

Why Unsupervised Learning?

- Unsupervised learning is harder
 - How do we know if results are meaningful? No answer labels are available.
 - Let the expert look at the results (external evaluation)
 - Define an objective function on clustering (internal evaluation)
- We nevertheless need it because
 - 1. Labeling large datasets is very costly (speech recognition)
 - sometimes can label only a few examples by hand
 - 2. May have no idea what/how many classes there are (data mining)
 - 3. May want to use clustering to gain some insight into the structure of the data before designing a classifier
 - Clustering as data description

K-means Clustering

- Iterative clustering algorithm
- Want to optimize the *J_{sse}* objective function

$$\boldsymbol{J}_{SSE} = \sum_{i=1}^{k} \sum_{\boldsymbol{x} \in D_i} || \boldsymbol{x} - \boldsymbol{\mu}_i ||^2$$

- for a different objective function, we need a different optimization algorithm, of course
- Fix number of clusters to k (c = k)
- *k*-means is probably the most famous clustering algorithm
 - it has a smart way of moving from current partitioning to the next one

- Expectation Maximization (EM)
 - one of the most useful statistical methods
 - oldest version in 1958 (Hartley)
 - seminal paper in 1977 (Dempster et al.)
 - can also be used when some samples are missing features

$$ML \text{ Estimation for Mixture Density}$$

$$p(x \mid \theta, \rho) = \sum_{j=1}^{m} p(x \mid c_j, \theta_j) P(c_j) = \sum_{j=1}^{m} p(x \mid c_j, \theta_j) \rho_i$$
• Can use Maximum Likelihood estimation for a mixture density; need to estimate
• $\theta_1, \dots, \theta_m$
• $\rho_1 = P(c_1), \dots, \rho_m = P(c_m), \text{ and } \rho = \{\rho_1, \dots, \rho_m\}$
• As in the supervised case, form the logarithm likelihood function
$$I(\theta, \rho) = \ln p(D \mid \theta, \rho) = \sum_{k=1}^{n} \ln \frac{p(x_k \mid \theta, \rho)}{p_k} = \sum_{k=1}^{n} \ln \left[\sum_{j=1}^{m} p(x \mid c_j, \theta_j) \rho_j \right]$$

EM for Mixture of Gaussians: E step
• log-likelihood of observed X and hidden Z is

$$\ln p(X, Z \mid \theta) = \sum_{i=1}^{n} \ln p(x_i \mid z_i, \theta) P(z_i)$$

$$= \sum_{i=1}^{n} \ln \prod_{k=1}^{m} \left[\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu_k)^2}{2\sigma^2}\right) P(z_i^{(k)} = 1) \right]^{z_i^{(k)}}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{m} \ln \left[\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu_k)^2}{2\sigma^2}\right) P(z_i^{(k)} = 1) \right]^{z_i^{(k)}}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{m} z_i^{(k)} \left[\ln \frac{1}{\sigma\sqrt{2\pi}} - \frac{(x_i - \mu_k)^2}{2\sigma^2} + \ln P(z_i^{(k)} = 1) \right]$$

$$P(\text{sample } x_i \text{ from class } k) = P(c_k) = \rho_k$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{m} z_i^{(k)} \left[\ln \frac{1}{\sigma\sqrt{2\pi}} - \frac{(x_i - \mu_k)^2}{2\sigma^2} + \ln \rho_k \right]$$

$$\begin{array}{l} \hline \textbf{EM for Mixture of Gaussians: E step} \\ Q(\theta \mid \theta^{(t)}) &= \sum_{i=1}^{n} \sum_{k=1}^{m} E_{Z}[z_{i}^{(k)}] \Big(\ln \frac{1}{\sigma \sqrt{2\pi}} - \frac{(x_{i} - \mu_{k})^{2}}{2\sigma^{2}} + \ln \rho_{k} \Big) \\ \bullet \quad \text{need to compute } \textbf{E}_{Z}[\textbf{z}_{i}^{(k)}] \text{ in the above expression} \\ \textbf{E}_{Z}[\textbf{z}_{i}^{(k)}] &= \textbf{0} * \textbf{P}(\textbf{z}_{i}^{(k)} = \textbf{0} \mid \theta^{(t)}, \textbf{x}_{i}) + \textbf{1} * \textbf{P}(\textbf{z}_{i}^{(k)} = \textbf{1} \mid \theta^{(t)}, \textbf{x}_{i}) \\ &= \textbf{P}(\textbf{z}_{i}^{(k)} = \textbf{1} \mid \theta^{(t)}, \textbf{x}_{i}) = \frac{\textbf{p}(\textbf{x}_{i} \mid \theta^{(t)}, \textbf{z}_{i}^{(k)} = \textbf{1}) \textbf{P}(\textbf{z}_{i}^{(k)} = \textbf{1} \mid \theta^{(t)}) \\ &= \frac{p(\textbf{z}_{i}^{(k)} = \textbf{1} \mid \theta^{(t)}, \textbf{x}_{i}) = \frac{p(\textbf{x}_{i} \mid \theta^{(t)}, \textbf{z}_{i}^{(k)} = \textbf{1}) \textbf{P}(\textbf{z}_{i}^{(k)} = \textbf{1} \mid \theta^{(t)}) \\ &= \frac{p(\textbf{z}_{i}^{(k)} = \textbf{1} \mid \theta^{(t)}, \textbf{x}_{i}) = \frac{p(\textbf{x}_{i} \mid \theta^{(t)}, \textbf{z}_{i}^{(k)} = \textbf{1}) \textbf{P}(\textbf{z}_{i}^{(k)} = \textbf{1} \mid \theta^{(t)})}{p(\textbf{x}_{i} \mid \theta^{(t)})} \\ &= \frac{p(\textbf{x}_{i}^{(t)} \exp(-\frac{1}{2}(\textbf{x}_{i} - \mu_{k}^{(t)})^{2}))}{\sum_{j=1}^{m} \textbf{P}(\textbf{x}_{i} \mid \theta^{(t)}, \textbf{z}_{i}^{(j)} = \textbf{1}) \textbf{P}(\textbf{z}_{i}^{(j)} = \textbf{1} \mid \theta^{(t)})} = \frac{p_{i}^{(t)} \exp(-\frac{1}{2\sigma^{2}}(\textbf{x}_{i} - \mu_{k}^{(t)})^{2})}{\sum_{j=1}^{m} \rho_{j}^{(t)} \exp(-\frac{1}{2\sigma^{2}}(\textbf{x}_{i} - \mu_{j}^{(t)})^{2})} \\ &= \text{ we are finally done with the } \textbf{E} \text{ step} \\ &= \text{ for implementation, just need to compute } \textbf{E}_{Z}[\textbf{z}_{i}^{(k)}] \text{'s don't need to compute } \textbf{Q} \end{aligned}$$

EM for Mixture of Gaussians: M step

$$Q(\theta \mid \theta^{(t)}) = \sum_{i=1}^{n} \sum_{k=1}^{m} E_{z}[z_{i}^{(k)}] \left(\ln \frac{1}{\sigma \sqrt{2\pi}} - \frac{(x_{i} - \mu_{k})^{2}}{2\sigma^{2}} + \ln \rho_{k} \right)$$
• Need to maximize **Q** with respect to all parameters
• First differentiate with respect to μ_{k}

$$\frac{\partial}{\partial \mu_{k}} Q(\theta \mid \theta^{(t)}) = \sum_{i=1}^{n} E_{z}[z_{i}^{(k)}] \frac{(x_{i} - \mu_{k})}{\sigma^{2}} = 0$$

$$\Rightarrow new \mu_{k} = \mu_{k}^{(t+1)} = \left[\frac{1}{n} \sum_{i=1}^{n} E_{z}[z_{i}^{(k)}] x_{i}\right]$$
the mean for class **k** is weighted average of all samples, and this weight is proportional to the current estimate of probability that the sample belongs to class **k**

EM for Mixture of Gaussians: M step

$$\begin{aligned}
&Q(\theta \mid \theta^{(i)}) = \sum_{l=1}^{n} \sum_{k=1}^{m} E_{Z}[z_{l}^{(k)}] \Big[\ln \frac{1}{\sigma \sqrt{2\pi}} - \frac{(x_{i} - \mu_{k})^{2}}{2\sigma^{2}} + \ln \rho_{k} \Big] \\
&= \text{For } \rho_{k} \text{ we have to use Lagrange multipliers to preserve constraint} & \sum_{j=1}^{m} \rho_{j} = 1 \\
&= \text{Thus we need to differentiate} \quad F(\lambda, \rho) = Q(\theta \mid \theta^{(t)}) - \lambda \Big(\sum_{j=1}^{m} \rho_{j} - 1 \Big) \\
&= \frac{\partial}{\partial \rho_{k}} F(\lambda, \rho) = \sum_{l=1}^{n} \frac{1}{\rho_{k}} E_{Z}[z_{l}^{(k)}] - \lambda = 0 \quad \Rightarrow \sum_{l=1}^{n} E_{Z}[z_{l}^{(k)}] - \lambda \rho_{k} = 0 \\
&= \text{Summing up over all components:} \quad \sum_{k=1}^{m} \sum_{l=1}^{n} E_{Z}[z_{l}^{(k)}] = \sum_{k=1}^{m} \lambda \rho_{k} \\
&= \text{Since} \quad \sum_{k=1}^{m} \sum_{l=1}^{n} E_{Z}[z_{l}^{(k)}] = n \quad \text{and} \quad \sum_{k=1}^{m} \rho_{k} = 1 \text{ we get } \lambda = n \\
&= \frac{\rho_{k}^{(t+1)}}{\rho_{k}^{(t+1)}} = \frac{1}{n} \sum_{l=1}^{n} E_{Z}[z_{l}^{(k)}]
\end{aligned}$$

EM AlgorithmThe algorithm on this slide applies ONLY to univariate gaussian
case with known variances1. Randomly initialize
$$\mu_1, \ldots, \mu_m, \rho_1, \ldots, \rho_m$$
 (with
constraint $\Sigma \rho_i = 1$)iterate until no change in $\mu_1, \ldots, \mu_m, \rho_1, \ldots, \rho_m$ E. for all i, k , compute
 $E_z[z_i^{(k)}] = \frac{\rho_k \exp\left(-\frac{1}{2\sigma^2}(x_i - \mu_k)^2\right)}{\sum\limits_{j=1}^m \rho_j \exp\left(-\frac{1}{2\sigma^2}(x_i - \mu_j)^2\right)}$ M. for all k , do parameter update $\mu_k = \frac{1}{n} \sum_{i=1}^n E_z[z_i^{(k)}] x_i$ $\rho_k = \frac{1}{n} \sum_{i=1}^n E_z[z_i^{(k)}]$

EM Algorithm

 For the more general case of multivariate Gaussians with unknown means and variances

• **E** step:
$$E_{z}[z_{i}^{(k)}] = \frac{\rho_{k} p(x | \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{m} \rho_{j} p(x | \mu_{j}, \Sigma_{j})}$$

where $p(x | \mu_{k}, \Sigma_{k}) = \frac{1}{(2\pi)^{d/2} |\Sigma_{k}^{-1}|^{1/2}} exp\left[-\frac{1}{2}(x - \mu_{k})^{t} \Sigma_{k}^{-1}(x - \mu_{k})\right]$

• *M* step:

$$\rho_{k} = \frac{1}{n} \sum_{i=1}^{n} E_{Z}[z_{i}^{(k)}]$$

$$\Sigma_{k} = \frac{\sum_{i=1}^{n} E_{Z}[z_{i}^{(k)}](x_{i} - \mu_{k})(x_{i} - \mu_{k})^{T}}{\sum_{i=1}^{n} E_{Z}[z_{i}^{(k)}]}$$

EI	VI Example
•	Example from R. Gutierrez-Osuna
•	Training set of 900 examples forming an annulus
•	Mixture model with $m = 30$ Gaussian components of unknown mean and variance is used
•	Training: Initialization:
	 means to 30 random examples covaraince matrices initialized to be diagonal, with large variances on the diagonal (compared to the training data variance) During EM training, components with small mixing coefficients were trimmed This is a trick to get in a more compact model, with fewer than 30 Gaussian components

