� Suppose we know how to estimate θθθθ1,…, θθθθm and      
ρρρρ1,…,ρρρρm

� Estimating the class of x is easy with MAP, maximize

� Suppose we know the class of samples x1,…, xn
� This is just the supervised learning case, so estimating 

θθθθ1,…, θθθθm and  ρρρρ1,…,ρρρρm is easy

� This is an example of chicken-and-egg problem
� EM algorithm approaches this problem by adding 

“hidden” variables
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||
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Expectation Maximization Algorithm

� EM is an algorithm for ML parameter estimation 
when the data has missing values. It is used when
1. data is incomplete (has missing values) 

� some features are missing for some samples due 
to data corruption, partial survey responses, etc.

� This scenario is very useful, covered in section 3.9

2. Suppose data X is complete, but p(X|θθθθ) is hard to 
optimize. Suppose further that introducing certain 
hidden variables U whose values are missing, and 
suppose it is easier to optimize the “complete”
likelihood function p(X,U|θθθθ). Then EM is useful. 

� This scenario is useful for the mixture density 
estimation, and is subject of our lecture today

� Notice that after we introduce artificial (hidden) 
variables U with missing values, case 2 is completely 
equivalent to case 1
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EM: Hidden Variables for Mixture Density
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� For simplicity, assume component densities are
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� assume for now that the variance is known
� need to estimate θθθθ = {µµµµ1,…, µµµµm}

� If we knew which sample came from which 
component (that is the class label), the ML 
parameter estimation is easy

� Thus to get an easier problem, introduce hidden 
variables which indicate which component each 
sample belongs to

EM: Hidden Variables for Mixture Density

(((( ))))



====
0
1k

iz
if sample i was generated by component k
otherwise

� zi
(k) are indicator random variables, they indicate  

which Gaussian component generated sample xi

� For                            , define hidden variables zi
(k)mkni ≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤ 1,1

(((( )))) (((( )))){{{{ }}}}m
iiii zzxx ,...,, 1→→→→

(((( )))) (((( ))))2,~,| σσσσµµµµθθθθ kii Nzxp

� Let zi = {zi
(1),…, zi

(m)}, indicator r.v. corresponding to 
sample xi

� Conditioned on zi , distribution of xi is Gaussian

� where k is s.t. zi
(k) = 1
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EM: Joint Likelihood

(((( ))))θθθθθθθθ |,...,,,...,)|,( 11 nn zzxxpZXp ====

� Let zi = {zi
(1),…, zi

(m)}, and Z = {z1,…, zn} 

(((( ))))∏∏∏∏
====

====
n

i
ii zxp

1

|, θθθθ

� The complete likelihood is

(((( )))) (((( ))))∏∏∏∏
====

====
n

1i
iii |zp,z|xp θθθθθθθθ

gaussian part of ρρρρc

� The problem, is, of course, is that the values of Z 
are missing, since we made it up (that is Z is 
hidden)

� If we actually observed Z, the log likelihood 
ln[p(X,Z|θθθθ)] would be trivial to maximize with respect 
to θθθθ and ρρρρi

EM Derivation

� Instead of maximizing ln[p(X,Z|θθθθ)] the idea behind 
EM is to maximize some function of ln[p(X,Z|θθθθ)], 
usually its expected value (conditioned on X)

� the expectation is with respect to the missing data Z

(((( ))))[[[[ ]]]]θθθθ|Z,XplnE X|Z

� that is with respect to density p(Z |X,θθθθ)

� however θθθθ is our ultimate goal, we don’t know θ θ θ θ !

� If θθθθ makes ln[p(X,Z|θθθθ)] large, then θθθθ tends to make           

E[ln p(X,Z|θθθθ)] large
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EM Algorithm

� EM solution is to iterate

1. start with initial parameters θθθθ (0)

E. compute the expectation of log likelihood  
with respect to current estimate θθθθ (t) and X. 
Let’s call it Q(θθθθ |θθθθ (t))

iterate the following 2 step until convergence

(((( ))))(((( )))) (((( )))) (((( ))))[[[[ ]]]]t
X|Z

t ,X||Z,XplnE|Q θθθθθθθθθθθθθθθθ ====

M. maximize Q(θθθθ |θθθθ (t))

(((( )))) (((( ))))(((( ))))tt Q θθθθθθθθθθθθ
θθθθ

|maxarg1 ====++++

EM Algorithm: Picture

θθθθ

(((( ))))θθθθ|ln Xp

optimal value for θθθθ

we’d like to find it but 
optimizing p(X |θθθθ) is 

very difficult
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EM Algorithm: Picture

θθθθ

(((( ))))θθθθ|,ln ZXp

Z

This curve 
corresponds to the 

correct Z, we should 
optimize for but  Z is 

not observed

for mixture estimation,
there are mn curves, each 

curve corresponds to a 
particular assignment of 

samples to classes

unobserved Z
corresponding 
to observed 

data X

EM Algorithm: Picture

θθθθ

(((( ))))θθθθ|,ln ZXp

Z

(((( )))) (((( ))))[[[[ ]]]]t
Z XZXpE θθθθθθθθ ,||,ln

ZE (θθθθ((((t-1))

θ θ θ θ ((((t))))= argmax EZ[ ]
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EM Algorithm

� It can be proven that EM algorithm converges to the 
local maximum of the  log-likelihood

(((( ))))θθθθ|ln Xp

� Why is it better than gradient ascent?

� Convergence of EM is usually significantly faster, in the 

beginning, very large steps are made (that is likelihood 

function increases rapidly), as opposed to gradient 
ascent which usually takes tiny steps

� gradient descent is not guaranteed to converge

� recall all the difficulties of choosing the appropriate 

learning rate

EM:  Lower Bound Maximization

θθθθ

(((( ))))θθθθ|ln Xp

� It can be shown that at time step t  EM algorithm

� constructs function l(θθθθ |θθθθ(t)) which is bounded above 
by ln p(X|θθθθ) and touches l(θθθθ |θθθθ(t)) at θθθθ =θθθθ(t)

� finds θθθθ(t+1) that maximizes l(θθθθ |θθθθ(t))

� Therefore, log likelihood ln p(X|θθθθ)  can only go up

θθθθ(t)
θθθθ(t+1)

l(θθθθ |θθθθ(t))
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EM for Mixture of Gaussians: E step

� Let’s come back to our example (((( )))) j

m

j
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� need to estimate θθθθ = {µµµµ1,…, µµµµm} and  ρρρρ1,…, ρρρρm

(((( ))))
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0
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if sample i was generated by component k
otherwise

� for                            , define  zi
(k)mkni ≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤ 1,1

� We need log-likelihood of observed X and hidden Z
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� as before,  zi = {zi
(1),…, zi

(m)}, and Z = {z1,…, zn} 

EM for Mixture of Gaussians: E step

� We need log-likelihood of observed X and hidden Z
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� First let’s rewrite (((( )))) (((( ))))iii zPzxp θθθθ,|
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EM for Mixture of Gaussians: E step

� log-likelihood of observed X and hidden Z is
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EM for Mixture of Gaussians: E step

� log-likelihood of observed X and hidden Z is
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� For the E step, we must compute
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EM for Mixture of Gaussians: E step

� need to compute EZ[zi
(k)] in the above expression

(((( ))))(((( )))) (((( ))))[[[[ ]]]] (((( ))))
∑∑∑∑∑∑∑∑

==== ====













++++

−−−−
−−−−====

n

i

m

k

k
kik

iZ
t x

zEQ
1 1

2

2

ln
22

1
ln| ρρρρ

σσσσ

µµµµ

ππππσσσσ
θθθθθθθθ

(((( ))))[[[[ ]]]] (((( )))) (((( ))))(((( )))) (((( )))) (((( ))))(((( ))))i
tk

ii
tk

i
k

iZ xzPxzPzE ,|1*1,|0*0 θθθθθθθθ ====++++========

(((( )))) (((( ))))(((( ))))i

tk

i xzP ,|1 θθθθ========
(((( )))) (((( ))))(((( )))) (((( )))) (((( ))))(((( ))))

(((( ))))(((( ))))t
i

tk
i

k
i

t
i

xp

zPzxp

θθθθ

θθθθθθθθ

|

|11,| ========
====

(((( )))) (((( ))))(((( ))))

(((( )))) (((( ))))(((( ))))∑∑∑∑
====









−−−−−−−−









−−−−−−−−

====
m

j

t
ji

t
j

t
ki

t
k

x

x

1

2

2

2

2

2

1
exp

2

1
exp

µµµµ
σσσσ

ρρρρ

µµµµ
σσσσ

ρρρρ

� we are finally done with the E step
� for implementation, just need to compute EZ[zi

(k)] ’s don’t 
need to compute Q
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EM for Mixture of Gaussians: M step

� Need to maximize Q with respect to all parameters 
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� First differentiate with respect to µµµµk

the mean for class k is weighted average of all samples, 
and this weight is proportional to the current estimate of  

probability that the sample belongs to class k
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EM for Mixture of Gaussians: M step
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� For ρρρρk we have to use Lagrange multipliers to preserve 
constraint 1
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� Summing up over all components: 
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EM Algorithm

The algorithm on this slide applies ONLY to univariate gaussian
case with known variances

1. Randomly initialize µµµµ1,…, µµµµm , ρρρρ1,…, ρρρρm (with  
constraint   ΣρΣρΣρΣρi = 1) 

E. for all i, k, compute

iterate until no change in µµµµ1,…, µµµµm , ρρρρ1,…, ρρρρm

M. for all k, do parameter update
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EM Algorithm

� For the more general case of multivariate 
Gaussians with unknown means and variances
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ΣΣΣΣµµµµρρρρ
� E step:
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� M step:

EM Algorithm and K-means

� k-means  can be derived from EM algorithm
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� Setting mixing parameters equal for all classes, 

(((( ))))

(((( ))))∑∑∑∑
====









−−−−−−−−









−−−−−−−−

==== m

j
ji

ki

x

x

1

2

2

2

2

2

1
exp

2

1
exp

µµµµ
σσσσ

µµµµ
σσσσ

� If we let              , then 0→→→→σσσσ
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� so at the E step, for each current mean, we find all 

points closest to it and form new clusters
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� at the M step, we compute the new means inside 

current clusters
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EM Gaussian Mixture Example

After first iteration

EM Gaussian Mixture Example
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After second iteration

EM Gaussian Mixture Example

After third iteration

EM Gaussian Mixture Example
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After 20th iteration

EM Gaussian Mixture Example

EM Example

� Example from R. Gutierrez-Osuna

� Training set of 900 examples forming an annulus

� Mixture model with m = 30 Gaussian components of 
unknown mean and variance is used

� Training:

� Initialization:

� means to 30 random examples

� covaraince matrices initialized to be diagonal, with 

large variances on the diagonal (compared to the 

training data variance)

� During EM training, components with small mixing 
coefficients were trimmed

� This is a trick to get in a more compact model, with 

fewer than 30 Gaussian components
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EM Example

from R. Gutierrez-Osuna

Figure from “Color and Texture Based Image Segmentation Using EM and Its 

Application to Content Based Image Retrieval”,S.J. Belongie et al., ICCV 1998

EM  Texture Segmentation Example
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Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. 

Adelson, IEEE Transactions on Image Processing, 1994, c 1994, IEEE

EM Motion Segmentation Example

EM Algorithm Summary

� Advantages

� Guaranteed to converge (to a local max)

� If the assumed data distribution is correct, the 

algorithm works well

� Disadvantages

� If assumed data distribution is wrong, results 

can be quite bad. 

� In particular, bad results if use incorrect number of 

classes (i.e. the number of mixture components)


